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Introduction

Forming adducts with elements throughout the periodic table,
the applications of N-heterocyclic carbenes (NHCs) pervade
modern synthetic chemistry."” Rivalling more established
phosphine ligands, these carbon-based donors have become
ubiquitous in organometallic chemistry and, building on pio-
neering work by Herrmann in the late 90s, transformed homo-
geneous transition metal catalysis."™* The evolution of
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NHC-based pincer ligands: carbenes with a bite}
Rhiann E. Andrew, Lucero Gonzalez-Sebastian and Adrian B. Chaplin*
In this frontier article we overview the emergence and scope of NHC-based CCC and CNC pincer

systems, i.e. complexes containing mer-tridentate ligands bearing two NHC donor groups, comment on
their effectiveness in applications, and highlight areas for future development and exploitation.

ruthenium catalysts for olefin metathesis is the quintessential
example (e.g. Grubbs II pre-catalysts), but the emergence of
many other keystone organic transformations, such as palla-
dium catalysed cross coupling reactions (e.g. PEPPSI pre-cata-
lysts), ‘click chemistry’, and gold catalysed reactions of
alkynes, are also associated with the ever increasing appli-
cation of NHCs.>* Most commonly employed imidazolylidene
and imidazolinylidene NHCs are stronger sigma donors (and
weaker pi-acceptors) in comparison to alkyl phosphines,
although enhancing their appeal as ancillary ligands a wide
range of donor properties can be accessed within the broader
ligand class.”® The steric characteristics of NHC ligands
further distinguish them from their phosphine counterparts;
the combination of shorter metal-ligand bonds and flanking
substituents that are directed towards the bound metal, permit
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NHC ligands to encroach deep into the metal coordination
sphere.” Underpinning these hallmarks, the ability to tune the
electronic and steric environment of the metal coordination
sphere using NHC ligands is facilitated by a wide range of
straightforward synthetic protocols for the respective pro-
ligands [NHC-H]".

Alongside the meteoric rise in the use of NHC ligands, mer-
tridentate “pincer” ligand architectures pervade contemporary
homogeneous catalysis, conferring high thermal stability and
supporting a broad range of metal-based reactivity.® Phos-
phine-based pincers with central pyridine or aryl donors in
particular have been widely investigated, enabling excellent
catalytic performance under forcing reaction conditions, such
as those associated with alkane dehydrogenation,” and fine
reaction control, for example, through cooperative metal-
ligand reactivity mediated by pyridine dearomatisation.'
Although significantly less developed, NHC-based CCC and
CNC variants - combining the favorable characteristics of NHC
donors with mer-tridentate ligand architectures - therefore rep-
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resent a potentially powerful amalgamation of modern ligand
design concepts. Supplementing earlier commentaries,"" in
this frontier article we overview the literature to gauge the
emergence of NHC-based pincer systems, comment on their
effectiveness in applications, and highlight areas for future
development and exploitation.

Discussion

Current ligand scope and synthetic procedures

Imidazolylidene-based systems of the type A (C-E-C) and B
(C*E~C) were the first examples of NHC-based pincers and
remain heavily investigated.'* Indeed, from a survey of the lit-
erature, these systems account for 84% of publications and
78% of solid-state structures associated with this bourgeoning
ligand class (as of 09/2015; Fig. 1)."* As a consequence of the
change in backbone composition, A and B display significantly
different ligand characteristics: the presence of bridging
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Fig. 1 Reported NHC-based pincer systems: article count from Scifinder™ with deposits in CSD given in square brackets (up until 09/2015 and only

for ligands shown to adopt mer-configurations).**
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Scheme 1 Synthesis of NHC-based pincer complexes.

methylene groups in the pincer backbone of B leads to charac-
teristically twisted C, conformations, which project the NHC
wingtips in opposite directions out of the coordination plane,
and results in the adoption of more ideal metal coordination
geometries in comparison to A (C-M-C = 172(2)° vs. 155(6)°)."
This simple structural adaption of the ligand therefore results
in systems with complementary steric profiles, and has signifi-
cant implications for the nature of the constituent metal-NHC
bonding."® Often dynamic in solution,'®'” atropisomers of B
can be resolved through incorporation of chiral substituents
(i.e. D), and such species could be of future interest for appli-
cations in asymmetric catalysis.'® Subsequent variations of
A and B have included modification of the central donor group
to produce ligands with different electronic profiles (E-H).
Curiously, pincers that incorporate significantly different back-
bone geometries (C, I-K, S) or NHC donors (L-T) have received
little attention, suggesting the full capacity of the wider ligand
class is yet to be exploited. Amongst the reported CCC and
CNC systems, the coordination chemistry of late transition
metals, and particularly palladium and ruthenium, has been
most frequently explored (Fig. 1). Helping to set them apart
from their phosphine-based analogues, a significant body of
work has also emerged based on NHC-based pincer complexes
of both the early transition metals and f-block elements,
and their applications (16 articles, 44 crystal structures,
vide infra)."®

Although preparation of the necessary pro-ligands is gener-
ally straightforward, the subsequent complexation is not
always, providing a potential barrier to wider investigation.
Scheme 1 gives representative methods that have been
employed.’”"*2® Direct coordination of the singlet carbene
species, generated by pro-ligand deprotonation with a strong
base, is conceptually the simplest means, although the high
reactivity of these species often precludes their isolation.
Indeed, well-defined free-carbenes of this type are limited to a

This journal is © The Royal Society of Chemistry 2016

handful of examples, primarily based on 2,6-functionalised
pyridine and benzene backbones.'”*” % Avoiding issues
associated with these highly reactive intermediates, ‘accessible
syntheses”®' involving equilibrium reactions with weak (e.g.
Et;N, Cs,CO3) or coordinated bases ([M]OAc, [M|NR,) can be
used and account for approximately half of the reported pincer
systems. Transmetallation is another common method; with
silver transfer agents, generated by reaction of the respective
pro-ligands with Ag,O, the most popular. Coordination of
anionic CCC-pincer ligands typically proceeds with concomi-
tant C-H or C-Br bond cyclometalation of the backbone,
although in situ preparation of anionic free-carbenes or use of
zirconium transfer agents, generated by reaction with
Zr(NMe,),, have also proved to be valuable alternatives. For-
mation of multi-nuclear***** or abnormal carbene com-
plexes (i.e. M, N)>**°% both represent potentially detrimental
outcomes of the aforementioned methodology: metal precur-
sors bearing non-chelating ligands and use of benzimidazo-
lium-based pro-ligands, respectively, are possible means to
avoid such outcomes.

Applications

Fuelled by the successful application of NHC ligands in palla-
dium-catalysed transformations, the emergence of NHC-based
pincer systems was closely associated with applications in C-C
coupling reactions.*'*> A variety of well-defined CCC- and
CNC-Pd(u) pre-catalysts have been reported to promote the
Suzuki-Miyaura and Heck-Mizoroki reactions with high
efficiency using low metal loadings, however, increasingly reac-
tions are being performed with pincer systems generated
in situ from pro-ligand and [Pd(OAc),].*® Targeted for increased
thermal stability under the forcing reactions conditions typi-
cally associated with such reactions, the exact role of the
pincer remains unclear. For instance, although pre-catalysts 1
(Fig. 2) show high activity in Heck-Mizoroki reaction, as do
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Fig. 2 Applications of NHC-based pincer systems (text cloud generated from article titles).*>

mono-dentate NHC systems,” they were noted to thermally
degrade via reductive methyl-NHC coupling.’® A product of
methyl group migration from palladium(u) to a coordinated
NHC donor group of a CNC pincer has been crystallographi-
cally characterised and helps corroborate such reactivity."' A
significant recent advance in this area is the development of
active Ni(i) CNC pre-catalysts.*>

Well defined platinum-metal-based CNC and CCC pincers
have been used to promote a variety of other transformations,
including hydrogenation (Ru, Rh),'*2%3%:334%45 hydrogilylation
(Rh, Pd),>** hydroamination (Rh, Ir, Pd, Pt),*®**® hydrovinyla-
tion (Pt),*” acceptorless alkane dehydrogenation (Ir, e.g. 2),***°
and aryl C-H bond borylation (Ir).*® As an interesting compari-
son to robust and highly active iridium phosphine-based PCP
catalysis,” CCC-Ir analogues reported to date are notable for
low activity in transfer dehydrogenation reactions performed at
high temperature - typically achieving <20 catalytic turnovers
(¢f. >1000).>*37*9°° Interestingly though, 2 displays compar-
able activity to PCP analogues for the acceptorless dehydro-
genation of cyclooctane, displaying a high initial activity (TOF
12 h™" at 150 °C) and no product inhibition. These desirable
characteristics could be a result of steric effects associated
with the metal orientated N-aryl substituents, although ulti-
mately the usefulness of 2 is limited by catalyst decomposition
that prevents catalytic turnover greater than ca. 100 TON.*®
A particularly noteworthy development is the demonstration of
metal-ligand cooperative reactivity within C*N~C ligand

1302 | Dalton Trans., 2016, 45, 1299-1305

scaffolds.>®**>! For example, unlike a structurally analogous
pyridine-based Ru-PNP pincer, 3 is an active pre-catalyst for
the selective hydrogenation of esters.’® Complex 4 could be
characterised in situ and re-aromatises on reaction with hydro-
gen, carbon dioxide and nitriles.*®>" Isolation of a structurally
similar rhodium complex was recently demonstrated in our
laboratories.”?

The propensity for NHC ligands to form a wide range of
metal adducts allows for unique opportunities for exploitation
in catalysis and differentiates these pincer ligands from other
donor-based variants. Indeed, complexes of first row and early
transition metals have been showing promising activity in a
range of organic transformations. For instance, Fe(0) and Co(u)
complexes 5 and 6 bearing bulky C-N-C ligands are highly
active catalysts for the hydrogenation of sterically hindered
alkenes, such as trans-methylstilbene, 1-methyl-1-cyclohexene
and 2,3-dimethyl-2-butene; substrates that typically can not be
hydrogenated using platinum group metal catalysts.”> Other
notable examples include, C-C bond coupling reactions (Ni),*?
hydroamination (Ti, Zr, Hf),>* ethylene dimerisation (Cr) and
polymerization (Ti, V).>> Investigation of f-block adducts also
raises intriguing future prospects for the application of NHC-
based pincer ligands.>*°

Other than applications in catalysis, NHC-pincer com-
plexes, and in particular Ru(u) adducts, are increasingly being
recognised for their useful photophysical properties. Ruthe-
nium(ir) complexes 7, for example, are notable for microsecond

This journal is © The Royal Society of Chemistry 2016
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*MLCT excited-state lifetimes, four orders of magnitude higher
than [Ru(terpyridine),]** and, lending themselves towards
practical implantation, the capacity for robust immobilisation
on TiO, (i.e. R = PO3H,; R’ = CO,H).”” Interestingly, while both
homoleptic C*"N~C and terpyridine Ru(u) complexes are practi-
cally non luminescent at room temperature,”® ruthenium(u)
bis(C-N-C) complex 8a displays long lifetime photo-
luminescence in solution.’® Significantly the first row conge-
ner 8b displays an exceptionally long *MLCT lifetime for Fe(u)
(9 ps; R = H) - two orders longer than the related bis(terpyri-
dine) complex - raising the exciting possibility for use of earth-
abundant-metal-based photosensitisers.®® Outside complexes
of the group 8 transition metals, Pt(u) C-C-C complexes have
been reported that exhibit blue light emission under ambient
conditions, while analogous C-N-C complexes show aqua- and
vapo-chromic behaviour.®" Moreover, Ir(m) bis(C-C-C) com-
plexes that emit in the near-UV have also been described
recently.®”

Outlook

The incorporation of NHC donors into pincer ligand topolo-
gies is a means for synergistically combining two of the most
successful developments in contemporary ligand design. As a
ligand class, NHC-based pincer ligands have vast scope for
variation/tuning of donor characteristics and steric profiles.
However, this potential is yet to be fully realised with the over-
whelming majority of systems reported to date based on imida-
zolylidene donor groups. Systems bearing imidazolinylidene,
pyrrolidinylidene, abnormal imidazolylidene and triazolyli-
dene donor groups, widely employed as mono-dentate ligands
in their own right, proffer further capacity for fruitful variation
of the pincer donor properties. As a means to systematically
quantify such variation, we suggest measurement of carbonyl
stretching frequencies in [Rh(CEC)(CO)]" (i.e. in CH,CI, solu-
tion) or redox potentials of [Ru(CEC),]** (E = N, C7). Con-
veniently the respective pro-ligands should be readily accessed
from established protocols from the respective mono-dentate
analogues,” however, while a number of synthetic procedures
are becoming established for the subsequent coordination to
metal centers (free carbene, weak/coordinated bases, silver
transmetallation reagents), further consolidation and evolu-
tion of this methodology is required. For instance, increased
use of zirconium transmetallation reagents or implementation
of decarboxylation reactions of CEC-2(CO,) (E = N, CH, CBr).?
Other potentially useful ligand variations could include incor-
poration of boryl or silyl donors in the pincer backbone.®®
Increased structural variation would help support growing
uses of NHC-based pincers as ancillary ligands in homo-
geneous catalysis. The ability of NHC donors to form adducts
with metals outside of the platinum group is in particular an
area for future exploration, especially using earth abundant
metals such as Fe, Co and Ni. Under forcing reactions con-
ditions, such as palladium catalysed C-C coupling reactions
and alkane dehydrogenation, NHC-based pincer complexes
show promising potential but also suffer from non-negligible
decomposition; representing an important consideration in

This journal is © The Royal Society of Chemistry 2016
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future ligand design. To this end some of us been have devel-
oping macrocyclic C-N-C and C"N~C ligands, which may
enable not only more robust pincer ligand binding, but
additional scope for reaction control."®*>** With promising
advances being made exploiting the photophysical properties
of both CCC and CNC pincers, the ability to tune the absorp-
tion and emission characteristics of bound metals, through
variation of the ligand composition, also makes for exciting
future applications of NHC-based pincers in materials science.
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