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The photocatalytic reduction of CO, and H,O with triethylamine
occurred efficiently using a cobalt(i) chlorin complex adsorbed on
multi-walled carbon nanotubes as a CO, reduction catalyst and
[Ru"(Me,phen)s]>* (Me,phen = 4,7-dimethyl-1,10-phenanthroline)
as a photocatalyst to yield CO and H, with a ratio of 2.4:1 and a
high turnover number of 710.

Photocatalytic reduction of carbon dioxide (CO,) and water
(H,0) to produce synthesis gas, which is a fuel gas mixture
consisting primarily of hydrogen (H,) and carbon monoxide
(CO), has merited significant interest, because synthetic gas
can be converted to liquid hydrocarbon fuels by Fischer-
Tropsch processes."® The 2nd and 3rd row transition metal
complexes such as Re and Ir complexes have been used as
effective photocatalysts for CO, reduction.” " The much
more earth abundant metal complexes such as Co complexes
have also been used as catalysts for photocatalytic CO,
reduction.*>' However, the turnover number has yet to be
much improved for the photocatalytic reduction of CO, and
H,0 to produce synthetic gas with earth-abundant metal
complexes.

We report herein the efficient photocatalytic reduction of
CO, and H,O using triethylamine (TEA) as a reductant, a cobalt()
chlorin complex adsorbed on multi-walled carbon nanotubes
(MWCNTs) as a CO, reduction catalyst and [Ru"(Me,phen);]**
(Me,phen = 4,7-dimethyl-1,10-phenanthroline) as a photo-
catalyst in acetonitrile (MeCN) containing 5% (v/v) water to
yield CO and H, with a 2.4 to 1.0 ratio and a high turnover
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number. The photocatalytic mechanism is clarified by exam-
ining each step of the catalytic cycle.

Visible light irradiation of a CO,-saturated MeCN solution
of [Ru"(Me,phen),]**, cobalt(n) chlorin complex Co™(Ch) (the
chemical structure is shown in Scheme 1) and TEA
containing 5% (v/v) H,O resulted in the formation of CO
and H, as shown in Fig. 1. The optimised concentration
of Co"(Ch) was 40 uM and the higher concentration of
Co"(Ch) absorbed more light than [Ru"(Me,phen);]** to re-
tard the photocatalytic reaction (Fig. S1 in the ESIf). When
Co"(Ch) was adsorbed on MWCNTs by adding MWCNTSs to
the reaction solution and then stirring it (Fig. S2 in the ESI{),
the yield of CO was much improved as compared with that
without MWCNTs (Fig. 2). The turnover number (TON) was
determined to be 710 with Co™(Ch) (5.0 uM) and MWCNTSs
(1.0 mg) at 20 h.”® The n-r interaction between MWCNTSs
and Co"(Ch) may provide a suitable hydrophobic environ-
ment for the binding of CO, instead of proton, because the
binding of CO, to the Co(1) complex is required for the forma-
tion of CO.™

The emission of [Ru"(Me,phen);**" was hardly quenched
by Co"(Ch) (Fig. S3 in the ESI{). The emission lifetime of
[Ru"(Me,phen);]**" remained the same in the presence of
Co"(Ch) (100 uM) as that in the absence of Co"(Ch). The one-
electron oxidation potential (Eg,) of [Ru"(Me,phen);]**" was
determined from the one-electron oxidation potential of
the ground state (1.12 V vs. SCE) and the excitation energy
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T co, o1 w 0
Ru' [Col(Ch)- S (Ch)Coll-C A (ChCol -C_
%o OH
H+
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Scheme 1 Mechanism of photocatalytic CO evolution from TEA with
[Ru"(Mephen)s]?* and Co'(Ch).

Catal Sci. Technol., 2016, 6, 4077-4080 | 4077


http://crossmark.crossref.org/dialog/?doi=10.1039/c6cy00376a&domain=pdf&date_stamp=2016-06-10
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cy00376a
https://pubs.rsc.org/en/journals/journal/CY
https://pubs.rsc.org/en/journals/journal/CY?issueid=CY006012

Open Access Article. Published on 23 March 2016. Downloaded on 1/17/2026 9:51:22 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Communication

@ , (b)
— [Co"(Ch)]: 5.0 uM — [Col(Ch)]: 5.0 uM
_ — [Co"(Ch)]: 40 uM _ |— rco'cny:40um
CE’ 6L— [Co'Ch): 60 um g 6 — [Co"(Ch)]: 60 uM
ES EX
] 3
5 4t 5 4t
z €
= 3
o o
21 E 2
E < /
0 L 1 .
5 10 15 20 25 5 10 15 20 25
Time, h Time, h

Fig. 1 Time courses of the production of (a) CO and (b) H, by
photoirradiation of a CO,-saturated MeCN solution of
[Ru"(Me,phen)s]?* (2.0 mM), Co'(Ch) (5.0, 40 and 60 uM) and TEA
(0.50 M) containing 5% (v/v) H,O using a xenon lamp with a cut off
filter (1 > 420 nm) at 298 K.
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Fig. 2 Time courses of the production of CO and H, by
photoirradiation of a CO,-saturated MeCN solution of
[Ru"(Me,phen)s]* (2.0 mM), TEA (0.50 M), Co'(Ch) (10 uM) adsorbed
on MWCNTs (1.0 mg) (red) and Co'(Ch) (10 pM) without MWCNTSs
(black) containing 5% (v/v) H,O using a xenon lamp with a cut off filter
(A > 420 nm) at 298 K.

(2.1 eV) to be —0.98 V vs. SCE.*® The E,, value is less negative
than the one-electron reduction potential of Co"(Ch) (Eyeq vs.

SCE = -0.89 V), when the electron transfer from
[Ru"(Me,phen);*"" to Co™(Ch) is exergonic (Fig. S4 in the
ESIY).

On the other hand, the emission of [Ru"(Me,phen),]*""
was quenched by TEA by electron transfer from TEA to
[Ru"(Me,phen);*"". The one-electron reduction potential
(Erea) of [Ru™(Me,phen);**" was determined from the one-
electron reduction potential of the ground state (-1.47 V vs.
SCE) and the excitation energy (2.1 eV) to be 0.67 V vs. SCE.
Because the E,, value of TEA (0.74 V vs. SCE), which was de-
termined by second harmonic ac voltammetry (SHACV; Fig.
S5 in the ESIY), is more positive than the Ereq value, the
electron transfer from TEA to [Ru"(Me,phen),]**" is slightly
endergonic. The rate constant of electron transfer from TEA
to [Ru"(Me,phen);*"" was determined from the Stern-Volmer
plot (Fig. 3) to be 1.7 x 10° M™" s™" in MeCN at 298 K. The
quantum yield of the photocatalytic reduction of CO, to CO
under photoirradiation of light at 1 = 450 nm was determined
to be 0.10% using a ferric oxalate actinometer (see the Experi-
mental section in the ESIY).
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Fig. 3 (a) Emission spectra of [Ru'(Me,phen)s]?* (8.8 uM) with various
concentrations of TEA (0-0.50 M) in deaerated MeCN containing 5%
(v/v) H,O at 298 K. (b) Stern-Volmer plot.

The photocatalytic mechanism of the CO, reduction is
shown in Scheme 1. Upon photoexcitation of
[Ru"(Me,phen);]*", electron transfer from TEA to
[Ru"(Me,phen);]*"* occurs to produce a TEA radical cation
and [Ru(Me,phen);]", the latter of which reduces Co"(Ch) to
[Co'(Ch)]". The TEA radical cation may be deprotonated to
produce a neutral radical that may be further oxidized. Thus,
the endergonic electron transfer from TEA to
[Ru"(Me,phen);|*"* (vide supra) is irreversible. We have previ-
ously reported that CO, is reduced to CO when Co"(Ch) is
electrochemically reduced to [Co'(Ch)]".** At the same time
[Co'(Ch)]” was reported to react with H" to produce the hy-
dride complex ([Co™(H)(Ch)]), which reacts with H" to pro-
duce H,.>* [Co™(H)(Ch)] is also an intermediate for H, evolu-
tion in the photocatalytic reduction of H,O to H,.>®

In order to examine the reaction of [Co'(Ch)]” with CO,,
[Co'(Ch)]” was prepared independently by the one-electron re-
duction of Co"(Ch) with decamethylcobaltocene [Co(Cp*),] in
MeCN as reported previously.”® The UV-vis absorption band
of [Co'(Ch)]™ (green line in Fig. 4a; Amax = 510 nm) decreased,
accompanied by an increase in absorbance at 660 nm due to
[Co™(Ch)(CO,)]” (blue line) at 65 ms upon introduction of
CO, by mixing.”” Then, this absorption band finally blue
shifted to Ama = 652 nm, which is due to [Co™(Ch)(CO)]*
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Fig. 4 (a) UV-vis absorption spectral changes of [Co'(Ch)]™ (20 uM)
upon introduction of CO,-saturated MeCN containing 5% (v/v) H,O at
298 K. The blue and red lines show the spectra taken at 65 ms and 2 s
after mixing, respectively. The green line shows the UV-vis absorption
spectrum of [Co'(Ch)]” (15 uM) formed by the electron-transfer reduc-
tion of Co"(Ch) (15 uM) with Co(Cp”), (300 puM) in deaerated MeCN at
298 K.2* (b) Decay time profile of absorbance at 660 nm due to
[Co"(Ch)(COLT™.
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Fig. 5 (a) UV-vis absorption spectral changes in the electron-transfer
reduction of [Co"(Ch)I* (20 uM) with TEA (0.10 M) in deaerated MeCN
containing 5% (v/v) H,O at 298 K at 65 ms and 25 s after mixing. (b)
Decay time profiles of absorbance at 652 nm due to [Co"(Ch)I* in the
presence of various concentrations of TEA in deaerated MeCN
containing 5% (v/v) H,O at 298 K.

(red line). This absorption band matched with that of
[Co™(Ch)(CO)]" which was produced by introducing CO to
[Co™(Ch)]" in MeCN (Fig. S6 in the ESI{). When N, was intro-
duced to [Co™(Ch)(CO)]", the spectrum returned to
[Co™(Ch)]". This indicates that the binding of CO to
[Co™(Ch)]" is reversible. The CO stretching frequency of
[Co™(Ch)(CO)]" was also measured in MeCN under an appro-
priate CO pressure (Fig. S7 in the ESIf). vCO is located at
2158 cm™', which is nearly the same as the “free” CO mole-
cule (vCO = 2155 cm™),*® suggesting a weak reversible coordi-
nation. Finally, [Co™(Ch)(CO,)]” was converted to [Co™(Ch)]"
and CO by protonation with dehydration (Scheme 1). The rate
constant of the formation of [Co™(Ch)(CO)]" was determined
from the change in absorbance at 660 nm to be 3.4 s™*
(Fig. 4b).

[Co™(Ch)]", which was prepared by one-electron oxidation
of Co"(Ch) with (p-BrCgH,);N""SbCl,", was thermally reduced
by TEA to produce Co"(Ch) (Scheme 1) as shown in Fig. 5a.
The rate of reduction of [Co™(Ch)]" by a large excess of TEA
obeyed first-order kinetics and the pseudo-first-order rate
constant was proportional to the concentration of TEA. From
the slope of the linear plot of the pseudo-first-order rate con-
stant vs. concentration of TEA, the second-order rate constant
was determined to be 0.64 M~" s™* (Fig. S8 in the ESI{).

In conclusion, Co"(Ch) adsorbed on MWCNTSs acts as an
efficient catalyst for photocatalytic CO, reduction to CO as
well as H, evolution from TEA in MeCN containing 5% (v/v)
water. The present study paves a new way to produce
synthetic gas from CO, and H,O using an earth-abundant
metal complex catalyst for CO, reduction under visible light
irradiation.
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