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The interaction of a series of different transition metal atoms with nanoparticulate CeO, has been studied
by means of density-functional calculations. Recently, we demonstrated the ability of sites exposed on
{100} nanofacets of CeO, to very strongly anchor atomic Pt, making the formed species exceptionally effi-
cient single-atom anode catalysts for proton-exchange membrane fuel cells. Herein, we analyzed the ca-
pacity of these surface sites to accommodate all other group VIII-XI transition metal atoms M = Fe, Ru, Os,
Co, Rh, Ir, Ni, Pd, Cu, Ag, and Au. The interaction of the M atoms with {100} nanofacets of ceria leads to
oxidation of the former and such interaction is calculated to be stronger than the binding of the atoms in
the corresponding metal nanoparticles. Comparing the stability of metal-metal and metal-oxide bonds al-
lows one to establish which metals would more strongly resist agglomeration and hence allows the pro-
posal of promising candidates for the design of single-atom catalysts. Indeed, the remarkable stability of
these adsorption complexes (particularly for Pt, Pd, Ni, Fe, Co, and Os) strongly suggests that atomically
dispersed transition metals anchored as cations on {100} facets of nanostructured ceria are stable against
agglomeration into metal particles. Therefore, these sites appear to be of immediate relevance to the prep-
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1. Introduction

Reducing the amount of precious noble metals used in cata-
lytic materials is one of the challenges in catalysis research.!
The ever-increasing demand from the automobile industry
along with limited supply has a critical effect on the price of
such metals, which is an obstacle for the large-scale imple-
mentation of applications that require noble-metal-based
catalysts.>™ It is well known, for example, that the very high
cost of platinum is one of the stringent factors limiting the
wider use of fuel cell technology.**

Two strategies are commonly followed to cope with the
challenge of reducing the content of precious metals in cata-
lysts. The first strategy involves the partial or complete re-
placement of the precious metal by less-expensive materials.
Following it, numerous alternatives have been proposed that
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aration of stable catalysts featuring the highest possible metal efficiency in nanocatalysis.

can substantially decrease the cost of the catalyst.>” How-
ever, the resulting catalytic performance is often inferior to
that of the analogous noble-metal systems. The other strategy
focuses on the more efficient utilization of the noble metal
rather than its substitution. This approach aims to maximize
the specific catalytic performance of the noble-metal phase,
i.e. its per-atom activity. The latter has been customarily
achieved by finely dispersing the metal on supports - a para-
digm of nanocatalysis.®°

The limiting case of metal dispersion corresponds to cata-
Iytic systems with atomic metal species on the surface of the
support, denoted as single-atom catalysts (SACs).'*™"> Nota-
bly, non-reducible metal-oxide supports exposing regular sur-
faces, such as MgO(100),"* adsorb atomic transition metal
species too weakly to prevent their clustering. A similar situa-
tion takes place on the most stable (111) surface of CeO,, a
reducible oxide support widely used in catalysis."* This indi-
cates that the formation of transition metal SACs that are suf-
ficiently stable to counteract metal-metal bond formation
upon sintering requires special strongly binding sites on the
supports.

Various composites featuring atomically dispersed noble
metals have been reported to be catalytically active for differ-
ent reactions. For instance, cationic Pt and Au species on
nanostructured ceria'®> and more inert oxides, such as zeo-
lites and silica,"®"” were found to catalyze the water-gas shift
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reaction at low temperatures. Materials formed by Pd cations
anchored on alumina'® and Pt cations on FeO, (ref. 19) were
reported to be active towards CO oxidation. High catalytic hy-
drogenation activity has also been attributed to such SACs, as
for instance Pd atoms anchored to cavities of mesoporous
graphitic carbon nitride®® and FeO,-supported Pt.>' These
and analogous systems represent a promising new generation
of cost-effective catalytic materials. Most publications point
to oxidized states of the supported noble-metal atoms as the
active species in these catalysts. It should be noted, however,
that the structure of SAC materials can change under the of-
ten harsh catalytic conditions, leading to partial loss of the
specific activity of the metal due to its sintering or bulk diffu-
sion. These phenomena can strongly reduce the number of
active metal sites exposed to reactants. Thus, it is essential
that the support provides sufficient concentration of surface
sites that can anchor the metal atoms strongly enough to pre-
vent agglomeration and bulk diffusion. To this end, {100}
nanofacets of ceria nanoparticles (NPs) have been shown to
be remarkably efficient in anchoring single Pt atoms as Pt**
cations.”>*® Density-functional calculations combined with
X-ray photoemission spectroscopy (XPS) experiments were
used to determine that Pt>" cations adsorbed on such sites
are efficiently protected from reduction, aggregation or diffu-
sion into the bulk, up to high temperatures.>* This specific
nanofacet site thus fulfills the stability requirements for a
SAC. Importantly, this surface site consisting of four O atoms
in a square-planar geometry (below referred to as an O, site),
is not unique to ceria NPs. This structural motif can also be
found on extended CeO,(100) surfaces®® and on the step
edges of low-energy CeO,(111) islands.?

The extraordinary stability of Pt atoms on CeO, {100}
nanofacets suggests that these sites may also strongly bind
other transition metal atoms. To assess this peculiar binding
propensity important for preparing stable SACs, we have in-
vestigated the interaction of these sites with transition metal
atoms M = Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Cu, Ag, and Au in
groups VIII-XI of the periodic table. Our results reveal that
the O, sites on {100} facets of ceria NPs strongly bind and ox-
idize single atoms of all studied metals. Comparison of the
adsorption energies of the M; species with the binding ener-
gies of the corresponding atoms in metal NPs indicates high
energetic stability of the anchored M, species against agglom-
eration. The oxide support acts in the anchoring according to
coordination chemistry principles — as a polydentate ligand
formed by surface oxygen anions.>® This explains how the ad-
sorption bonds are as strong as metal-ligand bonds in com-
mon transition metal complexes. Findings of the present
study suggest general guidelines for the preparation of endur-
ing transition metal SACs.

2. Computational details

The adsorption of single atoms of 11 different transition
metals on the {100} O, site of a ceria NP has been investi-
gated by means of periodic spin-polarized density-functional
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calculations. The generalized gradient approach (GGA)
corrected with the on-site Coulomb interaction Hubbard
term U (GGA+U) has been used.””?® Common exchange-
correlation potentials suffer from an incomplete cancellation
of the self-interaction error, thus leading to a poor descrip-
tion of strongly correlated systems. The U-correction scheme
offers a computationally feasible improvement, which en-
ables an appropriate treatment of transition and rare-earth
metal oxides featuring localized electrons in d and f orbitals,
respectively. The GGA+U approach has been widely used to
describe ceria-based systems, whose Ce 4f states can be occu-
pied upon reduction.*® However, there is no unique U value
allowing simultaneous reproduction of all properties of oxi-
dized and reduced ceria.>" For example, calculations with
larger values of U predict band gaps in better agreement with
experiment, but overestimate interatomic distances in ceria.
Following previous studies of ceria NPs,**° present calcula-
tions have been performed using the PWO91 (ref. 36)
exchange-correlation potential corrected with a value of U =
4 eV (referred to as the PW91+4 scheme). The effect of using
different U values on the calculated properties was assessed
(see section 4).

Calculations have been carried out using the VASP
code,*” " representing the valence states in plane-wave basis
sets with a cut-off of 415 eV for the kinetic energy. The core-
valence interaction has been described through the projector
augmented wave method.”® Only the I-point has been used
to sample the reciprocal space. The electron density was self-
consistently converged with a 10 eV total energy threshold
and all geometric structures were optimized until forces act-
ing on each atom became smaller than 0.02 eV A™'. Some
adsorbed metal atoms can exhibit different oxidation states.
This has been explored and the resulting oxidation states of
the adsorbed M, species have been determined by the analy-
sis of the localized magnetic moments on Ce cations. Bader
charge analysis*' has also been performed.

3. M;-CeO, and M,, models

A cuboctahedral Ce,,0go NP (Fig. 1) has been chosen as a rep-
resentative model of nanostructured CeO,, previously shown
to be capable of reproducing various experimental observa-
tions®>***" (effect of the NP size on the calculated observa-
tions is briefly addressed in section 4). The structure of this
NP resulted from a global optimization using interionic po-
tential and density-functional calculations.*®** The Ce4,Ogo
NP retains the cubic fluorite-type crystallinity of bulk CeO,
and exposes small O-terminated {111} and {100} facets. The
latter corresponds to the polar (100) surface, less stable than
the (111) surface.”> Yet, ceria nanosystems with abundant
[100] terminations have also been prepared, ranging from
nanocrystals with extended (100) terraces® to nanocubes ex-
posing only {100} facets.”® The size of the periodically re-
peated unit cell was chosen to keep distances between NPs in
neighboring cells =700 pm to avoid significant spurious in-
teractions of the NPs.

Catal. Sci. Technol., 2016, 6, 6806-6813 | 6807
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Fig. 1 Cuboctahedral Ce;0Ogo nanoparticle model of nanostructured
ceria. Yellow and red spheres represent Ce** cations and O? anions,
respectively.

The adsorption energies, E,q, of a metal atom M on the
ceria NP were calculated as E,q = E(M;-CeyqOg9) — E(M;)-
E(Ce400s0), where E(M,) is the total ground-state energy of an
isolated metal atom and E(M;-Ce;,Ogo) and E(Ce,,Og) are
the total energies of the ceria NP with and without the
adsorbed metal atom, respectively. Negative adsorption en-
ergy values correspond to stabilizing interactions with respect
to the separated M; and Ce,,Og, fragments. In order to com-
pare the strength of this interaction with that of M; agglom-
eration into metal particles M,,, we have calculated the bind-
ing energy, E,479, Of an edge M atom in the M,y model
(a bulk cut of the fcc crystal, Fig. 2) as E.q70 = E(Myo) — E(M;)
- E(Myg). Similarly, the propensity of the anchored M, species
to agglomerate can be assessed by comparing the E,q values
with the experimental metal cohesive energies (see Table

S17%).

4. Results and discussion

We performed a comparative study of the adsorption of 3d
(Fe, Co, Ni, Cu), 4d (Ru, Rh, Pd, Ag) and 5d (Os, Ir, Pt,** Au)
metal atoms on O, sites of {100} nanofacets of the Ce;,Ogo
NP. This is not the only site on the NP where metal atoms
can be anchored, but the adsorption of Pt on other NP sites
was calculated to be much weaker than on the O, site’**
and similar in strength to the adsorption on CeO,(111) sur-

Fig. 2 Model M9 NP used for estimating the binding energy of atoms
in metal particles. The darker green M atom in the edge position was
removed for calculating its binding energy to the remaining Mg
species.
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faces.** Since this site preference is expected for the adsorp-
tion of all metal atoms under scrutiny, we focused on interac-
tions with the O, site.

The optimized structures for the M;-Ce,Og, Systems are
shown in Fig. 3. Via the analysis of spin moments, we were
able to quantify the charge transfer taking place upon atom
deposition on the {100} nanofacet. Such charge transfer re-
sults in the oxidation of the M; adsorbate with the concomi-
tant reduction of a certain number of Ce** cations to Ce*".
The number of reduced Ce cations depends on the M atom
and equals its oxidation state. Corner Ce" cations in the
Ce,,Ogo NP are the easiest to reduce due to their lower coor-
dination number and an accordingly less destabilizing
electrostatic environment.*>** These corner Ce*" cations ac-
cepted electrons from M atoms, which were concomitantly
oxidized to +1 or +2 oxidation states. In oxidation states
higher than +2, a search for the most stable locations of the
additionally formed Ce®" cations has not been performed in
view of a very high number of possible configurations. The
location of the Ce®" cations in less stable positions of the NP
could induce a destabilization of the adsorption by up to 40
kJ mol™* per Ce** cation.** Yet, this difference does not affect
the upcoming discussion of the adsorption energy values of
M atoms. Note that the appearance of Ce®* cations (larger
than Ce"") significantly elongates the corresponding Ce-O
distances, to 228 pm from 213 pm in the pristine CeO, NP
(see Fig. S1 and S27).

Herein, we discuss the oxidation states for each adsorbed
metal atom and the M-O coordination modes (see for details
Fig. S1 and S2f). We also comment on how our results com-
pare to pertinent experimental data.

Group VIII metals

Adsorbed atoms of group VIII feature different oxidation
states, +3 - Fe and Ru, and +6 - Os. Two Ce>" cations are lo-
cated in the corner positions, whereas additional f electrons
are found in other surface Ce positions close to the occupied
{100} site. Single M atoms bind to oxygen atoms of the O,
site in a square-planar fashion. The nearest M-O distances
are 184-187 pm for Fe, 196-199 pm for Ru and 184-185 pm
for Os (see Fig. S11), much shorter than the ca. 225 pm dis-
tance between the O atoms and the center of the O, moiety
in the pristine Ce;oOgo NP.>* A similar coordination mode of
Fe was detected by Mossbauer spectroscopy for Fe® cations
inserted into the lattice of ceria-zirconia catalysts.*® In turn,
the self-dispersion of Ru metal powder on ceria in the form
of small particles and single atoms in a highly oxidized
state was demonstrated to be very stable by X-ray absorption
near edge structure (XANES) and Raman spectroscopic
techniques.”’

Group IX metals

Atoms of this group manifested more diverse oxidation
states. Co is the only metal atom in this group that features a
+3 state. Despite the well-known stability of the +3 state for

This journal is © The Royal Society of Chemistry 2016
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Fig. 3 Overview of the M;-Ce4oOgo structures calculated for the adsorption of different transition metal atoms (M) on the {100} facet of the

Ce400g0 Nanoparticle. Yellow, brown and red spheres represent Ce**, Ce** and 0%

distances in Fig. S1 and S2.

Rh, we calculated it to be adsorbed only in the +2 state. Simi-
lar to group VIII, only the 5d element Ir undergoes further ox-
idation to the +4 state. Just as for adsorbed group VIII atoms,
Ce®" cations are formed in NP corners and close to the O,
site occupied by M. Co and Ir are bound in a square-planar
coordination mode with M-O distances 185-186 pm for Co
and 192-197 pm for Ir. Differently, Rh®" appears to prefer lin-
ear coordination with two short (198 pm) and two long dis-
tances (208 pm). Such group IX cationic species have been
identified experimentally on ceria-based materials. Co®" cat-
ions were detected using temperature-programmed reduction
(TPR) and XPS experiments in ceria-zirconia catalysts.’® Rh**
cations were evidenced on ceria-zirconia mixed oxides by
Fourier transform infrared (FTIR) spectroscopy.*® Finally, sur-
face Ir"* species were identified in ceria by TPR and diffuse
reflectance infrared Fourier transform spectroscopy
(DRIFTS).>®

Group X metals

Group X atoms Ni and Pd are calculated to be adsorbed simi-
larly to Pt as +2 cations, coordinated in a square-planar
mode, very characteristic of d® metal centers of this group.
The interatomic M-O distances are 189 pm for Ni and 205
pm for both Pd and Pt. The same oxidation state was recently
reported for Ni** on defect sites of the CeO,(111) surface.”” It
was shown that the interaction of Pd with ceria can lead to

This journal is © The Royal Society of Chemistry 2016

ions, respectively. See selected calculated interatomic

the formation of Pd-O-Ce surface superstructures featuring
Pd** cations and active in catalytic combustion of methane.”
There is experimental evidence that Pd®>" cations in the
square-planar coordination by oxygen are highly stable in
PdO,~CeO, solid solutions.>® The presence of atomic plati-
num as Pt>* cations on ceria surfaces has been documented
by several theoretical and experimental studies. Formation of
these species was often related to the exposure of (100)-termi-
nated facets.”>?*>*>¢

The present GGA+U data depend on the chosen U value.
In particular, larger U values stabilize the presence of local-
ized f electrons favoring processes that involve the reduction
of Ce"" to Ce*". To benchmark this dependence we calculated
E,q with different U values for a single Pd atom adsorbed on
the Ce,oOgo NP (see Fig. 4). The use of U = 3 eV decreases E,q
by 53 k] mol™" compared to that obtained with U = 4 eV cho-
sen in this work. The use of a larger U value of 5 eV has an
opposite effect on the E,q increasing its magnitude by 54 KkJ
mol™. A similar trend was found for the binding of
supported atomic Pt species on ceria.*>*’ In general, the us-
age of smaller, i.e. less interfering U values seems to be pref-
erable. Yet, U < 4 eV values often do not allow complete lo-
calization of 4f electrons on the Ce** cations. The U = 4 eV
employed throughout this work seems to be an adequate
compromise providing a physically correct description of lo-
calized Ce 4f states and minimizing spurious stabilization of
reduced Ce®" species. One can also question, to what extent

Catal Sci. Technol., 2016, 6, 6806-6813 | 6809
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Fig. 4 Calculated adsorption energies E,q4(Pd) of single Pd atoms on
the O, site of Cey00go and CeggO160 NPs as a function of the U value
used with the PW91 functional.

the O, site on the NP Ce,,Og, represents the corresponding
sites on other ceria nanostructures with similar surface ter-
minations. Data in Fig. 4 shed light on this issue as well. In-
deed, enlargement of the NP model to CegyOy6 (ref. 33 and
34) results in the strengthening of Pd-O, interactions by ca.
30 kJ mol™, implying that on larger ceria species transition
metal atoms should be bound to the O, sites at least as
strong as on the Ce,,0go model used in this study.

Group XI metals

Finally, adsorbed atoms of group XI, like those of group IX,
exhibit several oxidation states. Moreover, each adsorbed
group XI element can be in different oxidation states. The
presence of Cu as Cu®" ions in the ceria lattice was recently
reported.”® We calculated Cu® to be coordinated in a
distorted linear fashion with two short (189 pm) and two long
Cu-O distances (231 and 262 pm). Cu** adsorbs in a square-
planar coordination mode with four equal Cu-O distances
(199 pm). The Cu®" state is found to be by 54 kJ mol " more
stable than the Cu’ state (Table 1). Atomic Ag can be
adsorbed as either Ag" or Ag®”, the latter was calculated to be
somewhat more stable. The not very usual Ag’" forms four
Ag-O distances of 205-206 pm, in line with its square-planar
coordination in oxoargentates.’® Ag" is in a distorted square-
planar coordination, where the metal atom is 90 pm above
the O, plane. This distortion elongates Ag-O distances to
239-241 pm. Atomic Au can also be adsorbed as Au’ and
Au**, the latter being more stable by 70 k] mol™* (Table 1).
Au, similar to the other presently investigated 5d metals,
forms the highest oxidation state (+3) within the group. A lin-
ear coordination of Au’ cations is preferred, with two short
(206 pm) and two long distances (274 and 276 pm), while
Au*" prefers square-planar coordination (Au-O distances are
204-205 pm). Ag adsorbed as single atoms on microporous
hollandite manganese oxide was found by XANES to feature
the +1 oxidation state.®® Meanwhile, gold can be stabilized
both as Au®*" and Au’ surface cations in ceria-supported gold
catalysts.®

The adsorption energies in Table 1 reveal that the {100}
nanofacet of ceria can strongly anchor not only atomic Pt,

6810 | Catal Sci. Technol., 2016, 6, 6806-6813
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Table 1 Calculated adsorption energies E,q and Bader charges g for

atoms M adsorbed as M™ cations on a Ce400go NP along with binding
energies E,q79 Of the M atoms on edges of M9 NPs (Fig. 2)

M Eag, Kf mol™  Eaq70, Kk mol™  Eaq79 — Eaq, K] mol™ q, au
Group VIII

Fe** -785 -630 155 1.50
Ru*t  -812 -729 83 1.46
0s®"  -978 -844 134 2.49
Group IX

co** =709 -548 161 1.29
Rh*"  -678 -612 66 1.07
It -830 -821 9 1.54
Group X

Ni**  -678 -519 159 1.06
Pd**  -504 -377 127 0.91
Pt*"  -678 -548 130 0.93
Group XI

Cu' -412 0.73
cu®*  -466 -371 95 1.03
Agt -277 -263 14 0.63
Ag*t -251 1.06
Au"  -264 0.41
Au*" 334 -310 24 1.08

but other transition metal atoms as well. Furthermore, atoms
of all considered transition metals are oxidized upon adsorp-
tion on the O, site. The Bader charges of adsorbed M; spe-
cies reflect the formal oxidation states only qualitatively, be-
ing notably smaller than the latter and manifesting
significant covalence in the M-O interactions. Despite the
simplicity of the presently considered O, sites exposed by the
Ce,00go model NP, they are expected to be representative for
a variety of experimental coordination environments of differ-
ent transition metal cations. In particular, we are confident
that our model NP allows us to quantify the strength of the
M-O(-Ce) bonds formed by oxidized metal atoms. To assess
whether these metal centers are resistant to agglomeration
and sintering processes, which is a crucial issue in the design
of metal-efficient SACs, one can compare the binding ener-
gies of transition metal atoms on the ceria NP surface and in
the corresponding Mo NPs (Table 1).

For all M atoms under scrutiny, the adsorption energy E,q
on the ceria NP is larger in magnitude (more negative) than
the binding energy E,q70 of an edge atom in the M9 NPs.
This indicates that the metal dispersion as single atoms on
the O, sites of ceria nanostructures is energetically favored
over the formation of metallic particles. Therefore, very stable
adsorption complexes on the nanoparticulate oxide support
should resist sintering processes, especially for metals featur-
ing substantial energy differences AE = E,4;9 — E.q (Table 1).
The AE value defines the propensity of anchored metal atoms
to form particles: the larger AE, the less prone the metal cen-
ter is to sintering. We predict Fe**, 0s®", Co®" and group X
metals to be particularly resistant to agglomeration in oxida-
tive media. For group X metals, the extraordinary stability of
the square-planar coordination for d® metal centers explains
the particularly strong interaction with the ceria NP. Small
AE values calculated for cationic Ag, Au, and Ir species

This journal is © The Royal Society of Chemistry 2016
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suggest that these complexes are less resistant to sintering
and might form metallic particles more readily. In order to
further stabilize these metals as single atoms one should ex-
plore other supporting materials. Notably, the O, sites of
CeO, nanostructures (not limited solely to Ce;,Ogo NPs) bind
metal atoms notably more strongly than the extended
Ce0,(111) surface. For instance, the adsorption of Cu, Ag,
and Au atoms on the latter surface resulted in PW91+3 E,q
values of -179, -96, and -69 k] mol™, respectively.®> This
strongly suggests that the adsorption complexes of M; on
{100} facets of CeO, NPs are substantially more resistant to
agglomeration processes than on the CeO,(111) surface. It
should be noted that since Pt was found to adsorb on both
such surface and other non-{100} sites of the ceria NP with
comparably low E,q,>> other metals are expected to behave
similarly.

Clear trends in calculated adsorption energies emerge
along the rows and groups of the periodic table (Fig. 5). Both
E.q and E,q79 generally decrease in magnitude, when moving
from the left to the right of the period. This indicates that
metals with less occupied d bands form stronger metal-metal
bonds and also bind more strongly to the oxide support. For
4d and 5d metals, such decreases in the E,q and E,q-¢ are
quite monotonous, with more pronounced differences for Au.
The trend along the period for 3d metals is less linear and
both E,q and E,q;9 values are crossed with those of the 4d
and 5d metals. These trends also indicate that, except for Au,
5d metals form the strongest bonds with the O, site of the
ceria NP, whereas 4d metals form the weakest bonds, with
the exception of Ru.

The agglomeration of the transition metal content into
the corresponding oxide phase under an oxidative environ-
ment would also lead to the destruction of the single-atom
sites. Similar to sintering into metal NPs, the formation of
the oxide phase would lead to less exposed metal atoms, with
different properties and local environment. The propensity of
the single-atom sites to such restructuring can be assessed
from the experimental standard heats of formation (AHjy) for

Ead(M)
kJ/mol

4001

-600+

-8001

Group Vil IX X XI

Fig. 5 Adsorption energies of single transition metal atoms (M) on the
{100} facet of the Cez00g0 NP (empty points, connected as a guide)
and binding energies of these atoms in edge positions of the M;5 NP
depicted in Fig. 2 (filled points). Results for 3d, 4d and 5d metals are
shown by diamonds, squares, and circles, respectively.
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the most stable oxide phases of the metals under study (see
Table S2t). In general, 3d metals are more prone to the for-
mation of oxides than 4d and 5d metals, and the oxides of
metals situated at the beginning of the period are more sta-
ble than those at the end of the period.®® Comparing E.q and
AHg values for each studied transition metal one expects gen-
erally high resistance against decomposition via the forma-
tion of a metal oxide phase except for Fe, which is quite sus-
ceptible to oxide formation.

All results of the present study correspond to stoichiomet-
ric ceria NPs, which are mostly relevant to conditions of
ultra-high vacuum or very low oxygen pressure.>® Yet, under
ambient atmosphere and oxidative catalytic conditions ceria
NPs can be stabilized by an excess of oxygen.®*°® There, a va-
riety of oxygen-containing surface species is expected to cre-
ate a pool of additional adsorption sites capable of stabilizing
oxidized transition metal atoms as potential SACs. We expect
the binding properties of such sites to be quite similar to
those of the sites on the {100} O-terminated facets of the stoi-
chiometric NPs. This assumption is supported by the finding
that oxygen atoms of the {100} O, sites are loosely bound to
the ceria NPs,*** which is reminiscent to the binding of the
species adsorbed on the NP faces under excess O,. Therefore,
the present theoretical prediction that surface oxygen sites of
nanostructured ceria are able to make diverse single-atom
metal catalysts resistant to sintering probably can also be
generalized to different experimental conditions.

The above results on the extreme stability of supported
single metal atoms are expected to provide a guideline
establishing suitable candidates for the design of SACs. This
work opens a way to examine the catalytic function of the
proposed materials individually for each reaction of interest.
Co-sputtering of metals under an oxygen atmosphere,
allowing the preparation of nanocomposites of atomically
dispersed Pt on ceria,”*®’ can also be used to disperse other
metals, the atoms of which are strongly bound to the square-
planar O, sites. This has been demonstrated for model cata-
lysts prepared according to the guidelines provided by the
present calculations and comparing the stability and reactiv-
ity of Pt>*, Pd**, and Ni** species on nanostructured ceria.®®
Interestingly, well-characterized steps on extended CeO,(111)
surfaces®>® also appear to efficiently anchor Pt>* by forming
PtO, moieties, indicating that the preparation of ceria sur-
faces with very abundant steps also facilitates metal disper-
sion in the form of atoms.”® In addition, the detailed struc-
tural data calculated in this work (e.g. metal coordination
and metal-oxygen distances, see Fig. S1 and S27}) provide a
benchmark for the characterization of atomically dispersed
metal sites in SACs supported on CeO, NPs. For example, Pt
coordination and Pt-O bond length measured by means of
extended X-ray absorption fine structure (EXAFS)** experi-
ments fully agree with the calculated structure of Pt>* on the
{100} sites of the ceria NPs.>*** Another implication of the
present findings for nanocatalysis is related to the ability of
some M;-ceria SACs to undergo agglomeration and re-
dispersion cycles under certain reaction conditions, forming
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metal clusters during the reaction and re-dispersing to the
M,—ceria state upon termination of the reaction.”" The esti-
mated stability AE = E,q79 — Ea.q of the M;—ceria materials
with respect to the agglomeration in metal clusters (Table 1)
controls that clusters remain small enough (possibly, sub-
nano) and can readily transform back into single-atom
species.

5. Summary

The interaction of 11 different transition metal atoms M =
Fe, Ru, Os, Co, Rh, Ir, Ni, Pd, Cu, Ag, Au with the representa-
tive model Ce,(Ogo NP has been studied by means of GGA+U
density-functional calculations. We have shown that adsorp-
tion sites of the ceria {100} nanofacets can very effectively an-
chor all considered metal atoms in the form of M"" cations.
The oxidation of the M centers takes place with the accompa-
nying reduction of Ce*" cations to Ce*". Calculated data indi-
cate that higher oxidation states are favored by transition
metals in later periods and in groups more to the left in the
periodic table. The deposition of the M atoms leads to a sig-
nificant structural reconstruction of the oxygen atoms consti-
tuting the adsorption site, which coordinate differently to the
M™" cation depending on its oxidation state. Remarkably, the
adsorption for every M;—ceria system studied is stronger than
the binding of the corresponding M atom in a metal NP Myq.
These adsorption energy differences are particularly large for
the group X metals (Ni, Pd, and Pt) and for Fe, Co, and Os.
This suggests that, especially for these metals, CeO,-based
materials exposing O, sites such as those on {100} nanofacets
could provide suitable architectures for preparing single-
metal atom catalysts with very high resistance to sintering. In
general, the present calculated results are expected to be
helpful in the preparation and atomic-level characterization
of efficient single-atom catalysts, the limiting case in nano-
catalysis featuring the smallest active species.
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