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We propose a two-state electric field-driven room-temperature
single-molecule switch based on a dipolar molecule enclosed
inside ellipsoidal fullerene C;o. We show that the two low-energy
minima of the molecular dipole inside the C;, cage provide distin-
guishable molecular states of the system that can be switched by
application of an external electric field.

Current technologies employ about one million atoms for stor-
ing a single bit of data." Recently, numerous attempts have been
made to design and manufacture high-density memory devices
which would use just a few atoms to store one bit.> However, a
shortcoming of such devices is that they remain operative only at
very low temperatures, e.g., up to 25 K. In this paper we suggest
an alternative principle for data storage on the basis of a neutral
dipolar molecule encapsulated inside a fullerene. We demon-
strate that the dipolar system inside a fullerene can be manipu-
lated by means of an external electric field (EF) that is within the
range of electric fields generated by devices, such as a scanning
tunneling microscope (STM), which can be as high as 0.5 au
(2.57110326 x 10" V m™").> The proposed single-molecule
switch may store information on the basis of the orientation of
the dipole@fullerene. The hypothesized systems are stable and
remain operative under room-temperature conditions.
Endohedral fullerene science has gone through rapid develop-
ment in the past decade.” To the best of our knowledge, the idea
of manipulating a neutral dipole enclosed in a fullerene has not
been pursued before. Several single-molecule switches based on
endohedral fullerenes have been proposed.” Delaney and Greer
studied the possibility of manipulating endohedral Li' by EF
inside Cg.® They noted that fullerene behaves as a partial Faraday
cage, about 25% of the EF penetrates inside. Yasutake et al. have
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shown that the Tb@Cg, molecule can be oriented on a gold
surface by electric field at 13 K.” Electric current-driven rotation
of the endohedral Sc;N cluster in Cg, fullerene has been
studied at 4.7 K.® A single-molecule magnetic switch, based
on turning on/off the EPR spectra of Sc;C,@Cgy, has been
reported.’ Levitt et al. proposed switches based on ortho- and
para-water molecules encapsulated in Cgo.”'°

A schematic model of the dipole@fullerene switch proposed
here is shown in Fig. 1. The selected fullerene is ellipsoidal, so
the internal potential provides two energy minima (states) for
the enclosed dipolar molecule, separated by an energy barrier.
The barrier should be large enough to prevent the enclosed
moiety from spontaneous switching via thermal motion but not
too large so that it can be overcome by the interaction of the
molecular dipole with an external EF.

An ideal dipolar molecule for building the dipole@fullerene
should have a large dipole moment and should be stable under
high-temperature conditions that are normal for fullerene
synthesis.”” Moreover, the harder (in chemical sense) the endo-
hedral dipole, the higher the stability of the system in high-EF
with respect to potential electron transfer from the enclosed
molecule to the fullerene cage that is inherently a good electron
acceptor.*?
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Fig. 1 Schematic outline of the suggested endohedral single-molecule switch.
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A few fullerenes with neutral dipolar molecule(s) inside their
cage have been experimentally prepared so far. These include
H,0@Cgo,"" (H,0),@C50,"> HF@Cgo,"> and open-cage fullerenes
with CO and H,O enclosed."* A number of systems have been
investigated theoretically, such as LiF, BN, HCN, H,CO, NHj,
CO,, and similar molecules enclosed in Cgo or C5."> In a pre-
screening study (not discussed here) we investigated various
endohedral systems, such as LiF@C;, CO®@C;o, CH3;F@Cyo,
CH,CN@C,,, and CH,0@C-,.'°*? The energy barrier for turning
these molecules inside the C;, cage without an EF was found to
be either too low (<3 kcal mol ') or too large (> 50 kcal mol ™
for CH;CN@C5,). The barrier was found to be proportional to
the size of the molecule. Here we focus on MX@C,,-based
systems (MX = LiCl, NaF, NaCl), which showed the best properties
among the tested systems, having the right size and large dipole
moments (>7.0 D). We note that all alkali metal halides are
known to exist in the form of diatomic molecules in the
gas-phase at high temperatures necessary for the preparation of
fullerenes.'® Furthermore, encapsulation of MX molecules in C5o
is an exothermic process, see Table S1 (ESIt). Another potentially
possible way to prepare such molecules is via chemical opening
and closing of a fullerene cage.™

Building a real device ultimately requires that the fullerene is
attached to a surface."” Because linkers including N-heterocyclic
carbenes'® and disulfides'® on a gold surface are prone to dissocia-
tion under high-EF conditions (due to their bond polarity), we
propose to use a nonpolar C-C linker. A hypothetical target system
is a graphene sheet, decorated with MX@C,, systems via the Diels—
Alder reaction.”

A system in which C, is attached to a hexane ring?' serves as
the smallest model of the fullerene bonded to a graphene sheet,
see Fig. 2. We limited our study to the thermodynamically
most-stable Diels-Alder product.*' It is worth noting that the
EF can catalyze the Diels-Alder reaction®”*? and potentially
control the regioselectivity of the reaction between MX@C;,
and the graphene surface.>® The reactivity of MX@Cs, in the
presence of an EF is the subject of our ongoing research to be
published subsequently.

Our computationsi show that the MX aligns nearly along the
main axis of symmetry of C,, to minimize the steric clash with
the belt region, as expected. Without an EF there are two local
minima (LMs), as illustrated in Fig. 1 and 2. With the electric

Fig. 2 Schematic representation of the orientation of MX (M = Li, Na
purple and X = F, Cl green spheres) in C;o. The small red vectors represent
the direction of the dipole moment of MX. The direction of the applied
external electric field is denoted by the + and — signs.

32674 | Phys. Chem. Chem. Phys., 2016, 18, 32673-32677

View Article Online

PCCP

field on, the conformations with the dipole moment of MX along
the EF (c and d in Fig. 2) are stabilized more than the other two
(a and b in Fig. 2). With increasing EF the stabilization should
ultimately lead to the removal of the energy barrier and to the
reorientation of the dipole molecule, from a to ¢ (or b to d)
in Fig. 2.

The energy dependence of local minima and their inter-
connecting transition state(s) (TS) on the EF is presented in
Fig. 3 (numerical values are given in Table S2, ESIt). Without the
EF, the two minima differ slightly in their energy which is due to
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Fig. 3 The effect of EF on the energy barrier for rotation of the MX@Cyq
memory system. (top) NaCl: TSpq, (middle) NaF: TS, and (bottom) LiCl:
TSac. The reaction coordinate is defined by measuring the angle that MX
makes with the substituted a.-carbon atom (on the pole region of the cage)
in the fullerene structure, see Fig. 2.
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the presence of the linker. By increasing the EF the energy of the
minimum with the dipole aligned parallel to the EF decreases
faster as compared to the minimum with the dipole aligned
antiparallel to the EF, Fig. 3 and Table S2 (ESIY).

The energy and structure of the high-energy LM become
closer to that of the corresponding TS upon increasing the EF,
as expected from classical Hammond’s postulate.>® This is the
case for all studied systems, see Fig. 3 and Table S2 (ESIT).
When extrapolating the results towards a larger EF the internal
rotation barrier for MX should disappear, see below. As a result,
only one LM should remain on the potential energy surface of
the system.>® Note that TS,. responds to EF differently from
TSpa, Table S2 (ESIT). This is because in the a arrangement the
dipole moment of the MX is mostly parallel to the dipole
moment of the substituted fullerene cage; therefore, conformer
a is more influenced by the EF and reaches the TS more easily.

The changes in the relative energies of the LMs and the TSs
are regular in all cases; see Fig. 3 and Table S2 (ESIt). For NaF
the barrier is about 13 kcal mol ! without an EF and goes down
to 5(10) keal mol™* at EF = 0.014 au for TS,¢(TSpq). Increasing
the size of the internal dipole by replacing NaF with NaCl does
not affect the relative energies of the conformers but increases
the TS energy by about 100% due to the stronger steric clash
between the larger NaCl molecule and the belt region of Cy,.
For a smaller LiF molecule only a small barrier of ~ 2 kcal mol ™"
was predicted at zero field. Such a barrier can be easily overcome
by an EF; for this reason, optimizations of a and b conformers
ended up in ¢ and d conformers for EF > 0.004 au and no proper
transition states could be located at a higher EF. LiCl ‘fits”
between the largest (NaCl) and the smallest (LiF) systems. Its
zero-field barrier is ~10 keal mol *, which prevents the thermal
motion switching but the system responds well to the applied
EF, see Table S2 (ESIt) and Fig. 3.

Because the response to EF could not be computed beyond
0.014 au as the DFT approximation cannot be trusted after
that,i we extrapolated the data from Table S2 (ESIt) using the
quadratic formula in Fig. 4. While the data for NaF and NaCl
diverge, the extrapolated results for LiCl pass the barrier near
EF = 0.02 au. The LiCI@Cy, system thus appears among studied
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Fig. 4 Rotational barrier energies extrapolated via a quadratic equation.
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Fig. 5 Comparison of the calculated infrared spectra (top) and Raman
spectra (bottom) of a (red) and b (green) conformers of LiCl@Cyq at
EF = 0.0 au. The regions with the largest differences in the spectra are
magnified for better visibility.

systems to be the best candidate for the suggested single-
molecule switch.

The information can thus be encoded in the MX@C5, systems;
but are the two states distinct enough to allow for “the reading”
of the device? They are. The two minima of MX@C,, systems
differ significantly in their electric multipole moments (Table S3,
ESIt) and thus should be distinguishable on the basis of their
molecular properties either via STM or spectroscopic methods.
Fig. 5 illustrates the differences between IR and Raman spectra of
the two minima for LiCI@C,, without an EF (see Fig. S3 and S4
for NaF@C,, and NaCl@C,, spectra, ESIt). While most of the
spectral features of both conformers are similar, the differences
near 330 and 950 cm™ " in IR spectra and near 800 and 1050 cm ™"
in Raman spectra are large enough to be observable experi-
mentally. The detection of a single molecule is still a compli-
cated task but novel advances in single-molecule spectroscopy
offer a potential method for reading the dipole@fullerene-type
memory devices in the future.”®

In summary, we have presented a single-molecule switch
that can store information in terms of different orientations of
a dipolar molecule inside an ellipsoidal fullerene using model
systems of alkali metal halides enclosed in a C,, cage further
substituted with cyclohexane to model a carbon-based linker to
a graphene sheet. MX molecules have two local energy minima
inside the C,, cage separated by an energy barrier due to the
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shape of the fullerene. The external electric field decreases
the energy barrier and enables switching between the states
(conformers) of the switch. Extrapolation data suggest that the
barrier removal can be achieved at a field of about 0.02 au for
LiCl. The calculated IR and Raman spectra of the local minima
show that they have distinct molecular properties; hence,
reading of the switch is in principle possible.
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