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Much is known about OH-radical chemistry in the gas-phase and bulk water. Important atmospheric
and biological processes, however, involve little investigated OH-radical reactions at aqueous interfaces
with hydrophobic media. Here, we report the online mass-specific identification of the products
and intermediates generated on the surface of aqueous (H,O, D,O) benzoate-h5 and -d5 microjets by
~8 ns *OH(g) pulses in air at 1 atm. Isotopic labeling lets us unambiguously identify the phenylperoxyl
radicals that ensue H-abstraction from the aromatic ring and establish a lower bound (>26%) to this
process as it takes place in the interfacial water nanolayers probed by our experiments. The significant
extent of H-abstraction vs. its negligible contribution both in the gas-phase and bulk water underscores
the unique properties of the air—-water interface as a reaction medium. The enhancement of H-atom
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abstraction in interfacial water is ascribed, in part, to the relative destabilization of a more polar
transition state for OH-radical addition vs. H-abstraction due to incomplete hydration at the low water
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Introduction

Benzoic acid (BA) is one of the most abundant carboxylic acid
in the particulate matter (PM) found over most polluted urban
areas. It has been recently reported that BA concentrations
in PM, 5 collected over Beijing (average 1496 ng m * in Pekin
University, 1278 ng m ™ in Yufa) exceed the concentrations
of total diacids (~1010 ng m™?), fatty acids (~600 ng m?)
and ketocarboxylic acids (~120 ng m *)." Low-volatility BA,
which is produced both from direct traffic emissions and in the
atmospheric oxidation of anthropogenic aromatic compounds,
largely partitions to the aqueous phase where it reacts further
with atmospheric oxidants." BA (pK, = 4.2) is largely present as
benzoate (BzO) in atmospheric aqueous media. Since BzO is
amphiphilic and relatively inert toward O; (k = 1.2 M~ " s~ 1),
the heterogeneous (interfacial) oxidation of BzO(aq) by *OH(g)
is deemed to control its fate.*® Molecular dynamics (MD)
calculations and surface-tension data confirm the affinity of
BzO for aqueous surfaces.’ It has been recently realized that the
photochemical aging of particulate organic matter is not only
degradative but generates volatile organic compound (VOC)

emissions and reactive species, such as hydroperoxides.'®™?
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The identification of products and labile intermediates from
the heterogeneous oxidation of organic matter in condensed
phases has thus emerged as a major issue in the atmospheric
chemistry of polluted urban air.>**7°

Here we address this issue and report direct, online mass-
specific identification of the products of the oxidation of BzO(aq)
by *OH(g) pulses on the surface of aqueous microjets (see
Methods and Fig. S1, ESIT)."" In such events, *OH(g) first sticks
to the surface of water and is converted into hydrated *OH(H,0),
species,®'"'® which react with BzO via (R1), or recombine into
H,0, (reaction (R9), Scheme 1) within interfacial layers:'”'®

*OH + BzO — products (R1)

Our technique can monitor in situ within ~1 ms the formation
of primary products and intermediates on the surface of con-
tinuously flowing, uncontaminated aqueous surfaces at atmo-
spheric pressure and 298 K."

Experimental

The experimental setup has been described in previous
publications.”™*° The prompt (within the ~10 ps lifetime
of the intact microjets) formation of anionic products at the
air-water interfaces of microjets from the reaction of aqueous
reactants with gaseous OH-radicals at 1 atm at 298 K are
monitored in situ by an electrospray ionization mass spectro-
metry (ES-MS, Agilent 6130 Quadrupole LC/MS Electrospray
System, see Fig. S1, ESIf)."" Aqueous solutions are pumped
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Scheme 1 Mechanism of formation and proposed structures (among the various positional and/or functional isomers in each case) of the species
generated in the *OH-initiated oxidation of benzoate at the air—water interface.

(100 pL min ") into the spraying chamber of the mass spectro-
meter through a grounded stainless steel needle (100 um bore)
coaxial with a sheath issuing nebulizer N,(g) at high gas velocity
(vg ~ 160 m s~ ').>° The surface specificity of our experiments
had been previously demonstrated.>**® The depth (or thick-
ness) of the sampled interfacial layers can be controlled by
varying the nebulizer gas velocity v,, as evidenced by the fact
that both ion signal intensities and relative anion surface
affinities increase with higher gas velocities v, and extrapolate
to zero as vy — 0.2° The ions detected by our mass spectrometer
are ions that: (1) were already present or produced by chemical
reactions in the interfacial layers of microjets (see previous
publications for further details),”****”*® (2) become incorpo-
rated into charged microdroplets produced during the strip-
ping of interfacial layers by the nebulizing gas, and (3) finally
ejected to the gas-phase and admitted into the mass spectro-
meter section via a polarized inlet port positively biased at
3.5 kV relative to ground.

The dissociation of O5(g) by unfocused 266 nm laser pulses
(laser beam diameter 10 mm, beam divergence <1.5 mrad,
pulse duration ~ 8 ns) into O('D), followed by the reaction of
O('D) with H,0(g), in competition with its deactivation by N,(g)
and O,(g) into O(*P), yields *OH(g) within ~6 ns. Order of
magnitude *OH(g) concentrations were estimated as described
in previous publication.™

Results and discussion

Fig. 1 shows a typical negative ion electrospray mass spectrum
obtained from 1.0 mM BzO(aq) microjets under Os(g)/O,(g)/

31506 | Phys. Chem. Chem. Phys., 2016, 18, 31505-31512

H,0(g)/N,(g) mixtures as such or after being irradiated with
266 nm laser pulses.

At pH 4.0, ~40% BA (pK, = 4.2) is dissociated into detectable
benzoate C¢Hs—COO™ (BzO) at m/z = 121 (m/z in Thompson
units throughout). Recall that neutral species are transparent
to mass spectrometry (see above). We verified that in the
absence of light, O3(g) does not generate new product signals
(Fig. S2, ESIt), in line with the inertness of BzO toward Oj
(kpzovo, = 1.2 M~ s in bulk water).”> Upon 266 nm pulse
irradiation of the inflowing O;(g)/0,(g)/H,0(g)/N,(g) mixtures,
which generates *OH(g) in situ within 8 ns, we observe the partial
depletion of BzO and the simultaneous appearance of new
signals, which we therefore ascribe to products of *OH reactions
with BzO. The same products, albeit in different proportions,
were observed over the [BzO] = 0.01-10 mM range. We confirmed
that reactant depletion and product formation require both
the participation of Os(g) and actinic 266 nm photons (Fig. S2
and S3, ESIt), that is, the chemistry we observe is neither due
to benzoate ozonation or benzoate photolysis, but involves
reactions of gas-phase OH-radicals with interfacial benzoate.

For the experiments shown in Fig. 1, we estimate [*OH(g)]o
~ 2 x 10" molecules cm* at 40 mJ pulse " (the highest laser
pulse energy used in our experiments) within the laser-irradiated
[*OH(g)] on the surface of microjets <1 mm apart are
estimated to be a factor of 10 lower. It might be argued that they
are larger than atmospheric concentrations, but we note that
reactant conversions during the T ~ 10 ps reaction times of our
experiments are comparable to those in which aerosol droplets
exposed to typical tropospheric [*OH] ~ 10° molecules cm™>
concentrations for 40 min. Product distributions, however, are
expected to be different. In our experiments, yields of secondary

volume.™*
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Fig. 1 (A) Negative ion electrospray mass spectra of 1.0 mM (pH 4.0)
benzoic acid microjets in the presence of 2 x 10 molecules cm™ Ox(g) in
0O,(g)/H20(g)/N2(g) mixtures with the 266 nm laser pulses (40 mJ, ~8 ns,
10 Hz) off (gray) or on (red). (B) Zooming in the *OH-oxidation products.
See text for details.

products resulting from organic radical + OH-radical reactions
will be enhanced relative to those produced under atmospheric
conditions.

The molecular formulas of the species generated in our
experiments could be inferred from their mass-to-charge ratios.
Thus, the m/z = 137 signal in Fig. 1B is readily assigned to
hydroxy-benzoates CcH4(OH)-COO™ (BzO-OH): 137 =121 + 16 =
BzO — H + *OH. It is important to note that BzO-OH can be
produced via two reaction channels: one initiated by *OH-addition
to BzO: 137 = 121 (BzO) + 17 ("OH) + 32 (0,) — 33 (HO,"), and
another one initiated by H-abstraction from BzO: 137 = 121
(BzO) — 1 (H) + 17 (*OH) (Scheme 1). Note that one phenylic
H-atom is removed in both cases. Similarly, the m/z = 153 signal
corresponds to structures formally derived from O-addition
to BzO-OH: 153 = 137 + 16, such as benzoate hydroperoxides
CgH4(OOH)-COO™ (BzO-OOH) or di-hydroxy-benzoates C¢H;(OH),~
COO™ (BzO-(OH),). The difference is that the hydroperoxides will
retain 4 phenylic H-atoms but the di-hydroxy species only 3. The
mjz = 169 signal corresponds to species formally derived from
the addition of a third O-atom to BzO-OOH: 169 = 153 + 16.>%%
The m/z = 171 signal corresponds to the only species produced by
successive *OH and HO,* additions: 171 = 121 (BzO) + 17 (*OH) + 33

This journal is © the Owner Societies 2016
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(HO,*), via processes that retain all 5 phenylic H-atoms. In
addition to the above closed-shell species, we detected even
mass m/z = 152 signals, which correspond to isomeric peroxyl
radicals CgH4(OO®)-COO™~ (BzO-0,°) derived from O,-addition
to the phenylic radicals generated by H-abstraction from BzO:
152 =121 (BzO) — 1 (H) + 32 (0,).*" To our knowledge, this is the
first report on the detection of early, labile intermediates, such
as peroxyl radicals and hydroperoxides, in the oxidation of
aromatics by *OH at the air-water interface. Since mass spectro-
metry reports molecular mass, the structures shown in Scheme 1
stand for all possible positional isomers in each case.**”**

Experiments in D,O provided additional evidence on mole-
cular assignments (Fig. 2). Thus, hydroxy-benzoates and
hydroxy-hydroperoxides, which possess one and two exchange-
able (O-)H-atoms, generate (M + 1) and (M + 2) species,
respectively. We note that the H-containing nascent phenol
and hydroperoxide groups are able to exchange with D,O prior
to detection ~1 ms later."®"* The finding that m/z = 152 does
not shift in D,O solvent is clearly consistent with BzO-0O,°
peroxyl radical structural isomers.

Our assignments were validated in experiments involving
isotopically labeled BzO-d5 (benzoate-2, 3, 4, 5, 6-d5) in H,O
and D,0 as solvents. Fig. 3A shows the mass spectra for the
*OH oxidation of BzO-d5 (m/z = 126) in H,O. In this case, we
detected products at m/z =141, 156,157,173 and 176, which are
consistent with the structures proposed in Scheme 1. For
example, the hydroxy-benzoates signal shifts from m/z = 137
in BzO-h5 to 141 in BzO-d5, i.e., as expected from species derived
from the abstraction of one D-atom from BzO-d5. Similarly,
D-abstraction precedes the formation of the benzoate peroxyl
radicals (BzO-0,*) and benzoate hydroperoxides (BzO-OOH),
whose signals, originally at m/z = 152 and 153, shift to 156 and
157, respectively. The only species retaining all 5 D-atoms are
those corresponding to hydroxy-hydroperoxides (Scheme 1),
which shift from m/z = 171 to 176 as proof that they result from
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Fig. 2 Negative ion electrospray mass spectra of 0.5 mM benzoic acid in
D,O (99.9 atom % D) microjets exposed to 6.9 x 10* molecules cm™
0Os(g) in O2(g)/H>0(g)/N»(g) mixtures at 1 atm and 298 K. Gray: laser off.
Red: under 40 mJ, ~8 ns pulses (at 10 Hz) of 266 nm radiation.
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Fig. 3 (A) Negative ion electrospray mass spectra (background subtracted)

of 10 mM CgDsCOOH benzoic acid-d5 microjets in H,O. (B) in D0, in the
presence of 2 x 10 molecules cm™ Os(g) at 1 atm and 298 K. Gray: laser
off. Red: under 14 mJ, ~8 ns (at 10 Hz) 266 nm pulses.

OH-addition to the ring. The shift of the m/z = 169 signal in
BzO-h5 to m/z = 173 in BzO-d5 excludes a tri-hydroxy-benzoate
(BzO-(OH);) (which would have led to a m/z = 169 to 171 shift)
but is consistent with trioxides or epoxide hydroperoxides
(Scheme 1).

The *OH oxidation of BzO-d5 in D,O gives rise to m/z = 142,
156, 158, 174 and 178 products (Fig. 3B). The shift of the m/z =
141 signal in H,O (Fig. 3A) to m/z = 142 in D,O (Fig. 3B) is
consistent with hydroxy-benzoates containing the exchangeable
(O-)H-atom brought by *OH. Also, according to the proposed
structures, the signals assigned to the hydroxy-hydroperoxides,
which contain two (O-)H-atoms, shift by two mass units from
m/z = 176 to 178. As expected, signals assigned to benzoate
peroxyl radicals (m/z = 156 in Fig. 3A and B) do not shift as D,0
replaces H,O as solvent. The m/z = 173 signals in Fig. 3A shift to
m/z = 174 in D,0, as expected from the presence of only one
exchangeable H-atom in the proposed structures (Scheme 1)
rather than to 176 should they correspond to tri-hydroxy
isomers (BzO-(OH);). A benzoate trioxide (m/z = 169) could
be formed by the radical-radical reaction (BzO-O,° + *OH).
The known negative temperature dependence of the (CH;0,° +
*OH = CH;0°® + HO,*) reaction in the gas-phase® is indicative
of an associative reaction proceeding via a chemically activated
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trioxide CH;O0OOH* intermediate. Thus, it is conceivable that a
similar BzO-OOOH trioxide could be formed and stabilized
from (BzO-0,°® + *OH) in aqueous media. Alternatively, hydro-
peroxy epoxides (also m/z = 169) could be formed from the
reaction of a hydroperoxide with *OH, followed by O, addition
and elimination of HO,* (see Scheme 1). The formation of
epoxides has been previously proposed in reactions of aromatics
with *OH in the presence of 0,.%°

We consider that our key finding is the detection of sub-
stantial yields of BzO-0,* radicals, which quantify the extent of
H-abstraction from the aromatic ring at the air-water interface.
Our result is in marked contrast with previous studies in
bulk water, in which addition was the exclusive channel in
OH-radical reactions with aromatics.*"**** Our detection of
labile intermediates and products, such as BzO-O,* and the
hydroperoxides vis-a-vis reports on the exclusive formation of
hydroxybenzoates (BzO-OH) reported in the oxidation of BzO
by *OH in bulk water,**"* therefore implies that (1) all inter-
mediates we detect within ~1 ms are ultimately converted to
hydroxybenzoates, (2) they may have been missed in the other
studies, or (3) the reaction proceeds by different mechanisms in
bulk water vs. at the air-water interface. It should be emphasized
that, at variance with the oxidation of alkyl-carboxylic acids by
*OH under similar conditions,'®™*? we found no evidence of
putative products of BzO-0,°* self-reactions, such as alkoxyl
radicals and alcohol/carbonyls. Thus, self-reactions of the bulky
secondary peroxyl radicals BzO-O,* are relatively slow in the
timeframe of our experiments.®

The dependences of signal intensities as functions of laser
energy and benzoate concentration provide valuable mechanistic
clues. Fig. 4 shows mass signals as functions of laser energy per
pulse. We assume that *OH doses increase linearly with pulse
energy at low energies before plateauing at high pulse energies.
Note that these are not kinetic plots, ie., mass signals as
functions of time. The fact that all species, i.e., primary and
secondary, appear at the lowest laser pulse energies, i.e., at the
lowest OH-radical concentrations, means that all reactions are
very fast (and therefore nearly independent of temperature) and
not limited by reactants under present conditions.

Interestingly, we note that the main products in the more
dilute 0.5 mM BzO solutions are the m/z = 171 hydroxy-
hydroperoxides (Fig. 4C), which, as we have seen, provide a
true measure of the addition channel, whereas in 10 mM BzO
the main products are the m/z = 137 hydroxybenzoates (Fig. 4F).
Rough estimates OH-radical concentrations help to rationalize
these findings. We estimate that a 40 m] pulse generates
[*OH(g)], ~ 3 x 10" molecules cm *, which translate (on the
basis of the kinetic theory of gases®” and a mean *OH speed
c=6.4 x 10* cm s " at 298 K) into ~5 x 10"®* molecules cm s~
flux on the surface of the microjets.*® From the reported thermal
accommodation coefficient of *OH on water: S ~ 0.95°
we estimate that the maximum dose of *OH incorporated
into the surface of aqueous microjets during ~8 ns pulses is:
Neon < 4 x 10 radicals cm™2.

The remarkable fact that BzO signals decay by ~7% in 0.5 mM
solutions, and by ~14% in the 20 times more concentrated

This journal is © the Owner Societies 2016
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=3, as functions of 266 nm

laser energy (in mJ pulse™). Connecting lines are guides to the eye. See text for details.

10 mM solutions at the same *OH doses (Fig. 4A and D) has
mechanistic implications. Also note that BzO signals do not
decay as single exponentials but bottom out at large pulse
energies (i.e., at large *OH doses).'***° The rate coefficients of
(*OH + BzO) via (Ryap + Riap) and (*OH +°OH) via Ry (Scheme 1)
in bulk water are within a factor of two and correspond to
diffusionally controlled reactions: kjap + kjap = 2.5 X 10°M s},
ky=5.5 x 10° M~ s~ ~.>*** Since they are also expected to be fast
and commensurate at the air-water interface, the above observa-
tions imply that: (1) *OH recombination into relatively inert H,O,
(via R9, Scheme 1) is competitive and more extensive than its
reaction with BzO in the more dilute 0.5 mM BzO solutions, and
(2) BzO must diffuse back from the bulk solution to replenish the
depleted outermost layers. The first observation in turn requires that
*OH and BzO should have comparable concentrations in the layers
where these processes take place. This condition defines the average
thickness o of such layers. At the maximum dose of OH-radicals:
Neon = 4 x 10" radicals ecm™?, the resulting [*OH] in layers of
thickness J is given by: [*OH] = N.oy < 4 x 10" radicals cm™2/4.
By equating [*OH] to [BzO] = 3 x 10" molecules ¢cm*

This journal is © the Owner Societies 2016

(in 0.5 mM solutions), we derive a 6 < 1.3 nm value. It is
apparent that our experiments effectively probe reactive events
occurring in interfacial nanolayers.

An approximate but realistic estimate of the rates of the
competing processes involved in BzO depletion reveals that
reactions Riap + Riap and Ry take place in <1 ps (see Kinetic
Model Calculations in ESIt and Fig. S4 and S5). By assuming
a typical value of diffusion coefficients in water: Dg,o = 2 X
107° em? s, we infer that BzO diffusion from the bulk into
depleted layers takes place after chemical reactions are over.
In fact, the slower time scale associated with replenishing
BzO-depleted layers via diffusion sets an upper limit of ~10 ps
to the lifetimes of intact microjets (i.e., before they break into
charged microdroplets). Longer lifetimes would have led to
negligible BzO conversions because diffusion would have fully
refilled interfacial layers. Shorter lifetimes, in contrast, would
have preempted diffusion and led to exponential decays of BzO
as a function of pulse energy. It should be emphasized that the
much longer microjet lifetimes: ~10 ps vs. the ~8 ns laser
pulses (which are shot every 100 ms) imply that our experiments

Phys. Chem. Chem. Phys., 2016, 18, 31505-31512 | 31509
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correspond to processes taking place in fresh air-water inter-
faces after being exposed once to strong, short *OH pulses.
The 137/171 and 137/152 ratios of signal intensities as a
function of laser energy, i.e. *OH dose, are shown in Fig. 5A and
B. The dependences of product yields, defined as the ratio of
the individual signal intensities to the sum of product signal
intensities, and the ratios of 137/171 and (152 + 153 + 169)/
(137 + 171) as functions of BzO concentration in experiments
under 40 mJ pulses are shown in Fig. 6 and 7, respectively.
These trends are consistent with the mechanism outlined in
Scheme 1. It should be realized that: (1) m/z = 137 species can
be produced both via OH-radical addition and abstraction
reactions in the sequences (1AD + 2B) and (1AB + 3), (2) whereas
the m/z = 171 species can only be produced from OH-radical
addition along the sequence (1AD + 2A + 4), via the hydroxy-
cyclohexadienyls A (undetected) from reaction 1AD in equili-
brium with peroxyl radicals B (undetected).*>** Since little
H,0,, the precursor of HO,*, will be produced at high [BzO]
and low *OH doses, the low [HO,*]/[O,] ratios prevailing under
such conditions will largely convert the addition intermediate A
into the m/z = 137 hydroxy-benzoates rather that into the
mj/z = 171 hydroxy-hydroperoxide (Scheme 1). Note that neutral
HO,* is MS-silent. It is apparent that under such conditions the
m/z = 137 hydroxybenzoates will be favored over the m/z = 171
hydroxy-hydroperoxide. Thus, the competition between *OH
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Fig. 6 (A) Fractional contributions of individual signal intensities to the
mass spectra as functions of benzoic acid concentration in experiments
under 40 mJ pulse™™. (B) Semi-log plots. Connecting lines are guides to
the eye.

reactions with BzO and recombination accounts for the higher
137/171 and 137/152 ratios observed at higher [BzO] and lower
*OH doses (Fig. 5A and B), as well as the significant increase of
the 137/171 ratio at larger [BzO] in Fig. 7.

On the basis of the preceding consideration, we estimate a
lower limit to the branching between H-abstraction and addition
from the ratio Abs/Add > (152 + 153 + 169)/(137 + 171) = 0.35.
This is a lower limit to the extent of abstraction because the
numerator is the sum of the signal intensities of the products
derived from H-abstraction over those arising from addition by
assuming that all 137 ensues from addition. It is apparent that at
least 26% [0.35/(1 + 0.35) = 0.26] of the *OH reacting with BzO
will H-abstract from the aromatic ring at the air-water interface,
independent of [BzO]. The ratio Abs/Add > 0.35 is consistent
with a difference of 4 = Exps — Epxga < 0.6 kcal mol™* (from
exp(—4/RT) = 0.35) between the activation energies for abstrac-
tion and addition at the air-water interface. We note that
our 4 < 0.6 keal mol " value is significantly smaller than the
A = 3 keal mol ™" reported for such competition in the presence of
2 water molecules,*® and much smaller than the 4 = 6.5 kcal mol !
in the gas-phase, where H-abstraction is negligible.*®

The sensitivity of OH-radical reactions with aromatics to
H-bonding with hydrophilic solvents is well established. An
experimental and computational study of *OH reactions with
aromatics in water and in polar, non-hydrophilic acetonitrile,*>
had reported rate coefficients ~ 65 times larger in water than in
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acetonitrile, as a clear indication of both the electrophilicity of
the OH-radical and the polar nature of the transition states
involved. Calculations also showed that the effects of binding one
and two water molecules to reactants and transition states on free
energies of activation were sensitive to relative orientation.*”° In
view of such information, we propose that H-abstraction is
enhanced over addition in the anisotropic hydration environment
provided by the air-water interface, where water density drops
precipitously over 3 A.*”"*? Molecular dynamics calculations
based on many-body potentials that reliably simulate interfacial
phenomena could shed further light on these processes.*">
The atmospheric implications of present findings are briefly
discussed below. Our experiments simulate the heterogeneous
oxidation of organic aerosol matter by gas-phase OH-radicals
that stick to the surface to subsequently react at nearly diffu-
sion controlled rates with aromatics therein. Significantly, they
reveal that the oxidation of aqueous benzoate not only leads to
hydroxylation but, via a sizable contribution of H-abstraction,
to the formation of more reactive species, such as peroxyl
radicals and hydroperoxides, that can propagate radical chemistry
via solar photolysis,”>* or metal-catalyzed decomposition®>>°
in the condensed aerosol phase. Given the hydrophobic char-
acter of benzoate, the most abundant organic species found in
the PM, 5 in polluted urban areas,' our experiments suggest
that its oxidation by *OH(g) at the air-water interface may be an
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important process in the photochemical aging of secondary
organic aerosols.

Conclusion

Summing up, we report the first direct detection of peroxyl
radicals in significant yields during the oxidation of benzoate
by OH-radicals at the air-water interface. They originate from
significant (>26%) H-abstraction from the aromatic ring, a
pathway deemed to be absent in OH-radical reactions with
aromatics in water. We also detected hydroperoxides and other
hitherto unidentified products in addition to hydroxybenzoates.
The significant extent of H-abstraction from the aromatic ring is
tentatively ascribed to the relative destabilization of the more
polar transition state for the OH-radical addition channel at the
low water density prevalent in the outermost interfacial layers.
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