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Relationships between elastic anisotropy and

thermal expansion in A;Mo03z0;, materialsf
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We report calculated elastic tensors, axial Gruneisen parameters, and thermal stress distributions in AbMozOy,
ZrMgMoz03,, Sc,M03045, and YoMo304,, a series of isomorphic materials for which the coefficients of
thermal expansion range from low-positive to negative. Thermal stress in polycrystalline materials arises

from interactions between thermal expansion and mechanical properties, and both can be highly

anisotropic. Thermal expansion anisotropy was found to be correlated with elastic anisotropy: axes with

negative thermal expansion were less compliant. Calculations of axial Grlneisen parameters revealed
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that the thermal expansion anisotropy in these materials is in part due to the Poisson effect. Models of
thermal stress due to thermal expansion anisotropy in polycrystals following cooling showed thermal
stresses of sufficient magnitude to cause microcracking in all cases. The thermal expansion anisotropy

was found to couple to elastic anisotropy, decreasing the bulk coefficient of thermal expansion and

www.rsc.org/pccp

Introduction

Materials with the general formula A,M;0;,, where A is a trivalent
cation and M is W or Mo, have the unusual property of linear
coefficients of thermal expansion spanning the range from low
positive (2.4 x 107® K™') to negative (—9 x 10~® K™ "), including
zero.'” Their structures have considerable chemical flexibility,
as solid solutions can be made incorporating cations with large
differences in size (e.g., AI’" and Y*).% Aliovalent substitutions
of Zr"* or Hf'" with Mg?* for A** can be performed, offering
additional possibilities for the tailoring of physical properties
within this family.>® The structures of these materials are
composed of vertex-linked networks of AOg octahedra and MO,
tetrahedra;” ™" negative contributions to thermal expansion arise
from transverse motions of bridging oxygen atoms accompanied by
distortion of the AOq octahedra.”"> Negative thermal expansion
(NTE) has been correlated with the compliance of the A-O ionic
bond, and the subsequent distortability of the AOg octahedra.>'>
The open-framework structure allows for unusual thermal expansion
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leading to lognormal extremes of the thermal stress distributions.

and chemical flexibility,"*"?

in comparison to other oxide ceramics.

The thermal expansion of materials from the A,M3;0;,
family is known to be highly anisotropic.">'® Such anisotropy
can cause large thermal stresses and subsequent microcracks
in polycrystalline materials with randomly oriented grains.'*°
However, the elastic anisotropy of these materials is generally
unknown; furthermore, it is more difficult to determine experi-
mentally than the anisotropy of the coefficient of thermal
expansion (CTE). Critically, the mechanical properties determine
the ability of thermomiotic (negative thermal expansion)'® materials
to counteract positive thermal expansion'?' and affect the stress
distributions in polycrystalline A,M;0;, materials."> Therefore, the
elastic tensors of AlLM03;01,, Sc;M0304,, and ZrMgMoz;O;, have
been calculated and reported herein. Together with that of
Y,Mo;0;, (reported previously),"® we now have elastic constants of
an isomorphic family of materials ranging from low positive to large
negative thermal expansion.

The study of the anisotropy of the elastic properties of these
materials generally has previously been limited to determina-
tion of bulk moduli by variable-pressure XRD; the exception is
Y,Mo0504,."® The variable-pressure XRD experiment can yield
information about directional compressibilities; for example in
Sc,W;05,"” and Sc,Mo;04,™ the compressibility along an axis
was shown to be positively correlated with the thermal expan-
sion along that axis. However, this technique has limitations;
for example the compressibilities in orthorhombic Al,W;0;,
could not be accurately determined due to a pressure-induced
phase transition,"* and no information about shear elasticity
was obtained. The use of ultrasonic measurement to obtain

and it typically leads to low stiffness
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Table 1 Parameters determined by convergence studies and lattice parameter (a, b, ¢) changes and final pressures following structural relaxation

Plane wave cut-off k-Point grid

Change in a relative to

Change in b relative to Change in c relative to

Material energy/Hartree dimensions experiment/% experiment/% experiment/%
ALMo050,, 30 2% 2x%2 2.2 1.7 2.0

ZrMgMo0304, 35 2x3x3 3.0 2.1 2.0

Sc,M030;4, 35 2 X 3X%X3 3.0 2.1 2.1

shear moduli of bulk polycrystalline samples®'®*! contributes sampling on the effective charges by imposition of the acoustic

some additional information, but experimental determination
of the full elastic tensor would require single crystals for
Brillouin spectroscopy or resonant ultrasound spectroscopy.

Therefore, for practical reasons, computational methods are
the best choice to study the full elastic anisotropy of A;M;0,,
materials, and this is the approach taken herein. There is an
associated drawback: the DFT calculations are performed for
T =0 K. Since A,M030,, materials (except Y,M030;,) transition
to a monoclinic phase upon cooling, the calculations were
performed on a phase which is not stable at absolute zero.
Therefore the phononic structures contain vibrational modes with
negative energy that destabilize the orthorhombic structure.”>>*
However, since the orthorhombic-monoclinic phase transition
involves rotation of the coordination polyhedra,” the unstable mode
is located away from the I" point of the Brillouin zone***° and the
instability is not caused by negative terms in the elastic stiffness
tensor.”” Additionally, because many thermomiotic materials have
highly temperature-dependent bulk moduli,'®**° DFT results will
not necessarily match room-temperature elastic constants, but our
approach is validated by comparison with experimental behaviour
at room temperature.

The energies of the optic phonons at the I" point were also
calculated using DFT. Calculation of the full dispersion relation-
ship would be computationally expensive, however with the large
unit cell of the orthorhombic A,M;0,, materials (68 atoms)"®
there is little dispersion."®'® Low-energy optic phonon modes in
A;M;0;, materials corresponding to polyhedral distortions can
have large negative Griineisen parameters,®'> and therefore
their energies play an important role in the thermal expansion
behaviour. Determination of optic phonon frequencies also
allows further validation of the calculations by comparison to
experimental Raman spectra.

Methods

DFT calculations were carried out using the ABINIT*® code in
order to determine the elastic tensors and I'-point phonon
energy of A,M;0;, and AMgM;0,, materials. Computation of
elastic tensors and I'-point phonon energies were performed
using the ACENET** and WestGrid*’ clusters, taking advantage
of the massive parallelization functionality of ABINIT.*® ABINIT
composes wavefunctions as linear combinations of a plane wave
basis set and performs calculations in reciprocal space.*’*®
Calculations of elastic tensors and phonon frequencies were
performed using the response-function capability of ABINTT.>*™*"
Phonon frequencies were corrected for errors due to finite

This journal is © the Owner Societies 2016

sum rule (Z.e., requiring that the frequencies of the acoustic branches
are zero at I).*

The CIF2Cell program™* was used to create input files from
published crystal structure data.>***> PBE GGA exchange-correlation
functionals were used in all cases.’® In the cases of Al,Mo050;,
and Sc,Mo;0;,, norm-conserving®” pseudopotentials generated
using the OPIUM code®’~° from the Bennet and Rappe pseudo-
potential library>' were used. For ZrMgMo;0,,, two-projector
optimized norm-conserving Vanderbilt pseudopotentials®> were
used. These pseudopotentials were tested by comparison of
calculated bulk moduli to experimental values for MgO
(-7.2% deviation),”® ZrO, (—1.6% deviation),>® and Mo
(—3.4% deviation),; > yielding reasonable results.>® The plane wave
cut-off energy and k-point grid spacing were determined by con-
vergence studies (Table 1); the criterion used was convergence of
the internal pressure to within 1%. A k-point grid spacing smaller
than 0.04 A" was used in all cases. The structures were relaxed
until the remaining pressure was less than 1 MPa. Changes in the
unit cell axis lengths following relaxation are shown in Table 1.

The elastic and CTE tensors of Al,M030;,, ZrMgMo0;0;,, and
Sc,M030,, (reported herein) and Y,M03;0;, (from published
studies)'® were used to create models of thermal stress in
polycrystals of random texture, following a drop in temperature
of 700 K, using the teFFT algorithm described in ref. 57. The
teFFT algorithm simulates the elastic response to a change in
temperature using a fast Fourier transform (FFT) approach to
iteratively solve the constituent equations of thermoelasticity.””®
Since this method is only computationally limited by the speed of
the FFT, simulations should scale with order n log n, where n is the
number of nodes used in the model. Additionally, the spectral
approach to solving the constituent equations of thermoelasticity
only requires a structured rectilinear grid or image as an input,
called the Fourier grid, forgoing the need for meshing.”” These
aspects resulted in considerable computational time savings by
comparison to finite-element methods, allowing much larger
models to be studied. The microstructure models used were
generated in DREAM.3D*® and consisted of 1190 randomly
oriented, equiaxial grains on a 256> Fourier grid. A section of
a modeled microstructure is shown in Fig. 1. Since the spectral
approach requires periodic boundary conditions for the model,
in the thermoelastic models polycrystalline structures were
embedded in a compliant buffer layer. The buffer layer repre-
sents a region of infinite elastic compliance, which is created by

+ Mo was chosen rather than an oxide as the test material because MoO; has a
layered structure and therefore is an unsuitable point of comparison,® and the
bulk modulus of MoO, has not been reported in the literature.
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Fig. 1 A slice through the microstructure of a modeled polycrystal with
randomly oriented grains. The relative orientations of the grains are shown
as different colours, with similar colours corresponding to similar orienta-
tions. The compliant buffer layer is shown as a grey boundary.

setting the stress values to zero, and is meant to approximate
material surfaces.’® The usage of buffer layers ensures that the
effect of elastic anisotropy on the volume thermal expansion
could be determined.

Relationships between the software packages and computa-
tional methods used in this work are shown graphically as a
flowchart in the ESL.{

Results and discussion
Elasticity

The calculated elastic stiffness tensor (¢) of orthorhombic
Al,Mo0;0;, (Pbcn setting) is given by:

791 [193 [193 [0 [0 0
193 [128 [513 |0 |0 0

e= [193 [513 126 [0 |0 0 GPa (1)
0o 0 457 |0 0
0o 0|0 [298 |0
0o 0 Jo o 294

and the corresponding directional elastic moduli are shown in
Table 2. The thermal expansion tensor («) from the literature®
is shown for comparison of its anisotropy to that of c:

7 0 0 e
a= 0 05 0 x10°K " (2)
0 0 -1

Table 2 Directional elastic moduli of Al,LMozO1, (Pbcn setting)
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Al,Mo030;, showed elastic anisotropy similar to that of its
thermal expansion, with only a small difference between the
b- and c-axes. The overall elastic anisotropy of Al,M030;,, expressed
as the universal anisotropy parameter,®* Ay, is equal to 1.9. By
comparison. Y,Mo;0;, has Ay = 3.9.'® Unlike in the case of
Y,Mo0301,,'® the axial Young’s moduli and directional compres-
sibilities followed the expected trends and were inversely propor-
tional to each other. The Voight-Reuss-Hill (VRH) values®* for
the bulk elastic constants of Al,M0;0;, were determined to be
K =35.3 GPa and G = 36.2 GPa. These stiffnesses are ca. double
those determined experimentally for monoclinic Al,M0;0;,
(K = 13.5 &+ 1.3 GPa, G = 18.2 + 0.7 GPa).** A similar discrepancy
was seen in the case of Y,M030;,,"® obscuring whether the
difference is due to temperature dependence of the elastic
constants or the difference between the monoclinic and ortho-
rhombic phases.

The calculated elastic stiffness tensor of orthorhombic
ZrMgMo30;, (P2,nb setting) is given by:

563 |16.8 142 |0 0 0
16.8 {852 1436 |0 0 0
c= 142 1436 (884 |0 0 0 GPa (3)
0 0 0 339 |0 0
0 0 0 0 20.1 0
0 0 0 0 0 18.0

and the corresponding directional elastic moduli are shown in
Table 3. The experimental thermal expansion tensor is shown
for comparison of its anisotropy to that of c:>

76 10 0 —
a= [0 [-25 [0 “107K (4)
o lo 4.7

As for Al,M0304,, ZrMgMo;0,, shows increased stiffness
along its thermomiotic axes both in terms of Young’s modulus
and compressibility. The stiffnesses of the b- and c-axes were
similar even though their CTEs are quite different in magnitude.
The overall elastic anisotropy of ZrMgMo;0,, was very similar to
that of Al,M0;0;,; both have Ay = 1.9. The VRH bulk and shear
moduli were 26.5 GPa and 23.8 GPa, respectively. These values
are close to those obtained experimentally (K = 31 £ 3 GPa,
G =22 + 1 GPa).”

The calculated elastic stiffness tensor of orthorhombic
Sc,M0304, (Pben setting) is given by:

53.1 | 149 16.7 |0 0 0
14.9 | 88.1 493 |0 0 0
c= 16.7 [49.3 922 |0 0 0 GPa. (5)
0 0 0 31.8 |0 0
0 0 0 0 15.8 0
0 0 0 0 0 18.5

Table 3 Directional elastic moduli of ZrMgMozOs, (P2:1nb setting)

Young’s Shear Compressibility/ Young’s Shear Compressibility/

modulus/GPa  modulus/GPa  GPa™ ' Poisson ratio modulus/GPa modulus/GPa GPa ™' Poisson ratio

Yea 748  Gpe 457  fae 1.05 x 1072 pp. 038 pep 038 Yue 525 G 339 Pag 145 x 102 ppe 0.46 u 0.49
Y,, 105 Gae 298 P 443 X107 g 011 g 015 Yy 619 Goe 201 Py 5.72 X 10° pige 011 g 0.08
Y, 104 Ga 294 P 452 %x107% pg 011 pp, 015 Y, 656  Gg 180 P 616 X 107° g 0.18 up, 0.15
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Table 4 Directional elastic moduli of Sc;M0s03, (Pbcn setting)

Young’s Shear Compressibility/

modulus/GPa modulus/GPa GPa™* Poisson ratio

Yo 495  Gp  31.8  Paa 157 x 1072 ppe 051 pg 0.53
Yy, 609 G 158  Bup 6.00 X 107° pe 0.13 g 0.16
Y, 631 G 185 B 4.80 X 107° pug 0.10 pp, 0.12

and the corresponding directional elastic moduli are shown in
Table 4. The experimental thermal expansion tensor” is shown
for comparison of its anisotropy to that of c:

11 [o 0
a= 0 |87 |o x10°K ™. (6)
0|0 —8.4

The elastic anisotropy of Sc;M0304, (Ay = 2.9) was larger than
that of ALM0;0;, and ZrMgMo3;0;,, which could be expected
given its larger CTE anisotropy. The VRH values for the bulk and
shear moduli were K = 24.0 GPa and G = 22.3 GPa; unlike in the
cases of AlL,Mo0;0,, and Y,Mo0,0,,'° the calculated bulk modulus
of Sc,M030,, is significantly less than the experimental value
(K = 32 + 2 GPa from variable-pressure XRD)."*

Correlations of axial elastic properties with axial thermal
expansion, axial Young’s moduli (Y;), axial compressibilities
(Bi), and directional shear moduli (Gj) are visualized in Fig. 2
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as functions of the axial CTEs («;)>>°®° for the three materials
described above and Y,Mo03;0;,.>'® The elastic behaviours of
the thermomiotic b- and c-axes are correlated with their axial
CTEs, while such a correlation is not seen for the a-axis. The
b- and c-axes are stiffer than the ag-axis except in the case of
Y,Mo0;04,, where the a-axis has a higher Young’s modulus but
also higher compressibility. Stiffer thermomiotic axes could
decrease the bulk CTE of a polycrystal, as the increased stiffness
would yield a larger contribution to the bulk expansion. As described
below, this effect can be predicted in some cases. The trends in the
VRH-averaged isotropic moduli (Fig. 2(d)) are more pronounced
than those in the axial stiffnesses. A decrease in overall stiffness with
increasingly negative thermal expansion can be seen clearly. When
a thermomiotic material is used to counteract positive thermal
expansion, its stiffness can be as important as its CTE in
determining the amount of CTE reduction achieved,'*?%>"3
and therefore the negative correlation between stiffness and
CTE might act to discourage the use of materials such as
Y,Mo050;, in applications. The trend relating the elastic moduli
to the CTE is very similar to the previously reported correlation
between the A site ionic force and the CTE,” suggesting that
polyhedral distortability is a common factor between thermal
expansion and elastic properties in this group of materials.
The materials studied show significantly different behaviour
when subjected to different stress conditions. The b- and c-axes

0.018
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0.015 | (®) 1o o
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©
o °
© 0009 1
< 0.006 A s,
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Fig. 2 Calculated directional elastic properties of (a) Young's moduli, (b) compressibilities, and (c) shear moduli, as functions of axial thermal expansion
along the a- (@), b- (A), and c- (W) axes for orthorhombic AlzM030;,, ZrMgMo3031,, ScoMo301,, and Y>Moz04, in the Pbcn or P2:nb setting.
(d) Volumetric thermal expansion as a function of calculated VRH bulk and shear moduli for orthorhombic Al;M0301,, ZrMgMoz01,, Sc,Mo304,, and
Y>Mo0303,. Axial CTEs and the elastic tensor of Y,M03O;, were taken from the literature; see the text for references.
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show a decrease in uniaxial stiffness (Fig. 2(a)) with increasingly
negative thermal expansion. However, when subjected to iso-
tropic pressure (Fig. 2(b)), less variation in the stiffness is seen.
These differences illustrate the importance of computational
studies of the full elastic tensor, as only f§;; can be obtained
from experimental variable-pressure XRD measurements on
polycrystalline samples. The directional shear moduli generally
show increased stiffness for G,; by comparison with G;; and G;,,
which is consistent with the increased stiffness of the b- and
c-axes compared to the g-axis. This trend leads to the shear
modulus in a plane (Gj) increasing with the thermal expansion
of the axis perpendicular to the plane («;).

The anisotropic Young’s moduli of Al;M030;,, ZrMgMo030;5,,
Sc;M050;,, and Y,Mo0;0;,® are compared in all directions in
Fig. 3. The overall trend of decreased overall stiffness with
decreased CTE can be seen clearly, as can variations in the
elastic anisotropy. In the case of Al,M05;0;,, the predominant
feature is the increased stiffness of the thermomiotic bc-plane
relative to the g-axis. However, as the thermal expansion of the
material becomes more negative, the stiffness of the bc-plane
decreases more dramatically than that along the a-axis. Additionally,
the stiffness within the be-plane becomes more anisotropic, with the
[011] and [011] directions becoming considerably stiffer than [010]
and [001]. This results in the relatively large values of G,; and
discrepancies between Y; and f3; seen in Fig. 2 and the indentations
along [010] and [001] seen in Fig. 3.

Phonon frequencies

The I'-point optic phonon frequencies calculated in ABINIT are
presented in tabular form in the ESL{ and visually in Fig. 4 (along
with the previously reported'® phonon spectrum of Y,Mo030;,).

Al2Mo3012

a

Sc2Mo3012

View Article Online

Paper

Fig. 4 shows the common features of the phonon spectra of
the four materials studied: a band of low-energy librational,
translational, and bending modes separated from stretching
modes with higher energy, with asymmetric stretches at lower
energies than symmetric stretches.®>® As discussed in ref. 5,
ZrMgMo;0,, has a larger spread of stretching mode energies
due to the splitting of the A site into a Zr site and Mg site, but
otherwise its I'-point phonon spectrum is similar to that of the
A,Mo030;, materials. The energies of the low-energy phonons
can be compared more easily in Fig. 4, which shows the
cumulative distribution function of the modes below 500 cm ™.
The phonons below ca. 200 cm™ " are expected to have negative
mode Griineisen parameters and contribute to NTE, while those
of higher energies are expected to have positive or near-zero
Griineisen parameters.*'~*>

Fig. 4 shows that Y,Mo03;0;, has significantly more modes
with energies below 200 cm ™" and has generally lower phonon
energies in this region, which is consistent with its observed
NTE over a wide temperature range.*® Conversely, Al,M0;0;,
has considerably fewer modes below 200 cm™*, with a much
broader distribution of its phonon frequencies in the region
below 500 cm ™. Of particular interest is a mode at 26 cm ™" in
Al,Mo030;, which is anomalously low in energy by comparison
to the other translational and librational modes in this material. At
some point in the Brillouin zone, this mode could be the soft mode
with negative frequency that causes the orthorhombic-monoclinic
phase transition. The mode distributions for Sc,M0;0;, and
ZrMgMo;0,, are very similar, especially in the region below
200 cm ™. Sc,Mo0;04, has a negative CTE while ZrMgMo;0,,
displays ca. zero thermal expansion, implying that the mode
Griineisen parameters of Sc,M03;0;, are more negative.

ZrMgMo3012

Y2Mo3012

Fig. 3 Directional Young's moduli of orthorhombic Al,M0o30;,, ZrMgMoz0;,, Sc,Mo304;, and Y2M0301216 in the Pbcn or P2;nb setting, shown as
contour plots generated using the nanoHUB Anisotropy Calculator — 3D Visualization Toolkit.®*
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Fig. 4 (a) Calculated I'-point phonon frequencies of A,Mo301, materials (including Y>Mo301,)*® and ZrMgMozO1», shown as a histogram with 10 cm™

Wavenumber / cm™

1

bin size. (b) Phonon frequencies shown as the cumulative number of modes with an energy less than or equal to a given wavenumber.

The calculated I'-point phonon frequencies of Al,M03;0;,
and ZrMgMo;0,, are compared to experimental Raman spectra
(measured at room temperature) in the ESLt Overall, the
results of this comparison, in addition to the comparison of
experimental elastic moduli to calculated values presented
above, show that the calculated elastic and phononic properties
of these materials, while not quantitatively accurate, show
reasonable agreement with the experimental data.

Axial Griineisen parameters

The axial coefficients of thermal expansion are determined by
the anharmonicity of the interatomic potentials, as expressed
through Griineisen parameters, and by the stiffness tensor,
which represents the resistance of the lattice to thermal defor-
mation. The present computational analysis does not allow the
axial Griineisen parameters (y;) to be determined directly, but
using the calculated anisotropic elastic constants and phonon
energies and the experimental CTE tensor the following expres-
sion can be invoked:®’

m

o o)

Vit = e (Citti + €0 + CikOlkk )

This journal is © the Owner Societies 2016

where V,,, is the molar volume, Cy is the isochoric heat capacity,
and ¢; and «; are stiffness and thermal expansion tensor
elements, respectively. Here, Cy was calculated using the Einstein
and Debye models following the procedure described in ref. 68
using the calculated elastic tensors and I-point phonon
frequencies.'® The axial Griineisen parameters were determined
at T = 300 K for ZrMgMo;0,, Sc;M0;0;,, and Y,Mo0;0;,,”® and
at T = 550 K for Al,M0;0;, (temperatures chosen so that the
materials are in the orthorhombic phase). The results are shown
in Fig. 5 and Table 5.

Thermal expansion along the b- and c-axes strongly corre-
lates with the Griineisen parameter along that axis, suggesting
that vibrational modes with negative Griineisen parameters
along those axes are responsible for NTE. Essentially, this high
degree of correlation is because the c;u; and cjogy terms in
eqn (7) have opposite signs and nearly cancel. These terms are
due to the Poisson effect, where a strain (in this case, thermally
induced) along one axis causes a corresponding strain along
the axes perpendicular to it.°® As shown in Tables 2-4, some of
the axial Poisson ratios in these materials are quite large, close
to the theoretical limit of 0.5 for stable isotropic materials.”®
However, NTE along the b- and c-axes increases the CTE along

Phys. Chem. Chem. Phys., 2016, 18, 30652-30661 | 30657
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Fig. 5 Axial CTEs shown as a function of axial GrUneisen parameters

along the a- (@), b- (A), and c- (M) axes for orthorhombic AlM0o3zO35,,

ZrMgMo301,, Sc,M0o301,, and Y,Mo30;; in the Pbcn or P2,nb setting. Axial

CTEs and the elastic tensor of Y,Mo030, are taken from the literature; see

the text for references.

Table 5 Axial Gruneisen parameters of orthorhombic Al,MozO,,
ZrMgMo301,, Sc;M0304,, and Y,Mo301;, in the Pbcn or P21nb setting

Material Yaa Ybb Vee

Al,M0;0;, 0.24 0.07 0.02
ZrMgMo;0,, 0.18 —0.16 —0.23
Sc,M0304, 0.17 —0.58 —0.58
Y,M050;, —0.35 -1.11 ~1.20

the g-axis due to the Poisson effect. The positive thermal
expansion along the g-axis in Y,Mo030;, is caused entirely by
this effect, as y,, is negative. Similarly, the increase in thermal
expansion along the g-axis in Sc,M03;0;, relative to ZrMgMo0;0;,
and Al,Mo0;0;, is due to its larger NTE along the b- and c-axes, as
all three materials have similar values of y,, Therefore, the
Poisson effect is responsible for some of the thermal expansion
anisotropy which causes microcracking in sintered bodies of
A,M;0,, materials.®°

Thermal stress

Models of thermal stress due to thermal expansion anisotropy
showed significant thermal stress in all four modeled materials.
Thermal stress extrema reached hundreds of MPa, sufficient to
cause significant microcracking, as seen experimentally in
AlLMo050,, and ALW;0,,."*?° The thermomiotic »- and c-axes
are, on average, placed in tension while the g-axis is in compres-
sion due to thermal expansion mismatch. The net stress on the
material is zero, as the boundaries are unconstrained. An
example cross section of the thermal stress distribution in
Y,Mo0;0;, can be seen in Fig. 6. The stress extrema are found
at grain boundaries where several misaligned grains meet, and
can be expected to cause intergranular microcracking.

The effect of elastic anisotropy on the thermal stress dis-
tributions can be quantified by comparison to Kreher’s model
for elastically isotropic polycrystals.”"”> Anisotropic models
have lower mean strain energy densities, (W), as shown in
Table 6, indicating that elastic anisotropy acts to decrease
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Fig. 6 Thermal stress (GPa) in the out-of-plane direction in a modelled
Y,>Mo30;, polycrystal following cooling by 700 K.

thermal stress. In the elastically isotropic case, the average strain
in the material is required to be equal to the thermal strain by
the (unconstrained) boundary conditions and the conditions of
static equilibrium.”>”> When the coupling of elastic anisotropy
and thermal expansion anisotropy is included, the thermal
expansion of the stiffer axes is slightly more expressed than that
of the more compliant axes, which allows some relaxation of the
thermal stress. This effect is seen in consolidated polycrystals as
deviations from the intrinsic linear CTE (A«,), shown in Table 6.
While Ao, is small in comparison to the bulk CTEs of Al,M050;,
and Y,Mo0;0;,, for ZrtMgMo;0;, and Sc,Mo030,, the deviation is
of similar magnitude to the intrinsic CTE. Therefore, elastic
anisotropy could explain the relatively large differences observed in
dilatometric results compared with the intrinsic CTE (e.g. from
XRD) for these materials.>”

The stress distributions within the polycrystals were fit to
statistical distributions as described in the ESIL.{ The distribu-
tions in the different materials are generally similar, and using
two lognormal distributions for the stress along each axis
provides excellent fits to the data (see Fig. S4-S11, ESIt). As
the size of the A site cation increases from AI** to Y**, increasing
thermal expansion anisotropy is accompanied by decreasing
stiffness (vide supra). These two factors have opposite effects
on the magnitude of the thermal stresses, resulting in similar
stress distributions and extrema. This similarity indicates that it
will prove difficult to use chemical control of the A site cation to
reduce thermal stress due to thermal expansion anisotropy.
When the thermal stresses are sufficiently large to cause micro-
cracking, a further deviation from the intrinsic CTE can be found
at elevated temperatures due to crack growth and healing

Table 6 Mean strain energy densities and deviations from the intrinsic
linear CTE as predicted for the elastically isotropic case (where Aa, = 0) by
Kreher's method,”*”? and the present models

Present models

Elastic isotropy

Material (W)/k] m ™3 (WK m™2 Ao,/1077 K |Aolos|/%
ALMo,O,, 311 222 25 10
ZtMgMo,0,, 493 386 ~3.5 219
Sc,M0,0,, 1338 1073 11 52
Y,M0,01, 837 659 -13 1
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causing expansion and shrinkage, respectively, of the polycrystal-
line body."**°

In all cases, the two lognormal distributions in each fit had
opposite signs for their prefactors, leading to positive and
negative stress extrema each being fit by a single unbounded
lognormal tail. The utility of the lognormal distribution in fitting
the extreme stresses is likely connected to some underlying
physical phenomenon. The lognormal distribution is known to
arise as a result of multiplication of a series of random variables,
whereas the normal distribution arises from summation of a
series of random variables.”® Therefore, the lognormal fit to the
stress distribution implies some multiplicative character to their
origin. In anisotropic polycrystalline materials, thermal expan-
sion mismatches cause strains in the material, and consequently
reaction forces and stresses. In elastically isotropic materials, the
interactions of reaction forces throughout the material are
isotropic. This isotropy results in the stresses at any point being
related to the strains caused by thermal expansion anisotropy
throughout the remainder of material additively, and the normal
thermal stress distribution is a logical result. However, in a
material where the elastic constants are anisotropic, the transfer
of stresses through the material is not so simple. The elastic
anisotropy leads to the grains reacting differently to the applied
strains based on their orientations, with increased stress in
stiffer directions and vice versa. Therefore, elastic anisotropy
introduces a multiplicative factor into the thermal stress dis-
tributions, since the relationship between the stress at a point
and the strain at another point is modified by the variations in
the stiffness tensor.

Conclusions

Materials in the A,Mo30;, and AMgMo;0,, families were
shown to have significant elastic anisotropy, a finding consis-
tent with their characteristically large CTE anisotropy. The
thermomiotic axes of these materials were shown to be stiffer
than the PTE axes, which could act to decrease their bulk CTEs.
However, the stiffness along the thermomiotic axes decreases
with increasingly negative thermal expansion. The stiffness
along the PTE axes did not strongly correlate with their CTEs.
However, Al,M030;,, ZtMgMo030;,, and Sc,M030,, were shown
to have similar axial Griineisen parameters along their PTE
axes, with differences in thermal expansion being driven by
elastic factors. Calculated I-point optic phonon frequencies
showed differences between the materials in the low-energy
region which correlate with their thermal expansion behaviour,
and the optic phonon data compared to experimental Raman
spectra validated the results.

The thermal stress distributions calculated herein show that
thermal expansion anisotropy can cause large thermal stresses
in A,M;0,, materials, enough to cause significant microcracking
upon heating and cooling. The distributions of the thermal
stresses are affected by the properties of the CTE and elastic
tensors. The results indicate that the stress distributions in the
four members of the A;M0;0,, family studied are quite similar.

This journal is © the Owner Societies 2016
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In both cases, maximum tensile and compressive thermal
stresses on the order of 0.5 GPa can be expected, with positive
and negative extrema being well-described by lognormal distri-
butions. The elastic tensors were found to couple with the
thermal expansion tensors to produce small deviations in the
bulk CTE, which were large by comparison to the intrinsic CTE
in the cases of ZrMgMo;0;, and Sc;M030;5.
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