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In all but the simplest crystal structures, the identification of all relevant interactions between magnetic
sites as well as the setup of magnetic model spaces, which are necessary for modeling macroscopic
magnetism, are tedious and error-prone tasks. Here, we present a procedure to generate magnetic
susceptibility versus temperature curves using only a crystal structure as input. The procedure, which is
based on the first-principles bottom-up approach [Deumal et al.,, J. Phys. Chem. A, 2002, 106, 1299], is
designed in a way to require as little user interference as possible. We employ quantum chemical

Received 25th August 2016, calculations to parametrize a Heisenberg Hamiltonian, which is set up and diagonalized for different magnetic

Accepted 19th September 2016 model spaces to ensure convergence of the model. We apply the procedure to several 6-oxo-verdazyl
DOI: 10.1039/c6cp05875b radical structures, including newly synthesized compounds, and compare the results to data we obtained

from magnetic susceptibility measurements as well as published data to further benchmark our procedure.
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1 Introduction

Predicting the magnetic behavior of a substance directly from
ab initio calculations is a tough challenge for quantum chemistry.
Single molecule parameters like hyperfine coupling constants,
which are relevant for the interpretation of electron paramagnetic
resonance (EPR) experiments, can be obtained with a decent
accuracy from wavefunction and hybrid density functional theory
(DFT) calculations." However, at least DFT methods are not able
to reproduce highly accurate data for a direct prediction of a
spectrum.

The situation is much worse for the prediction of the magnetic
susceptibility, which stems from interactions between different
magnetic units. This bulk property is sensitive to the packing of
the substance in a crystal structure. Thus, quantum chemical
calculations can only be performed for substances for which
accurate crystal structures are available.
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Furthermore, the different impact of certain dominating coupling constants is systematically analyzed.

If all spin states are known, the magnetic susceptibility can
be calculated from a Boltzmann distribution as a temperature-
dependent quantity,”

S8 (S + 1)(2S, + 1) exp[—(E, — Eo)/ksT]
> (28, + 1) exp[—(E, — Eo)/kT] ’

(1)

where N is the Avogadro constant, g the gyromagnetic constant
of an electron, ug is the Bohr magneton, kg is the Boltzmann
constant, u, is the vacuum permeability, and the sum is taken
over all spin states 7, each of which is described by its spin S,
and energy E,. S, and E, indicate the values for the
ground state.

However, the number of possible spin states in a periodic
structure is infinite. In their first-principles bottom-up approach
Deumal et al.® use a finite system to model the properties of the
structure. According to their approach, one first needs to
identify all relevant magnetic interactions and calculate the
corresponding magnetic exchange coupling constants. With
the gained information a magnetic motif can be identified,
which can have a dimensionality of 0D (e.g. isolated dimers), 1D
(e.g. spin chains or spin ladders), 2D (e.g. a net structure) or 3D
(a network). Next, a so-called minimal magnetic model is set up
which contains all information needed to represent the magnetic
motif using as few magnetic sites as possible, where a magnetic

Ng’pg’
T) =
(T) T Ho
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site is a spin-bearing unit to which a local spin can be assigned.
In the case of an organic radical structure a magnetic site
typically corresponds to one molecule. The magnetic model can
be represented by its Heisenberg Hamiltonian,

H=-2 Z J48S4Sp. (2)
A<B

Here, the J,5 are the magnetic exchange coupling constants and
Sy is the spin operator for a local spin on site X. In its matrix
representation the Hamiltonian can be diagonalized to yield the
spin states needed to solve eqn (1). Note that the Hamiltonian
assumes isotropic, pairwise interactions only. To conclude the
computational procedure, the magnetic model is extended until
convergence is reached.

With this strategy the problem to solve with a quantum
chemical method is reduced to the calculation of the magnetic
exchange coupling constants J. For reviews concerning the
parametrization of Heisenberg Hamiltonians see ref. 4 (with a
focus on DFT calculations) and ref. 5 (with a focus on wave-
function methods). The coupling constants can be obtained
from the energy differences of the different spin states of each
unique pair of spin centers or magnetic sites. According to the
Landé interval rule® or with a spin-flip time-dependent DFT
(SF-TD-DFT) approach”™ the calculation of a state with maximum
spin and one low-spin state is sufficient.’®'" While the maximum-
spin state can be described qualitatively correctly with a single
Slater determinant, this is not true for the relevant low-spin states.
These low-spin states in a pair of magnetic units are open-shell
states for which standard single-determinant methods like
Hartree-Fock (HF) and DFT cannot be reliably applied. For
small systems correlated wavefunction methods may yield
excellent results, but they are too expensive for large systems.
In these cases, methods like SF-TD-DFT or the broken symmetry
(BS) approach'? are typically used, although they are known to
yield results which are usually not in quantitative agreement
with experimental data. As is inherent to all single-determinant
methods, these methods may lead to wrong results if static
correlation is important beyond the magnetic orbitals, which
can also be the case in organic systems."

The approach to obtain spin states and magnetic susceptibilities
by quantum chemical parametrization and diagonalization of
the Heisenberg Hamiltonian is well-established.”'*™"” At the
same time, it can be observed that the majority of studies in
this field still does not employ the complete first-principles
bottom-up approach as introduced in ref. 3. In fact, many
studies are restricted to the calculation of pairwise magnetic
exchange coupling constants.'®'® Other investigations use simplified
expressions for the magnetic susceptibility and obtain coupling
constants and susceptibility curves by fitting to experimental
data.*>*" Such fitting strategies need to be applied with caution.
If a system cannot be described correctly with a simple model
including a small number of fitted parameters, the results can
quickly become ambiguous.” As we will point out, a reason for
this limited use of the first-principles bottom-up approach may
be due to the difficulties in some of the crucial steps in the
procedure, which require expertise and a lot of manual work.
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A reliable and simple software tool for automatizing these
critical steps would thus be highly appreciated.

Despite the small number of families of persistent organic
radicals, many magnetically active compounds have been realized
so far. Here, we only want to point the reader to a few reviews in
ref. 22-26. One class of stable radicals, which is getting increasing
attention, is the family of verdazyl radicals.>"*”*® They are
common magnetic building blocks and are thus often used to
create metal-free or hybrid metal-organic materials with magnetic
properties.””*> The main reason for the stability of verdazyl
radicals is the delocalization of the unpaired electron over the
verdazyl ring itself, which is often further extended to aromatic
substituents. Packed into a molecular structure many small
magnetic interactions are thus possible between the molecules.
As a result, a quite complex magnetic model space is needed
to properly represent all relevant interactions between the
molecules. The same situation can be expected also for other
magnetically active molecular compounds.

Especially for such organic radicals with a complex packing
of the molecules the identification of all relevant interaction
pairs while respecting symmetry (to avoid multiple calculations
of the same coupling) is a thankless task to be done manually.
The same is true for the correct identification of the magnetic
motif and the setup of the corresponding minimal magnetic
model. As will be shown in Section 2.3.1, sticking with the
crystallographic unit cell can lead to erroneous results.

Here, we present a procedure which wraps up the whole
first-principles bottom-up approach to easily get from a crystal
structure to a plot of a magnetic susceptibility vs. temperature
curve. We automatized the identification of symmetry-unique
pairs of magnetic units (see Section 2.1) and avoid the need for
a manual interpretation of the coupling constants. Thus,
instead of a user-specified magnetic motif, we construct a
magnetic unit cell based on an internal set of rules defined
in Section 2.3. This turns the magnetic motif from an input
parameter into a result. In combination with a reliable quantum
chemical method for the calculation of the exchange coupling
constants and assistance in convergence checks and interpretation
of the results, we provide a methodology which can be easily used
by non-experts in the field and enable the first-principles bottom-
up approach as a routine method to be carried out alongside with
measurements of the magnetic susceptibility in complex organic
radicals.

We apply the procedure to a variety of novel 6-oxo-verdazyl
radical systems shown in Fig. 1. We reinvestigate molecule 1,
for which magnetic susceptibility data is available in the
literature,! in order to benchmark our method. At the same
time we provide detailed microscopic information based on
quantum chemical calculations to back up the results which
were obtained by fitting only in the original publication. As an
additional literature example, we show results obtained with
our approach for a thiooxo-verdazyl adduct*® in the ESLt
Additionally, we analyze in detail the magnetic structures of
molecules 2 to 5 which were synthesized and characterized in
our collaborative research center. Ferromagnetic interactions
in those kinds of verdazyl radicals are very uncommon. In order
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Fig.1 The 6-oxo-verdazyl radicals investigated in this study: 1,5-dimethyl-3-(4-ethinylphenyl-6-oxo-verdazyl radical (1),>* 1,5-diphenyl-3-
(anthracene-9-yl)-6-oxo-verdazyl radical (2),28 1,5-diphenyl-3-(4-(diphenylamino)phenyl)-6-oxo-verdazyl radical (3), 1,5-diphenyl-3-(4-(trimethylsilyl)-
ethinyl)phenyl-6-oxo-verdazyl radical (4), and 1,5-diphenyl-3-(4-ethinyl)phenyl-6-oxo-verdazyl radical (5).

to achieve a ferromagnetic network similar to the situation in
compound 1, we replaced the N-methyl with an N-phenyl-group
in compound 5. The precursor compound, a TMS acetylene
substituted radical 4, was also investigated in detail.

2 Computational procedure

The input for the procedure is a sufficiently large cutout from
the crystal structure (e.g2 3 by 3 by 3 unit cells, where all
fragments should be completed) and the six lattice parameters,
the lengths a, b, ¢ of the cell vectors and the angles «, f5, y
between them. The main part of the procedure is completely
automatized and summarized here:

e The individual molecules are identified and it is tested
whether they are inside the central unit cell

e Based on the smallest interatomic distance for every pair
of molecules, possible interactions are identified

e Symmetry relations between the molecules and interactions
are identified

e A symmetry-unique set of pairs is chosen and a mapping to
other possible interactions is established

e Structure files for the radical pairs, for which non-
negligible magnetic interactions are expected, and input files
for BS calculations are written

e The results of the BS calculations are parsed to find
extended (periodic) chains of relevant interactions, which can
be responsible for macroscopic magnetic behavior

e Possible basis vectors for the magnetic unit cell are
identified and an ideal set of such vectors is chosen (see Section 2.3)

e Magnetic models of different sizes are set up

e The Heisenberg Hamiltonian is set up and diagonalized
for the different magnetic models

e The results are checked for convergence with respect to the
size of the magnetic models

Several of the above points need a more detailed explanation
given in the following. Further details are also given in the ESL.}

2.1 Identification of interacting pairs

Magnetic interactions are known to decay rapidly through
space.’® Thus, a distance-based criterion can safely be applied

28264 | Phys. Chem. Chem. Phys., 2016, 18, 2826228273

for the identification of possible interactions between the sites.
We chose as a criterion the smallest distance between any two
atoms of two molecules. If any interatomic distance is below a
threshold of 4 A, which is well above twice the van der Waals
radii of the atoms of the first two periods,® a possible inter-
action is taken into account. While this strategy is simple and
robust, an experienced user still may exclude certain pairs, e.g.
if the radical-bearing groups are far away from each other.
However, especially in verdazyl radicals the unpaired electron is
typically further delocalized over aromatic substituents at the
nitrogen atoms. To be on the safe side it is advisable to skip
such a manual preselection, having in mind that BS-DFT
calculations are comparatively cheap.

To find all interactions within a unit cell without double
counting any interactions, two cases need to be considered. An
interaction belongs to the unit cell if either both interaction
partners or just one interaction partner is inside the unit cell.
In the latter case the interaction partner outside the unit cell
has a translational equivalent inside the unit cell which must
interact with a translational equivalent of the interaction
partner inside the unit cell. These corresponding interactions
must be identified and filtered to avoid double counting.

2.2 Broken symmetry calculations

Based on preliminary tests we chose the following setup for the
quantum chemical calculations: Orca®” was used for BS calculations
with the PBEO hybrid functional®® and a minimally augmented
polarized triple zeta basis set (ma-def2-TZVP).** Very tight
convergence criteria were employed (10~ ° Hartree energy difference,
keyword “VERYTIGHTSCF”) and no density fitting®® was used.
This protocol can of course be easily exchanged by any other
method which yields reliable pairwise magnetic exchange coupling
constants.

2.3 Creation of a magnetic unit cell

As stated in the original work by Deumal et al., the magnetic
unit cell (corresponding to a certain magnetic motif) may be
very different from the crystallographic cell (nuclear structure).’
Thus, finding an ideal magnetic unit cell in an automated
fashion is a key aspect of this work. We will describe our
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strategy in detail in this section. However, before giving details
about our implementation we will illustrate with a simple
model example how severe the impact of a bad choice for the
magnetic unit cell can be.

2.3.1 Relevance of a well-chosen magnetic unit cell. Let us
assume a linear magnetic chain which contains, for the sake of
simplicity, a single repetitive ferromagnetic coupling. Let us
assume further that the interaction chain is oriented into the
direction of one of the diagonals or the space diagonal of the
crystal structure as depicted in Fig. 2. A situation similar to this
model is present for molecule 4, if the weak interchain inter-
action is neglected. That particular system, which contains
alternating ferromagnetic and antiferromagnetic couplings, is
further discussed alongside with the results for the other
substances in Section 4.4.

To obtain converged macroscopic data we have to increase the
magnetic model starting from an isolated dimer until convergence
is reached. Without choosing a proper magnetic cell one may be
tempted to increase the model into the directions of the unit cell.
Doing this, however, does not primarily increase the length of the
interaction chain, but instead it increases the number of isolated
dimers in the model. To obtain converged results for the model
system shown in Fig. 2 with this strategy, the model has to be
increased at least into two of the three axes (a and b directions) at
the same time; if the interaction goes through the space diagonal
of the unit cell even a simultaneous extention into all three
directions is needed. In this way, the model size needed to arrive
at converged results can quickly become much larger than what is
treatable in terms of computational time and memory require-
ments. Consider for example a system with two magnetic sites
inside one unit cell. Then, a magnetic model of 2 by 2 by 2 cells
leads to a Hamiltonian matrix of dimension 2'® by 2'¢, which is
close to the limit of what computers can handle nowadays. A
model of 3 by 3 by 3 cells already leads to a matrix of dimension 2>*
by 2°*. Such a matrix could not even be stored if all the hard drive
capacity in the world would be used.

Even worse, if the model is not increased in the correct
fashion, the results may seem to be converged immediately as

>

Fig. 2 A sample system consisting of two magnetic sites (green) coupled
to a chain. The interaction chain (purple) passes through the ab diagonal of
the unit cell (black). A differently shaped magnetic unit cell (red) with the
cell vector a’ is a much better choice to set up magnetic models.
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Fig. 3 The temperature-dependent magnetic susceptibility, plotted as
susceptibility times temperature, for different magnetic models of the
model system shown in Fig. 2. The red, solid line is obtained from
inappropriate models like the one containing only one unit cell or any
model which is not extending the model along the direction a’.

shown by the red, solid curve in Fig. 3. Clearly, this is because
there are no interactions between the dimers. In fact, instead of
a magnetic chain (1D) one obtains results for a system of
isolated dimers (0D).

If the model is instead enlarged along the space diagonal
one can monitor convergence towards a clearly ferromagnetic
system (see the other curves in Fig. 3).

2.3.2 Identification of periodic interaction chains. It is
clear that any useful definition of a magnetic unit cell must
be based on the magnetic interactions inside the system. Often,
different interactions have to be combined to form interaction
chains to leave the regime of isolated interactions. In the
following we will use the term interaction chain equivalently
to a vector connecting the magnetic sites at the beginning and
the end of such chains.

To come up with a set of rules to determine the axes of an
ideal magnetic unit cell we need to be clear about some
properties of the cell and the magnetic interactions within.
Although the unit cell and a well-chosen magnetic unit cell may
be very different, they clearly share the same periodicity in
certain regards. E.g., the volume of the magnetic unit cell must
be an integral factor of the volume of the unit cell. (In special
cases, however, all magnetic information of a system may
already be present in a fraction of a unit cell. We describe
our treatment of this case in the ESL{ An example will be
discussed in the context of molecule 4 in Section 4.4.) Further-
more, an interaction chain cannot be periodic if it does not
pass through the whole unit cell. If an interaction chain is not
periodic, it is no candidate to indicate an axis of the magnetic
unit cell. Note that this does not at all determine whether an
interaction chain is relevant and whether it must be respected
in the magnetic model. Another condition for an interaction
chain to be periodic is that a translational equivalent of the
magnetic site at which the interaction chain starts must be
reached. In an equivalent formulation the former condition can

Phys. Chem. Chem. Phys., 2016, 18, 28262-28273 | 28265
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be easily included, leading to the following condition for an
interaction chain to become a candidate to form one of the axes
of the magnetic unit cell:

An interaction chain can represent an axis of the magnetic
unit cell if it passes through the unit cell an integral amount of
times (including zero) into each direction and at least once into
one of the directions.

2.3.3 Dimensionality of the magnetic system. If all periodic
interaction chains have been found, the dimensionality of the
magnetic interactions in the system is directly available. It
equals the number of linearly independent periodic interaction
chain vectors, which can naturally only be a number between
zero and three. If there are less than three linearly independent
directions the original unit cell vectors are used to form the
other dimensions of the magnetic unit cell. In that case the
magnetic models are never extended into these additional
directions.

2.3.4 Ranking the interaction chains. Once a set of axes for
the magnetic unit cell is determined an extension of the
magnetic model along these axes is straightforward. However,
often there are many linearly dependent periodic interaction
chains among which a set of axes must be chosen. In principle,
convergence has to be ensured into the directions of all
periodic interaction chains at the same time. In practice, this
is however not possible for most systems due to the exponential
growth of computational effort with respect to the size of the
magnetic model. Our strategy to solve this problem is to choose
the axes for the magnetic unit cell by the expected relevance of
interaction chains for the convergence of the magnetic model.
Then, we separately test the model for convergence into these
directions (see also Section 2.6).

Certainly, the strengths of the magnetic interactions, i.e. the
absolute value of the magnetic exchange coupling constants J,
must be considered for ranking the interaction chains. If a
chain contains interactions with different strengths we only
consider the weakest interaction in the chain. The reasoning is
that in the limit of a vanishing coupling inside a chain the
chain itself will not be periodic any more so that convergence
does not have to be checked into that direction. Among chains
with the same weakest coupling strength we prioritize shorter
chains in terms of the number of couplings in the chain.

Although these rules still do not always lead to a unique
solution we did not introduce additional rules because we
consider all possible results of this procedure equally reasonable.
Starting from the top of this list we use the first three linearly
independent interaction chains as the cell vectors of the
magnetic unit cell.

2.4 Construction of magnetic models

Our procedure does not require a user-defined magnetic motif
as input. The magnetic models are constructed directly from
the magnetic unit cell. In fact, the magnetic motif is resembled
in the magnetic unit cell and its dimensionality. Thus, we use
the magnetic unit cell as the minimal magnetic model. As it has
been stated before, we construct larger magnetic models by
repeating this cell into the direction of the cell vectors of the
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magnetic unit cell. There are, however, two possibilities to treat
the boundary of the magnetic model. Either, the ends of the
interaction chains are left open (corresponding to a finite
approximation to the infinite structure), or, as the systems
are periodic, interactions may be continued to the opposing
side of the magnetic model, forming closed rings of inter-
actions. As it has been shown in ref. 3, the results of both
strategies are similar.

In an open model the results are in principle dependent on
the choice of the origin of the magnetic model. Instead of
working out a strategy to find an ideal origin and to test the
effects of different choices, we chose to construct ring models
only in order to avoid further complications.

2.5 Setup and solution of the Heisenberg Hamiltonian

Given a magnetic model and the coupling constants which
represent the interaction between the magnetic sites in the
model it is straightforward to calculate the elements of the
Heisenberg Hamiltonian matrix. We currently perform a full
diagonalization of the Hamiltonian matrix. This severely limits
the number of magnetic sites which can be treated inside the
magnetic model, because the dimension of the matrix is 2%,
where N is the number of magnetic sites in the model. Due to
the rapid convergence of the data with increasing size of the
magnetic model space this limitation is often not a problem in
practice. In cases where no convergence is reached yet with
feasible sizes of the magnetic models, one could make use of
the sparsity of the Hamiltonian matrix. If one is only interested
in the lowest energy states, Krylov subspace methods like the
Davidson diagonalization®® or a Lanczos algorithm®” can be
employed (see ref. 38 for an application to a Heisenberg
Hamiltonian). However, the direct application of such methods
is not sufficient to calculate temperature-dependent data,
because the full eigenvalue spectrum is required for a reason-
able Boltzmann distribution in the whole temperature range. If
only the energetically lowest spin states are included in the
calculation of the magnetic susceptibility, the error increases
significantly with increasing temperature. In such cases the
high temperature regions can be modeled much better by using
Monte Carlo simulations.*

2.6 Convergence check

Once a magnetic unit cell has been defined a magnetic model
can be easily extended to check for convergence of the results.
Although finally the results must be critically checked by the
user and additional convergence checks might become necessary,
we came up with a standard protocol which reasonably deals with
this issue in many cases. Even if no full convergence is reached in
this way, an excellent starting point is provided for additional
manual convergence checks.

A user-defined parameter limits the number of allowed
magnetic sites in the magnetic models. Our program then
produces all possible magnetic models which do not exceed
this number of magnetic sites by repeating the magnetic unit
cell into all of the up to three axes of the magnetic unit cell
which need to be checked for convergence. Extentions into
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different directions at the same time are also considered. For
each of the magnetic models constructed in this way also a
picture is generated which includes the magnetic model, the
magnetic and the nuclear unit cell and all magnetic sites and
interactions of the (sub)system. Several of these models are chosen
as suitable candidates for a convergence check by a procedure
described in detail in the ESL{ In that context also a reference
model is chosen to which other (smaller) models are compared.

For each of the considered models the temperature-dependent
magnetic susceptibility is calculated by solving the Heisenberg
Hamiltonian and applying eqn (1). Finally, the average mean
relative deviation of the different curves is calculated by

& ; X](Ti)fx2(Ti) , (3)
i 5 (1 (Ti) + 72(T7))

1
Error = —
n

where y;(T) and y,(7) are the curves to compare, sampled at n
different temperatures T € [0 K, 300 K]. Of course, more advanced
error criteria could be considered, which emphasize the impor-
tance of certain temperature regions by an additional weighting
factor. We found, however, that our strategy offers a better balance
between ferromagnetic and antiferromagnetic systems (see also
the discussion in the ESIY).

The model we choose for interpretation and comparison
with the experiment is, for a given set of relevant couplings,
always the reference model as defined above, i.e. the largest
model which can be constructed with the specified settings.

2.6.1 Relevance of individual couplings. The size limitations
for the magnetic models can make convergence checks hard if
many couplings need to be respected. In many systems, however,
not all couplings have a relevant strength. To test this, we also
perform convergence checks with respect to the number of
included couplings. Starting by only considering the strongest
coupling, we repeat the whole procedure for each additionally
considered coupling. The convergence into this respect is also
tested for as described above. The final model is thus chosen to be
the largest possible model, limited by the specified settings, which
respects all relevant couplings.

3 Experimental details
3.1 Synthesis

Verdazyl radicals 2°® and 3 were prepared according to a known
literature procedure.’’®*° In a one pot reaction, first 2,4-
diphenylcarbohydrazide was reacted with an aldehyde in

O
1) RCHO
O 60 °C, 3-4 h Ph. J\ .Ph

Ph\NJ\N,Ph NN
! | 2) para-quinone N Ne

NHz NH; )6% "G5 h he

’ R

24
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MeOH or EtOH to give the corresponding cyclic tetrazinan-3-
one, which was subsequently oxidized with para-quinone to
afford verdazyl radical 2 in 30% yield and verdazyl radical 3 in
33% yield. For verdazyl radical 4, the intermediate tetrazinan-3-
one was isolated prior to oxidation by simple filtration of the
methanolic reaction mixture. Cleaving of the silyl group in 4
was achieved with potassium fluoride to provide verdazyl
radical 5 (for more information, see ESIf). The synthesis is
summarized in Fig. 4.

All verdazyl radicals were characterized by mass spectro-
metry and infrared spectroscopy. Furthermore, the solid state
structures were determined by single crystal X-ray crystallography.
Suitable crystals for the analysis of substances 3-5 were obtained
by slow evaporation of a solution of the sample in CHCI; or
acetone [CCDC 1497165 (3), CCDC 1497166 (4), and CCDC
1497167 (5)]. The structures are briefly discussed in Section 4
in the context of the magnetic interactions.

3.2 Susceptibility measurements

Magnetic susceptibility measurements were performed using a
Quantum Design magnetic property measurement system (MPMS)-
XL superconducting quantum interference device (SQUID)
magnetometer and the MPMS MultiVu Application software
to process the data. For the characterization of verdazyl radical
4 the magnetic susceptibility was determined with a vibrating
sample magnetometer (VSM), which is an option of the Quantum
Design physical property measurement system (PPMS). The
magnetic susceptibilities were measured in zero-field-cooled
(ZFC) mode at an applied external field of 10 kOe in a
temperature region ranging from 2-300 K (3-300 K for compound
4). The diamagnetic contributions of the compounds were
corrected by modification of the y-T vs. T plot to a linear
behavior at high temperatures or by using Pascal’s constants*'
(compound 4). The raw data and linear fits to the Curie-Weiss
law are given in the ESL¥

4 Results

The 6-oxo-verdazyl radicals 3 to 5 (see Fig. 1) have been
synthesized and crystallized as described above. All of these
and compound 2 have been characterized by susceptibility
measurements. The following analysis of the magnetic structures
has been performed by applying the computational procedure
described in Section 2. We chose to limit the number of sites
allowed in the magnetic models to 12. With such a setting the

R= A
| PR
P
99® |
Ph” N. Ph TMS | |
2 3 4 5

Fig. 4 General synthesis sequence for the preparation of verdazyl radicals 2—4, for experimental details for the preparation of verdazyl radical 5, see ESI.{
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calculations can quickly be performed on a desktop computer.
We neglect all couplings with an absolute strength of less than
0.05 cm ™. Most of the results presented here can be obtained
directly from the output of the procedure.

4.1 Compound 1: R = p-ethynylphenyl

For molecule 1 Merhi et al.>* obtained a coupling constant of

1.6 cm™ " by fitting the experimental data to a simple Heisenberg
chain model including interchain interactions in an abstract,
effective manner. However, the authors observed deviations
from a theoretical investigation of that system.'® These discrepancies
are mainly caused by geometrical differences, but are also
rooted in the fact that the calculations considered only a single
coupling and not a combination of interactions, which is
present in the structure.

Our analysis yields a much more detailed picture. The BS
calculations for the structure measured at 100 K reveal a larger
coupling constant of J; = 5.4 cm™' than obtained by Merhi
et al., which is countered by an antiferromagnetic interchain
coupling of J, = —0.5 cm ™. The latter coupling connects pairs
of chains forming a 1D spin ladder. We found that further
couplings (J; = 0.1 ecm™', J, = —0.1 em™ ") basically do not
change the resulting magnetic susceptibility and magnetic heat
capacity for this system, which is shown by the coinciding red
and green lines in Fig. 5.

The results for the crystal structure obtained at room
temperature are very similar to those for the low-temperature
structure (blue lines in Fig. 5). Due to the larger distance
between the molecules all coupling constants are weakened
so that J; = 3.5 cm ' and J, = —0.3 cm ™ *. All qualitative features
stay the same. Because the couplings influence the data at low
temperatures much more than at high temperatures we consider
the data obtained for the low-temperature structure to be more
reliable. However, working with a crystal structure measured at

0.9 ‘ ‘ ‘ A
Ji, Ja, 100K, XmolT
0.8 r Ji, Jo, J3, Ju, 100K, XmoT 1 35
J1, J2, RT, XmaT'
J1, Jo, 100K, C) =-=reenee- 13
Ju, Jo, J5, Jy, 100K, Ch .
2090 e A— 125
=3
2 \_/E
~
L5 &
1
................ 05
0 : : ) ) P — 0
0 5 10 15 20 25 30
T /K

Fig. 5 The temperature-dependent magnetic susceptibility, plotted as
molar susceptibility times temperature (solid curves), and magnetic heat
capacity (dashed curves) for different magnetic models of system 1.
Results for the structure measured at 100 K are compared to one obtained
at room temperature (RT). The inset shows the heat capacity at tiny
temperatures.
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room temperature is still reasonable, because the ratio of
different coupling constants and the overall magnetic structure
are not severely affected.

According to our results, the description of the system at low
temperatures is not complete if only the ferromagnetic inter-
action is considered. The small antiferromagnetic coupling
leads to a decrease of the susceptibility at very low temperatures.
Furthermore, a second maximum in the heat capacity curves
indicates an antiferromagnetic phase at temperatures below 0.1 K.

Another literature example,”® where our results agree with
the experimental data, is discussed in the ESLt

4.2 Compound 2: R = anthracenyl

For the radical with an anthracenyl substituent (2 in Fig. 1) we
obtained three different coupling constants: J; = —2.0 cm ™},
Jo =07 cm " and J; = —0.1 cm™". The strongest coupling
traverses the system in a zig-zag manner. J, is oriented into
the same direction and connects the edges of the zig-zag chain
formed by J; in a straight line. In combination these couplings
form a magnetic structure similar to a spin ladder. The weaker
antiferromagnetic coupling loosely connects different ladders
in a zig-zag fashion promoting the dimensionality of the system
from 1D to 2D. This magnetic structure is illustrated in Fig. 6.
The ground state of this system is spin compensated. Although
in the lowest-energy state each side of the ladder is a line of
spins with the same orientation due to J,, the rungs of the
ladder (/,) lead to opposing spins of the sides. As the convergence
checks indicate, J; has an insignificant contribution to the
magnetism of the system (see the blue and green lines in
Fig. 7). If J; is respected, convergence has to be tested into
two directions. If the model is instead enlarged only into the
direction of J; and J, one can see that the chosen model
respecting J; is not yet converged into that direction. By extending
the model further into that direction (red curves) the error quickly
drops below one percent. Still, already the smaller magnetic
models show qualitative agreement with the experimentally

Fig. 6 The magnetic structure of compound 2. Additional to the magnetic
unit cell (red) the original cell vectors a, b, and ¢ are shown in black. The
directions into which the magnetic model is extended (a’ and b’) coincide
with these. Each circle denotes the center of mass of a molecule. Interactions
shown by dashed lines are leaving the two depicted cells.
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Fig. 7 The temperature-dependent molar magnetic susceptibility (solid
lines) compared with the experimental data (black crosses), and the
temperature-dependent magnetic heat capacity (dashed lines) for different
magnetic models of compound 2.

measured curve. The predicted magnetic heat capacity (dashed
lines) reveals a transition from the antiferromagnetic to the
paramagnetic phase at about 3 K.

This detailed analysis of the magnetic structure yields an
increased understanding of the underlying processes which can
be further exploited. We have seen that J; is the dominating
coupling in this system as the overall magnetic behavior is
antiferromagnetic. This is not only due to its strength, but also
due to the way it is built into the magnetic structure. With a
simple computer experiment we can confirm this observation.
If we want to tune the system more towards ferromagnetism (or
away from antiferromagnetism) by manipulating the coupling
constants we could either reduce the strength of J; or raise the
strength of J,. From what we have learned about the system it is
obvious that raising J, only has a minor effect. As long as the
sides of the ladder have opposing spin it does not matter how
strong the coupling within each of the sides is. The results
shown in Fig. 8 clearly demonstrate that halving J; has a much
stronger effect on the system than doubling j,. Effectively,
J1 defines a temperature below which the system becomes
antiferromagnetic irrespective of J,. This can be emphasized
by a rather extreme example. We set J, to a very high value of
1000 cm™'. One may expect a coupling strength of about
10 cm ' to be negligible in the presence of such a strong
coupling. In contrast to this expectation, Fig. 9 shows that J;
still dominates the susceptibility curve up to a temperature
which depends only on J; and not on J,.

4.3 Compound 3: R = 4-(diphenylamino)phenyl

System 3 consists of four non-negligible couplings: J; =
—0.7cecm Y, =04 cm™, J; =01 cm " and J, = 0.1 cm ..
J1 and J, form an alternating chain in a zig-zag manner along
the bc diagonal of the unit cell. J; and J, loosely connect these
chains to form a net. We refrain from illustrating the magnetic
topology here, because the magnetic unit cell appears too busy

to create a helpful representation.
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Fig. 8 Impact of changing the strength of J; and J, in compound 2.
Halving J; (red) has a much more pronounced effect on the susceptibility
than increasing J, by a factor of 2 (green) or 10 (blue). The data obtained
with the original values is shown as a reference (black).
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Fig. 9 The magnetic susceptibility of a system derived from compound 2
with an artificially large ferromagnetic coupling constant of J, =
1000 cm™? for different values of J;. The data obtained with the original
values is shown as a reference (black).

These couplings are significantly smaller than the couplings
observed in the other systems studied in this work. Considering
the crystal structure (see Fig. 10) it is clear that the bulky
diphenylamino substituent prevents an efficient stacking of
the m-systems. As a consequence, the strongest coupling is
between the twisted N-phenyl groups of the verdazyl rings
and the oxygen atoms, which have a distance of almost 4 A to
each other. The stacking interaction of the n-systems (/) is very
weak, not primarily due to the distance of 3.41 A between the
closest atoms, but mainly because the corresponding phenyl
rings are displaced.

The results for different magnetic models quickly converge
to errors far below one percent and agree with the experimental
curve as depicted in Fig. 11. The heat capacity indicates a
transition at a temperature below 1 K. Thus experimentally
only paramagnetism can be observed.
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Fig. 10 Packing diagram of verdazyl radical 3. Displacement ellipsoids are
shown with 30% probability.
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Fig. 11 The temperature-dependent magnetic susceptibility, plotted as
molar susceptibility times temperature (solid lines) compared with the
experimental curve (black crosses), and the temperature-dependent
magnetic heat capacity (dashed lines) for different magnetic models of
compound 3.

4.4 Compound 4: R = p-trimethylsilylethynylphenyl

This compound is a derivate of 1, where the original methyl
substituents at the verdazyl ring have been replaced by phenyl
groups and a TMS protecting group is attached to the ethynyl-
phenyl substituent of the verdazyl ring.

The magnetic structure is an approximately linear chain
with alternating antiferromagnetic (J; = —11.9 ¢cm™') and
ferromagnetic (J, = 11.2 cm™") couplings, which is oriented
along the ac direction of the unit cell as depicted in Fig. 12. J; is
caused by the formation of an antiparallelly oriented dimer (see
Fig. S3 and S4 in the ESIt). Similar to compound 1 the n-
systems have a distance of about 3.4 A to each other. J, is the
stacking interaction connecting different dimers (see Fig. S5 in
the ESIY), which are severely twisted against each other by an
angle of about 160°. Here, the closest contacts are between the
nitrogen atoms of the verdazyl rings with a distance of 3.29 A.

The chains are further loosely connected by a weak anti-
ferromagnetic coupling (J/; = —0.6 cm™'). In the pictorial
representation (Fig. 13) we neglect the latter for convenience.
The very similar susceptibilities for a small model (green and
blue solid lines in Fig. 14) and the coinciding heat capacity

28270 | Phys. Chem. Chem. Phys., 2016, 18, 28262-28273

View Article Online

Paper

Fig. 12 Packing diagram of verdazyl radical 4. The antiparallel dimers (J;)
stack upon each other, enabling the interaction J,, to form a chain along
the ac diagonal of the crystal. Displacement ellipsoids are shown with 30%
probability.

curves (green and blue dashed lines in Fig. 14) indicate that J; is
by far less relevant than the other couplings.

For this system the convergence checks are problematic,
because the unit cell already contains eight molecules. Thus,
with our chosen settings only a single unit cell could be
modeled. Fortunately, when neglecting J; the cell comprises
two separate chains. Our program automatically treats the—in
this case identical—chains completely separately. In this way,
we can observe sufficient convergence by enlarging the model
along the chain towards three magnetic unit cells (red lines in
Fig. 14).

We clearly observe an antiferromagnetic system with a
transition to the paramagnetic phase at about 11 K.

Fig. 13 The magnetic structure of compound 4, neglecting the small
interchain coupling Js. Only one of the two identical chains is shown. For
comparison, the unit cell with its original cell vectors is shown in black.
Each circle denotes the center of mass of a molecule. Interactions shown
by dashed lines are leaving the two depicted magnetic cells.
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Fig. 14 The temperature-dependent molar magnetic susceptibility (solid
lines) compared with the experimental curve (black crosses), and the

temperature-dependent magnetic heat capacity (dashed lines) for different
magnetic models of compound 4.

4.5 Compound 5: R = p-ethynylphenyl

Despite the similarity in the structure of this molecule with the
verdazyl radical 1, the different packing in the crystal structure
inverts the character of that compound. The magnetic structure
is an antiferromagnetically coupled Heisenberg chain (J; =
—8.4 cm™ ") with five smaller interactions with a strength of
up to 0.3 cm™'. Among the smaller couplings is also the head-to-
tail interaction (see the packing diagram in Fig. S7 in the ESIY}).
As can be seen by the coinciding green and blue curves in Fig. 15
none of these additional couplings are relevant for the macro-
scopic behavior. The converged model (red curves) indicates a
transition from the antiferromagnetic to the paramagnetic phase
at about 11 K. The deviation to the experimental curve at very low
temperatures might be due to paramagnetic impurities.

The stacking interaction J; is illustrated in Fig. 16 (for a top
view see Fig. S8 in the ESI}). The orientation of the molecules
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Fig. 15 The temperature-dependent molar magnetic susceptibility (solid
lines) compared with the experimental curve (black crosses), and the

temperature-dependent magnetic heat capacity (dashed lines) for different
magnetic models of compound 5.
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Fig. 16 The pair of molecules in the crystal structure of verdazyl radical 5
which is responsible for the stacking interaction J;. Displacement ellipsoids
are shown with 30% probability.

and the corresponding distances allow for a n-m interaction.
The closest contact with a distance of 3.30 A is between the
oxygen atom of one verdazyl radical and the carbon atom which
is substituted with the ethynylphenyl moiety. This distance is
slightly smaller than for radical 1 (3.40 A) and rationalizes the
larger coupling strength. At the same time the larger distance
between the verdazyl ring centroids (5.34 A compared to 4.06 A)
and the corresponding larger slip is most probably responsible
for the inversion of the character of J;.

5 Discussion and conclusions

In this work, we presented a robust and easy-to-use procedure
to calculate magnetic susceptibility vs. temperature curves and
corresponding magnetic heat capacities based on crystal structures
of organic radicals. It can be applied to all spin-1/2 systems in
which each spin site is a clearly separated molecule or complex
within the crystal structure. The procedure can be straight-
forwardly extended to systems with higher spin.

We applied the strategy to a number of novel verdazyl radicals.
The presented results show that qualitative results can reliably be
achieved by our method. Magnetic model sizes which can still be
treated in a short amount of time on a desktop computer are
typically sufficient to obtain converged results. Still, full quantitative
agreement with the experiment is often not achieved. In some cases
(e.g for system 2) an unconverged model agrees better with the
experimental results than the converged one. In such cases it is
tempting to use the unconverged model. The reason for the better
agreement clearly is an unsystematic error cancellation so that
non-converged models should not be used for interpretation if
better converged models are available.

We have seen that the results are often more sensitive to the
magnetic topology than to particular coupling constants. Because
all qualitative features can be reproduced also with inaccurate
coupling constants, the generated models and the quantum
mechanically calculated coupling constants are an ideal starting
point for a fitting procedure with which the coupling constants
may be further refined. To obtain more accurate coupling
constants directly from the quantum chemical calculations,
or in cases the BS-DFT approach fails (as e.g. shown in ref. 13),
expensive multideterminantial wave function methods have to
be employed. Improved results can, for example, be obtained
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from complete active space self consistent field (CASSCF)
calculations with additional treatment of dynamical correlation
effects by means of perturbation theory®* or truncated configuration
interaction (CI) methods like the difference-dedicated CI by Malrieu
and co-workers® or the modified CAS-CI by Fink and Staemmler.**
As an alternative to computationally expensive wavefunction
methods, empirical scaling factors can be applied on top of
BS-DFT calculations,”” although additional to a functional
dependence also a possible system dependence needs to be
considered. Further factors affecting the coupling constants
could be the presence of other molecules during the calculation
of the interaction between a pair of molecules and also temperature
effects, as observed by Merhi et al.** and confirmed in this work.

If a system cannot be described with sufficient accuracy by
the Heisenberg Hamiltonian shown in eqn (2), the approach
used by us is bound to fail. Advanced Hamiltonians, which
include three-body terms or take anisotropies into account,* or
a spin transition model*® need to be applied in such cases.
However, despite this limitation and the inaccuracies in the
coupling constants, our approach provides excellent explanations
of the microscopic processes leading to the macroscopically
observed properties for all systems we investigated so far.

In summary, the results obtained by applying our presented
black-box method for magnetic susceptibilities agree qualitatively
with experimental data. A lot of insight can be gained into the
magnetic structure, which causes the macroscopic magnetic
behavior. Whether the results are sensitive to specific coupling
constants is determined by the way the coupling is built into the
magnetic structure. In that way the effect of a strong coupling
can be significantly diminished by a much smaller coupling with

opposing sign.
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