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Energy harvesting and conversion mechanisms for
intrinsic upconverted mechano-persistent
luminescence in CaZnOS

Bolong Huang

We interpreted the mechanisms of energy harvesting and conversion for intrinsic upconverted
mechano-persistent luminescence in CaZnOS through a native point defects study. We found that
vacancy defects such as Zn and O vacancies, as well as Schottky pair defects, act as energy harvesting
centers; they are very readily formed and very active. They are found to be extra deep electron or hole
trap levels near the valence or conduction band edges, respectively. This leads to a coupling and
exchange effect to continuously collect and transport host charges along a path via localized states
to deep recombination levels. The initiating energy barrier is small and can be overcome by ambient
thermal stimulation or quantum tunneling. Native activators such as V&', V3o, and V&iz.0s function as
energy conversion centers to transfer energy into photon emissions. This gives a solid theoretical
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Introduction

Mechanoluminescence (ML) is related to an optical phenomenon
where the charge carriers from the host lattice in a material
are usually excited with higher energy piezoelectricity in the
form of friction-related tribo-stimulation or external man-made
stress/pressure.’ ® Such materials can accommodate external
UV light (ultraviolet) photo-irradiation or near-infra-red (NIR)
photo-stimulation with a wavelength of 980 nm. The resulting
visible luminescence occurs by photon emission. The excited
charge carriers will be released for further recombination
through the delocalized conduction states of the host lattice
by a small amount of thermal stimulation or quantum tunnel-
ing effects. With accurate modulation of external mechanical
stimulation in terms of physical parameters, ML will provide a
wide platform of applications in the fields of earthquake
prediction, stability tests of large buildings or bridges, and
hand-input oriented multi-touch technology in smartphones or
other mobile devices, combined with electronics and magneto-
opt-electronics.”®

Recent studies performed by Xu et al>'® demonstrated a
substantial leap in this field, showing that some ML materials,
such as oxy-sulfides, can also be applied as persistent lumines-
cence materials through transition metal doping and have
flexible color manipulations."® This requires us not only to
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reference for developing upconverted mechano-persistent luminescence.

understand the electronic structures that originate from extrinsic
doping, but also makes it highly necessary to plot the photon-
electron dynamic transitions based on the subtle energy conver-
sion mechanisms during the process of persistent luminescence.

Currently, stronger intensity, longer time and lower cost
with flexible wavelength in persistent luminescence are increas-
ingly needed as the demands of electronic device integration,
biochemistry and materials engineering rapidly expand.'?™>?
Upconverted mechano-persistent luminescence (UMPL), which is
based on the long-decay-time phosphorescence concept,'*'>%3>*
is challenging to downscale to smaller nanosized particle syn-
thesis with faster charge response, lower cost and longer time for
luminescence or mechanical signal imaging. For a long time, the
luminescence of lanthanide oxide materials has actually been an
important subject in optical applications and spectroscopy
studies.”*® The lanthanide rare-earth (RE) ions-assisted phos-
phor luminescence technique has aroused tremendous interest
in biological, chemical and physical applications; this technique
plays a leading role in modulating luminescence properties.*
Therefore, it is a feasible technology to achieve by smart com-
binations, as explored by Pan et al.,>® based on rare-earth ion
doping. The similar host materials they used (CaZnOS) with
activated Eu®" can give high color rendering when excited by
blue LED.*'

However, this technique remains the pattern of experimental
attempts, with combinations of host materials and RE-based
activating dopant ions.*> Although over 200 combinations have
been achieved, with a steady increase in production, the perfor-
mance modulations still lack solid theoretical support and
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guidance regarding chemical trends during synthesis."> More-
over, the relationship between their native defect level-assisted
electron transport and their upconverted persistent lumines-
cence properties is also still far from being well understood,
especially at the electronic level. This knowledge gap not only
impedes the process of designing new generations of persistent
luminescence based on UMPL, but also prevents the further
development of existing technology. Further investigations to
fill this gap are of great significance to the relevant science and
technological applications.

The interplay effect of different point defect levels is a
significant issue. In a previous study,*® we found that native
point defects in the host materials not only produce a local
lattice distortion or charge density anomalies, but also induce
unique localized electronic levels in the optical fundamental
band gaps, which are either occupied or empty. Therefore, the
stabilities and concentrations of native point defects of the host
materials in persistent phosphor studies are quite important.
Our previous study shows that some lathandide oxides them-
selves present persistent luminescence, especially based on the
unusual up-conversion character of their electron transport.>*
Accordingly, this persistent luminescence is attributed to the
subtle interplay of different native point defect states, based on
the findings of our previous investigations.**3>%¢

A driving force for extensive theoretical investigation relates
to the current consensus summarized by experiments, which is
that two dominant factors determine the performance of UMPL
materials: activators and traps. The emission is controlled by
the activator, and the width of the inter-levels determines the
wavelength (photon energy). The trap center given by either
native point defects or dopants is the factor that modulates the
duration time and intensity of the persistent luminescence.
Significantly, Maldiney et al. accomplished the modulation of
the time-decay parameter of persistent luminescence®” in their
recent work, which indicated to us that it is possible to modify
the performance of these materials through systematic modifi-
cation of the depths of charge trap levels relative to the conduc-
tion band (CB) edge. Our new interest in the native point defects
of luminescent solids is firmly supported by progress.

The exact inter-levels of activators and traps within the
electronic structures suggested by theoretical study will provide
a reference for the selection of such structures with optimal
performance.*?*?%3% Therefore, it is necessary to open a
preliminary discussion on the different native point defects in
a potential UMPL to examine its energy conversion mechanism
and to provide a useful reference for further experiments and
various applications.?***3%3°

In this work, we discuss luminescence models covering the
range from the typical oxygen vacancy (Vo) related F-center to
other potential energy conversions through different optical
transitions. Due to strong electron-phonon coupling, widened
optical transitions result from the Stokes shift between the absorp-
tion and emission spectra,’® and the analytical mechanism is still
not clear by current theoretical methods. Accordingly, another
important issue to be addressed is the energy conversion-related
defect reaction model for persistent luminescence, to find the
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nearly continuous energy source supporting long-time optical
transition and lengthened electronic transport.

Our previous study shows if defect-related transitions follow
the closed cycle of the zero-phonon line (ZPL) between different
optical transition states, the optical absorption and emission
will be accomplished with a large efficiency in both optical
quantum yield and energy conversion.>* The lattice distortions
between these reactions will support electron transfer between
different optical transition levels with exact amounts of nega-
tive effective correlation energy (—U.), ideally, as shown in
Fig. 1. The native complementary charged point defects form
a time-accumulated donor-acceptor pair (DAP) and produce
band-like levels within the optical band gaps of the host
materials. They pin the activator inter-levels at specific posi-
tions of the band gap in the form of a —U,¢ optical transition
along this closed-ZPL-cycle. A similar concept has been success-
fully utilized in other solid functional materials in our theore-
tical modeling.®**'~**

The key difference between UMPL materials and conventional
PL materials is that the electrons and holes can be separated and
allocated at the deep localized levels in the optical band gap
area, due to the extra deep trap levels near the valence band
maximum (VBM) and the extra hole traps near the conduction
band maximum (CBM), as shown in Fig. 1. This leads to a
coupling and exchange effect with bounded charge from the VB
(for electrons) and CB (for holes), respectively, to further conti-
nuously transport the electrons and holes along the path
contributed by localized defect states to the deep recombina-
tion levels with a small energy barrier which can be overcome
by ambient thermal stimulation or a quantum tunneling effect.
These deep recombination levels for both electrons and holes
are given by native point defect states, which are the native
activator sites for energy conversion of UMPL. However, con-
ventional PL materials have limitations compared with UMPL,
as they usually have fewer extra deep trap levels and usually rely
on larger external energy excitations as the driving force to
transport the trapped charge carriers, such as NIR (980 nm,
~1.3 eV) or UV photo-irradiation (3 to 4 eV).

Phosphorescence has also recently been applied in visible
light communication and data transmission (Li-Fi) technology,
based on the perovskite system, in order to prolong the
light emission time.** However, as commented by Chemical &
Engineering News, the recovery times between excitation and
emission are usually too long, within ~10~°s.*” This may arise
from native point defect migration through the host lattice for
charge transport and recombination, as the time magnitude is
very similar.

Experimental section
(1) Stability of experimental synthesis

Although there have been many experiments reporting the
synthesis of CaZnOS phosphor, it is very difficult to produce
single-phase CaZnOS because stability and purity control based
on the synthesis conditions are still challenging, especially for
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Fig. 1 Schematic of the native point defect-induced energy harvesting and conversion model for upconverted mechano-persistent luminescence.

prevention of phase separation. This arises because CaZnOS
experiences a series of reversible reactions to undergo partial
decomposition, as follows:

Zn$ + CaO = CaZnOS = ZnO + Ca$ 1)

In conventional solid-state experimental synthesis, ZnS and
ZnO are found to decompose into vapor gases of S, O, and Zn
over 1100 K. For the synthesis of CaZnOS, CaCO; is a popular
precursor material for contributing the Ca and O elements.
However, this material will further accelerate these decom-
positions, as found by Hsu et al.*® Because of the reversible
reactions described in eqn (1), the four binary compounds are
relatively interacting and competing with each other. Mean-
while, the element S is more active than O, at 1200 K, and it will
quickly partially transform CaO into CasS after the extraction of
pure S through the decomposition of ZnS. Further, energy
dispersive X-ray spectroscopy (EDX) shows that the widely used
synthesis based on CaCOj; and ZnS, after Sambrook et al.,*” will
contain substantial Zn element. This reflects the existence of
phase competitions due to the different trends of chemical
potential. Therefore, it is also a necessary task to study the
native point defects of CaZnOS as well as their influence on the
electronic structures.

25948 | Phys. Chem. Chem. Phys., 2016, 18, 25946-25974

(2) Thermodynamic limits on chemical potentials of
components

The formula in eqn (1) shows a difference in the competence of
the formation enthalpies and chemical potentials of the elements
and compounds. To determine the chemical potentials of elements
in these quaternary compounds, we need to consider the experi-
mental synthesis details. It is unusual that CaZnOS is a quaternary
compound that mainly consists of two classes of binary com-
pounds (ZnS, CaO) or (ZnO, CaS). Thus, it is necessary to start
with the work of Sambrook et al. and that of others.*®
Following the approach of Ding et al.,* we expand the chemical
potentials for Ca, Zn, O and S as ca, Hzn, Ho, and us, respectively. To
prevent solid/gas precipitation of these elements in the host lattice,
they must be: pc, < 0, fizn < 0, us < 0, and po < 0. In a realistic
equilibrium growth process, the chemical potentials of each con-
stituent species can be varied; however, they are constrained by the
formation enthalpy of the host lattice in order to maintain a stable
CaZnOS compound. Thus, the first requirement is as follows:
UHca t Uzn + Uo t Us = Ucaznos = —11.29 eV (2
Hcaznos 1s actually also constrained, to prevent CaZnOS from
undergoing reversible or partial decomposition into ZnO, ZnS,
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CaO, and CaS. These four binary compounds, with further
consideration of their decomposition and substitution reac-
tions, are also bound by thermodynamic relationship formulas,
as follows:

Hzn + Mo < Hzao = —3.53 eV
Hzn + Hs < fizns = —3.00 eV
Hca + o < Heao = —6.57 eV

Hca + Hs < ficas = —5.01 eV

Eqn (2) and (3) also indicate that the differences in their
standard formation enthalpies may lead to different stabilities
under high temperature synthesis conditions. The afore-
mentioned limitations of the chemical potentials can thus be
utilized to discuss the stable area for CaZnOS with respect to
the constituent chemical potentials of ica, tzn, to, and us,
respectively, as constraints (shown in Fig. 2). Fig. 2(a-c) shows the
stable area for different combinations of constituent chemical
potential limits. Fig. 2(d) also shows a very limited stable area in
three-dimensional view with respect to fica, fizn, o @S constraints,
in agreement with the experimental synthesis of CaZnOS dis-
cussed by Lian et al*® Because Zn and S are relatively active
compared with Ca and O, we thus list the limits of the constituent
chemical potentials as S-rich and Zn-rich, respectively, as shown
in Table 1.
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Calculation setup. We modeled CaZnOS using the lattice
within the P6;mc space group, which has the same symmetry as
wurtzite ZnO. The lattice relaxation of CaZnOS at the ground
state was accomplished at both the PBE and PBE+U levels by
CASTEP code®® because the PBE level, as the first Jacob’s ladder
in DFT, has been recognized to be reliable for structural relaxa-
tion and cell optimization of d or even f-orbital based solids,”* ">
irrespective of ultrasoft or norm-conserving pseudopotentials.
However, the electronic structures are key dominant features
that are usually underestimated. To improve the accuracy of the
electronic structure calculations, the Hubbard U parameter was
induced in the PBE+U calculations.

We found that the electronic states in the optical funda-
mental gap are less sensitive to the nonlinearity of Hubbard U
parameters. Therefore, we used the Anisimov-type rotational-
invariant DFT+U method.>® To minimize the effect of the
localized hole states produced by the 2p orbitals of the O sites,
the self-consistently determined Hubbard U potentials were also
applied to the O-2p orbitals, which have reached a consensus®>
in many oxide materials. Thus, it is necessary to consider both
self-energy corrections on semicore orbitals for oxides.>*>%>°

However, the non-self-consistently determined Hubbard
U parameters usually induce an extra error in the lattice due
to the non-zero residue of the second-order partial derivative to
the charge density. It is necessary to consider our established
self-consistent determination of the U parameters on the

Fig. 2 Calculated phase diagrams with respect to the chemical potentials of Ca (uca), Zn (uzn), O (o) and S (us).
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Table1 Calculated chemical potentials of elements under Zn- and S-rich
chemical potential limits

Hca Hzn Ho HUs
Zn-rich —3.04 0.00 —6.28 -3.00
S-rich —6.39 —-1.97 —1.56 0.00

35,36,52,58°60 i1y order to minimize the error

electronic structures
in the lattice.

We chose the (3s, 3p, 3d, 4s) states as the valence states
of Ca, (3d, 4s, 4p) for Zn, (3s, 3p) for S, and (2s, 2p) for O. We
used OPIUM code in the Kleinman-Bylander form of norm-
conserving pseudopotential®® with non-linear partial core
correction®® to minimize the systematic error due to overlap
of the atomic core-valence electron densities. Further, the RRK]J
method was chosen to optimize the basis sets and the ionic
minimization of the pseudopotentials.®® The norm-conserving
pseudopotential was chosen because it can reproduce the
all-electron behavior for outer shell valence electrons with
|S-matrix| = 1 compared to ultrasoft pseudopotentials.®*®* As
all of the constituent elements (Ca, Zn, S, and O) are light
elements, the spin-orbit coupling effect was not implemented
over the calculations. The kinetic cutoff energy was 850 eV,
which expands the valence electron states in a plane-wave basis
set. To prevent the charge-spin out-sync sloshing effect and
guarantee the electronic minimization and convergence, the
ensemble DFT (EDFT) method of Marzari et al®® was used to
solve the Kohn-Sham equation. The reciprocal space integration
was performed by k-point sampling with a grid of 10 x 10 x 4 k
points in the Brillouin zone of the CaZnOS unit cell, and a grid of
3 x 3 x 2 for defect electronic structure calculations in super-
cells. We further selected the (1/4, 1/4, 0) special k-point®” in the
simple cubic 3 x 3 x 1 supercell. This converges the total energy
to under 5.0 x 10”7 eV per atom. The Hellmann-Feynman force
on each atom was converged to lower than 0.01 eV A™'. The
geometry optimization used the Broyden-Fletcher-Goldfarb-
Shannon (BFGS) algorithm through all bulk and defect supercell
calculations.

Another key setting is the pseudopotential for Ca. We
generated the norm-conserving pseudopotential orbitals of
3s?3p°4s® for Ca using OPIUM code. The 3d° configuration was
also considered in the generation. This does not change the
valence distribution but will increase the accuracy of the valence
electron interaction of Ca. In real DFT calculations, the 3d° and
4s” orbitals of Ca will have a certain overlap with an occupancy of
0.4 to 0.5 e through Mulliken analysis. This led us to consider an
on-site Hubbard U energy reserved for this fractionally occupied
empty 3d orbital for Ca. This consideration of 3d° (0 < & < 1)
is also verified in the electronic structure calculations and
experiments for CaBg, which is a new semiconductor for spin
electronics.®®*7° In that compound, the structure shows that the
3d orbital of Ca is hybridized with the 2p orbitals of the anions,
affecting the band gap size of the Brillouin zone.”* For the total
plane wave basis set for Ca, we used 850 eV, which was
suggested by Clark et al. for similar norm-conserving genera-
tions.”* With our self-consistent determination process,** 34239
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the on-site Hubbard U parameters are 2.50 eV and 13.45 eV for
the 3d orbitals of Ca and Zn, respectively, 2.87 eV for 3p of S,
and 3.44 eV for 2p of O.

To calculate the defect formation energies at different
charge states (q), we consider that the overall supercell was
established and remained constant, based on the ground state
relaxed primitive cell, to avoid the thermodynamic effect of
enthalpy changes by cell variations. The formation energy of a
targeted defect (H,) at the specific charge state g can be
described as a relationship of the positions of Fermi energy
(Eg) and the chemical potential Ax of species with defects o,
which is shown as follows:

Hy(Ep,p) = [E; — En) + q(Ey + AEg) + Z”a (19 + Ap,),

(4)

where E; and Ey are the total energy of a relaxed defective lattice
in the charge state g and an ideal host lattice at the ground state,
respectively. AEg in eqn (4) is the change of the Fermi energy with
respect to the valence band maximum (VBM, Ey = 0), and 1, is the
number of atoms of constituent element o chosen as targeted
defect sites; u is the referenced chemical potential, based on the
method used in the work of Zunger et al.”®

Results and discussion
Bulk CaZnOS

The crystal lattice of CaZnOS with a space group of P6;mc has
been studied by many groups. It was initially obtained by
Sambrook et al. through the synthesis of CaCO; (decomposed
to Ca0) and ZnS (reaction of Zn metal and S).*” It is non-
centrosymmetric, like wurtzite ZnO, and its topology seems to
be formed by similar compositions of CaO and ZnS in the forms
of two puckered hexagonal layers, respectively. It is reported
that the structure has good applications in piezoelectric lumi-
nescence and excellent second harmonic generation (SHG)
capabilities due to the polar properties that are intrinsically
induced by its noncentrosymmetric lattice symmetry.*”””* We
recall that wurtzite ZnO has the same symmetry space group as
P63mc. The 4-fold tetrahedral coordination of both the Zn and
O sites in ZnO results in this noncentrosymmetric structure;
consequently, ZnO possesses intrinsic piezoelectricity and pyro-
electricity. This feature further induces a polar surface in ZnO;
the most common polar surface is the basal plane, like ZnO
(0001), which has been widely studied.>*”>”® Therefore, we can
have a preliminary understanding of the piezoelectric proper-
ties of CaZnOS, and its coefficient is found to be three times
larger than that of wurtzite Zn0."’

The crystal lattice parameters of synthesized CaZnOS were
found to be @ =3.76 A and ¢ = 11.40 A.*” The relaxed structure of
the ground state by our DFT+U calculation shows lattice para-
meters of a = 3.76 A and ¢ = 11.52 A, with a very small error
of 1%. Electronically, it has wide band gap semiconductor
behavior, with a direct gap of 3.71 to 4.16 eV. From Fig. 3, the
electronic band structure calculations based on the optimized
cell give a direct band gap of 3.895 eV, which is very close to the
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Fig. 3 Band structure and total density of states (TDOSs) of CazZnOS.

data of 3.88 eV by the diffuse reflectance spectrum experimen-
tally measured by Zhao et al.*® This calculated optical funda-
mental band gap is larger than the value of 3.71 eV found by
Sambrook et al.,*” close to that of 4.0 eV found by Hintzen et al.,”’
and much lower than that of 4.16 eV found by Wang et al''
Therefore, our DFT+U calculation with ab initio-determined
Hubbard-U parameters for fully-occupied Zn 3d'°, as well as the
p orbitals for the S and O sites, are self-consistent and reliable, as
has also been illustrated in our previous work,?3 36:°%:53,59,78

Fig. 3 also shows the orbital components of CaZnOS in
TDOS. We can see that the top of the valence band consists
of levels from the O-2p and S-3p orbitals. The lower conduction
band is contributed by the Zn-4s and Ca-3d orbitals. The Zn-3d
fully occupied level (3d'°) is overlapping with the $-3s filled
orbitals and remains in nearly the same energy range, while the
O-2s orbital level remains lower.

Currently, due to the lack of available valence band X-ray
photoemission spectrum data (XPS) for CaZnOS by experiment,
we can only compare the qualitative trend result with BaZnOS,
which has a similar chemical trend to CaZnOS. As we know, the
optical fundamental band gap between CaZnOS (3.71 eV)*” and
BaZnOS (3.91 eV)’® has a relatively small difference. Clarke
et al. have performed a combined study of DFT calculations
and XPS measurements on BaZnOS.”® In their valence band
measurement, the top valence band is contributed by the O-2p
and S-2p orbital levels and covers the related valence band
width of about 6 eV below the VBM (valence band maximum)
and above the t,, component of Zn-3d'°. The repulsion between
tog Of the Zn-3d"® and O-2p levels is usually underestimated in
LDA and overestimated by hybrid functionals. Therefore, the
band gap of 4.5 eV for BaZnOS estimated by Clarke et al is
overestimated by B3LYP. From the measured valence XPS,
the peak of Zn-3d'® is located around 10 eV below the VBM
in the BaZnOS system.”® From our calculated band structure
and density of states, the Zn-3d"° level is at about 11 eV below
the VBM, in good agreement with the trend found by XPS
experiments.”’

In the last section of this paper, we will also compare the X-ray
diffraction (XRD) data between our simulated defective structures
and experimentally synthesized samples (from two different groups).
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This will more clearly demonstrate the influence of the defects
in the structure found by XRD.

For the bulk formation enthalpy of crystal CaZnOS, we
have already shown that the calculated formation enthalpy of
CaZnOS is —11.29 eV in the Experimental section, considering
eqn (2) and (3).

S vacancy (V)

The local structure of the S sites in the lattice is 6-fold
coordinated, with 3 long S-Ca bonds with bond lengths of
3.036 A and 3 short S-Zn bonds with lengths of 2.382 A, 0.4%
longer than the experimental data.*” The Vs in the neutral state
left two electrons bounded at nearby cation sites, such as Ca,
Zn, or both. We accordingly studied its three different charge
states (0, +1, and +2).

Fig. 4(a) shows the TDOSs of CaZnOS with Vg in the 0, +1,
and +2 states. We can see that it is a deep donor-like trap center
for VS in CaZnOS. We found that the behaviors of the defect
levels are very different from the Vg in CaS based on our
previous work.*® The formation of V¢-induced lattice relaxation
gives two localized hole states next to the nearby cation sites,
0.35 eV and 0.72 eV below the CBM, respectively. The localized
electronic defect levels of V& show antiferromagnetic (AFM)
behavior with 2.22 eV below the lowest localized hole state,
which also denotes the highest occupied level (0 eV in Fig. 4(a))
of the system. For the Vg, there are five localized hole states
with ferromagnetic (FM) behavior in the band gap. The spin-up
hole states are 0.31 eV and 0.60 eV below the CBM, respectively.
The third hole state is spin-down next to the localized electronic
state (0 eV), with energy intervals of +0.76 e€V. The remaining
hole states (the fourth and fifth) are 0.17 eV and 0.50 eV below
the CBM with spin-down, respectively, and are similar to the
hole states with spin-up next to the CB edge. The localized
electronic state given by V§ is 1.86 eV below the lowest localized
hole state. For the V&" in CaZnOS, there are only two pairs of
spin-aligned levels with an energy interval of 0.95 eV with the
highest hole levels 0.16 eV below the CBM, where the VBM acts
as the highest occupied level (0 eV) under the +2 charge state.

Fig. 4(b) shows the orbitals for localized electrons and holes
that are induced by the Vg in CaZnOS. We see that the local
lattice relaxations at the ground state around the V; in different
charge states are very different. This is rather evident in charge
states 0 and +2, which are attracted to each other and repulsed
by each other, respectively, as they move forward. Within the
ground state, we confirm that the localized electrons left by
Vs are indeed localized at the nearby Zn sites instead of the Ca
sites. Meanwhile, the electronic state is shared within the three
Zn sites in both the Vg and V§ states. However, the localized
hole states are spin-polarized and are found be complicated
when given by Vg, especially in Vg. This scenario is rather
different from our previous work on the Vg in Ca$*® and from
other similar anion vacancies, such as Vg in oxides.**** The
first hole state below the CBM remains at two Zn sites and the
second hole below the CBM localizes on a Zn site, sharing
between the other two Zn sites (for either Vg or Vg). The third
hole given by Vg in the spin-down state is shared between the
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three Zn sites. V3" induces two types of localized holes which
have similar orbitals to VS and V. These as-shown localized hole
states arise because of the local distortions of Zn-sites induced
by the perturbed hole states (PHS) next to the CB edge.?**'

The formation energy calculation in Fig. 4(c) shows that the
S vacancy (Vs) in CaZnOS possesses negative effective correla-
tion energy (negative-Uegr) of —0.84 eV, which is exothermal for
the defect reaction process of 2V§ — V3 + V&' and is nearly
undetectable by ESR measurement at a realistic concentration.
This implies that the dominant charge states of Vg in CaZnOS
are 0 and +2. The V§ state can temporarily exist in the host
lattice due to external UV photo-irradiation or other excitations.
The neutral state V2 has formation energies of 5.01 eV and
2.01 eV under S-rich and Zn-rich chemical potential limits,
respectively. The thermodynamic transition level of Vg is
2.36 eV for (0/2+) above the VBM, which indicates that it is
a deep donor-like trap center that binds the two localized
electrons left by neutral V. Accordingly, Vg here is unlikely to
be a F-center, as F" does not stably exist in the host lattice, due
to the evident lattice relaxations of neighboring Zn sites given
by negative-Uegs.

0 vacancy (Vo)

Fig. 5(a) shows the TDOSs of CaZnOS with V,, in the 0, +1, and
+2 states. We find that it is also a deep donor-like trap center,
and it is slightly deeper than Vg. This may arise because the
localized hole states ascend toward to the CBM or because the
Coulomb repulsive potentials between localized electrons and
the CB edge states become stronger. We see that the local
lattice relaxation given by Vo induces six localized hole states
that are spin-paired near the Ca and Zn sites, overlapping with
the CBM; these are more than the states observed in Vg. These
three pairs of localized holes are 0.15 eV, 0.22 eV, and 0.49 eV
below the CBM. The localized electronic states left by neutral
Vo (V3) in CaZnOS are 2.46 €V below the CBM, with similar AFM
behavior. Vg, ionizes one electron out from the site and produces
one extra localized hole state; meanwhile, the left electron is
localized 2.90 eV below the lowest localized hole state. This is
different from the case of Vg, as V5 has an electronic state 0.54 eV
further away from the CBM, while Vg is 0.36 eV further away,
which is much closer to the lowest localized hole level. Three
of the subsequent four localized hole states induced by Vg are
0.20 eV, 0.30 eV, and 0.45 eV below the CBM, respectively. The
fourth one, in the spin-down state, has energy intervals 1.15 eV
higher than the localized electronic level. The remaining three
localized hole state levels are 0.14 eV, 0.25 eV, and 0.52 eV
below the CBM, respectively, in the spin-down state. For Vg,
there are only two pairs of spin-aligned levels, with an interval of
1.47 eV, and the highest localized hole levels are 0.26 eV below
the CBM. This arises because V3’ ionizes all of the electrons, and
three localized hole states degenerate into a triplet state next to
the CB edge.

Fig. 5(b) shows the localized orbitals of localized electrons
and holes induced by Vo in the relaxed host lattice. The
relaxations on the Zn site at 0 and +2 are more obvious than
those on the Ca sites near the Vg, site. The relaxed Zn site moves
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downward to the center of the Vg site. The localized electrons
left by VO are localized around the Zn site and the three Ca
sites. The three localized holes are mainly distributed around
the three Ca sites, except the first hole, which remains at the
distorted Zn site. The second hole is shared by two Ca sites,
while the third hole is shared by three Ca sites, respectively. In
the case of Vg, the electronic orbital is similar to that of V3 with
slight distortion, and the Zn site has almost no relaxation. The
three localized holes have nearly the same distribution as in V9,
while the second hole is shared between two Ca sites and the
Zn site. The deeper fourth hole remains near the center of Vo,
shared between three Ca sites and the Zn site. For V3, the first
localized hole also remains at the center of Vg, while the second
hole near the CBM only sits at the Zn site and acts like a back-
bonding orbital.

The formation energy of Vo, shown in Fig. 5(c), shows that it
is also a negative-U.g defect, with —0.20 eV. This indicates that
Vs in the host lattice has only 0 and +2 as the dominant charge
states, similar to Vg. The formation energies of neutral Vg are
4.95 eV and 0.23 eV under the S-rich and Zn-rich chemical
potential limits, respectively. We found that under the S-rich
limit, the formation energies of Vo and Vg are nearly the same,
while V, is much lower than Vg (0.23 eV vs. 2.01 eV) under
the Zn-rich limit. This indicates that Vo is more easily formed
than Vg, even under S-poor chemical conditions, and is more
dominant as a native point defect in the CaZnOS lattice. The
thermodynamic transition level is 2.45 eV for (0/2+) above the
VBM, which is also a deep donor trap for the localized electrons
at the V§ site. Thus, Vo has similar electronic behavior to Vg;
however, it induces more localized hole states. Moreover, it
cannot be the F-center because the formation of F* has a higher
energy cost.

Interstitial S (S;)

As we know, there are many possible sites where excess S can
act as an interstitial in the CaZnOS host lattice, as well as O
interstitial defects, which we will discuss in the following section.
This arises because the local structures are very different from the
conventional ZnS or ZnO structures, as analyzed by Sambrook
et al”’ Considering the lattice character, we examined five
possible S; sites in CaZnOS. These sites may act as acceptor
traps to capture electrons and release holes.

Fig. 6(a) shows the TDOSs of the five S; in CaZnOS in the
neutral state (S{). We can see that they have almost identical
TDOSs. Their localized electronic states are about 0.2 eV higher
than the VBM and 0.4 eV below the CBM for the localized holes.
Further formation energy calculation shows that S;; has the
lowest formation energy in the neutral state (S3).

Fig. 6(b) illustrates the TDOSs of S;; in charge states of 0, —1,
and —2. In the neutral state, there are four localized electronic
states, two of which overlap, with an interval of 0.21 eV from
peak to peak. The highest localized electronic state remains at
0.68 eV higher than the VBM and 3.60 eV below the localized
hole state, while the hole sits 0.26 eV below the CBM. For Siz;, an
excess electron remains 1.58 eV higher than the previous two
localized electronic states, while the previous two electronic
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states are almost fixed to a position 0.68 eV higher than the VBM.  an interval of 1.15 V. For S, two excess electrons terminate the
The excess electron also induced an empty state (hole level) with  excess hole level near the mid-gap and show three overlapping
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The dashed line denotes the highest occupied level for electrons. (c) Localized electron and hole orbitals at the relaxed Siz site with side and top views
(Zn = gray, O =red, S = yellow, Ca = green). (d) Formation energies of S;z under S- and Zn-rich chemical potential limits. (e) Summary of the formation

energies of five possible S; sites under S- and Zn-rich limits.

localized electronic states with 0.03 eV and 0.24 eV as intervals,
respectively. The lowest electronic level is 1.16 eV higher than
the VBM.

Fig. 6(c) shows the orbitals of localized defect levels induced
by Siz in CaZnOS. As we know, the anion interstitial defect in
sulfides or oxides usually forms a local peroxide structure. We
can see from Fig. 6(c) that the S interstitial (S;) induces evident
lattice relaxation and reconstruction near the S;; sites, with
formation of a homopolar S-S bond. The p-r orbitals localize
along this S-S bond, induced by the relaxed S; site at the ground
state. S in CaZnOS has two localized electronic states,

This journal is © the Owner Societies 2016

which are spatially distributed between two S sites connected
by S-S bonds, respectively. The localized hole level arises from
the p-n* antibonding orbital longitudinally along the S-S bond.
Siz induces different local lattice distortions as strong electron-
lattice coupling. The electronic orbitals become polarized along
the distorted lattice sites. The localized electronic and hole
states within the mid-gap area have nearly the same orbitals,
showing a strong coupling effect for these polarons. For S,
it can be seen that the two captured electrons are localized at the Sj;
site itself. The two excess electrons which have been captured and
localized actually generate three different localized p-m orbital
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components on the S;; site, with a slight distribution on nearby
S and O sites.

The formation energies of S5 in CaZnOS are 1.73 eV and
4.73 eV respectively under the S-rich and Zn-rich chemical
potential limits, as shown in Fig. 6(d). S{; shows a negative-Ueg
behavior with —1.97 eV. The transition level of the state (2—/0)
of Si; is 1.89 eV above the VBM. This indicates a deep acceptor
trap whose level is at the mid gap. We find that all of the
S interstitial defects present similar strong electron-lattice
coupling effects with negative-U.¢ within the range of —0.23 eV
to —1.97 eV, as shown in Fig. 5(e). We further illustrate the related
transition levels distributed within the range of 1.80 to 2.86 eV
above the VBM.

Interstitial O (O;)

O; in CaZnOS within different local bonding and charge states
actually induces more complicated localized electronic and hole
states coupling with nearby lattice sites than interstitial S. As
illustrated in previous studies, O; in metal oxides such as CeO,>*
and Er,05** forms peroxides with O-O homopolar bonds, which
localizes m-electrons along these bonds surrounding the O; site.
Here, we find that an S-O bond is formed for some O;, depend-
ing on the different local positions of interstitial O.

As shown in Fig. 7(a), in the neutral state of O;, the occupied
defect levels remain closer to the VBM than in S;. Other
localized levels sit 5.8 to 6.2 eV below the VBM. The localized
hole levels remain deeper or shallower, from 0.2 eV to 1.0 eV, in
contrast to the states produced in S;. By calculating the for-
mation energies, O;, is most likely to form because it has very
low formation energy, where O; is surrounded by three Ca sites
and one S site. This strong Ca-O bonding leads to an evident
relaxation process which is nearly spontaneous and provides
local stabilization.

Fig. 7(b) shows that in the neutral state of Oy, there are four
localized electronic states; three remain near the top of the VB,
about 0.31 eV higher than the VBM, while the fourth state is
below the VB. The total weighted area is about 6.3 localized
electrons, which is consistent with the six total electrons
induced in the host lattice produced by the O interstitial defect.
The Oy, in the lattice has a clear localized hole state in the band
gap, 1.75 eV higher than the localized electronic state or
3.36 eV above the VBM. The other occupied electronic states
are localized near the VBM, about 0.2 eV higher. The localized
VB edge states show minor ferromagnetic behavior with spin-
polarization. The 0% in the lattice shows that all of the excess
electronic states are localized within the band gap, 0.90 eV and
1.63 eV higher than the VBM.

Fig. 7(c) shows the orbitals of localized electronic and hole
levels (occupied and unoccupied, respectively) within different
charge states for O;. The electronic orbitals localized along the
O-S bond present a coupled m-orbital for the state below the
VBM, while the VB edge states show two individual localized
n-orbitals with two different directions. The localized hole state
of 0P, gives hybridized orbitals between d,. and p-n orbital
components from Ca and S sites, respectively. In the Oj, state,
the O-S bond has been broken and has pushed the S site
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downward to form a vertical Ca-S bond. The p-n orbitals
become more localized individually on the O; and S sites, with
two different directions; meanwhile, the localized hole states
are redistributed vertically along the O;-S-Ca bonds. The OF; in
the lattice has three different localized electronic states; two are
localized between O; and three Ca sites with an O-Ca bond. The
third one produces weak n-n coupling given by the p-n orbitals
of the O; and S sites, respectively.

We consider the formation energy of O;, shown in Fig. 7(d)
and (e). We found that O;, has formation energies of 0.02 eV
and 4.74 eV under the S-rich and Zn-rich limits. The thermo-
dynamic transition level of (2—/0) of Oy, is 2.29 eV above the
VBM and acts as a deep acceptor trap center in the lattice. In
Fig. 6(e), we show that all of the possible O; sites in the lattice
present negative-Ueg effects. We found that the transition level
of (2—/0) varies from 0.70 eV to 2.29 eV above the VBM,
dependent on the positions of O;. This shows that Oj, is
energetically favorable to localize and stabilize within the cage
of (3Ca + S), where the strong Ca-O bonds will enhance the
charge transfer to stabilize the system. It is also consistent that
O has relatively small ionic radii compared to S. Thus, it costs
less energy for O to penetrate the ideal lattice and stabilize near
the Ca and S sites.

Calcium vacancy (Vc,)

We turn to cation-related defects. We firstly studied the Ca
vacancy (Vca). The neutral V¢, in CaZnOS (V,) left two localized
holes occupying nearby O-sites. This arises because the forma-
tion of a cation vacancy normally induces electron-hole separa-
tion while suppressing the occupied electronic states downward
to lower energy levels, simultaneously resulting in localized
hole states within the band gap.

The single particle levels in the form of TDOSs are shown in
Fig. 8(a), which confirms the deep localized hole trapping levels
at about 1.68 eV above the VBM, which are both spin-down.
These holes mainly occupy the p-orbitals of nearby O-sites. Due
to the relaxation of O-sites near the Vg, the strong coupling
between p-electrons and the lattice will also affect the occupied
p-orbital levels and the consequent redistribution of the orbital
charge densities near the defect sites and relaxed lattices. There
are six localized electronic states; two remain 5.4 eV and 5.6 eV
below the VBM, while the other four states remain 0.06 eV,
0.11 eV, 0.28 eV, and 0.32 eV above the VBM, respectively. For
the Vg, in the lattice, one of the localized hole states was
released by capturing an electron. The remaining holes are
localized 1.57 eV above the VBM. Due to the local lattice
relaxation, the p-orbital levels on the local under-coordinated
S and O sites are re-aligned, as shown in Fig. 8(a). We can see
that one of the low-lying p-orbital levels is pushed to the highest
occupied state, and the occupied levels above the VBM are
updated as 0.07 eV, 0.08 eV, 0.28 eV, 0.32 eV, and 0.36 €V,
respectively. Through further passivation of the hole, the V¢, in
the lattice pushed all of the localized p-orbitals on the nearby S
and O sites toward the highest occupied range above the VBM,
with energy intervals of 0.06 eV, 0.08 eV, 0.24 eV, 0.28 eV,
0.34 eV, and 0.38 eV, respectively.
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energies of five possible O; sites under S- and Zn-rich limits.

Fig. 8(b) shows the localized orbitals of the corresponding defect
states induced by the V¢, in the lattice at different charge states.
We illustrated that both the positions and directions of the
localized electronic orbitals are varied at the different energy
levels discussed above. At the neutral charge state, two localized
holes individually remain at the p-orbitals of the under-
coordinated O sites neighboring Vg,. Similarly, Vg, shows a

This journal is © the Owner Societies 2016

single hole state localized on one of the O sites near the Vc,.
The localized electronic orbitals present subtle electron-lattice
coupling at different energy levels. We found that some states
about 3.2 eV below the VBM induced differences in the TDOSs;
however, we did not observe any localized orbitals.

The formation energies of the V¢, in the lattice within different
charge states are shown in Fig. 8(c). The neutral state of V¢, (V&)
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electrons. (b) Localized electron and hole orbitals at the relaxed V¢, site (Zn = gray, O = red, S = yellow, Ca = green). (c) Formation energies of V, under

S- and Zn-rich chemical potential limits.

costs 3.88 eV and 7.22 eV under the S-rich and Zn rich limits,
respectively. It has a very small negative-Ue effect of —0.05 eV.
This arises because the transition levels between the states of
(2—/-) and (—/0) are very close. Meanwhile, the degrees of
lattice relaxation near V¢, within three different charge states
(0, +1, and +2) are nearly the same. The thermodynamic transi-
tion level of the state (2—/0) locates inside the VB, which is

25958 | Phys. Chem. Chem. Phys., 2016, 18, 25946-25974

0.51 eV below the VBM, or Ey — 0.51 €V (Ey = 0 for VBM). This
indicates that the trap level of the Vc,, acting as an acceptor
trap, is buried in the VB, which releases the free holes.

Zinc vacancy (Vz,)

The Zn vacancy (Vz,) in the lattice induces more complicated
electron-hole separation and interactions. The local lattice
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geometry is different from the Vg, in the lattice due to the different
local coordinations between the Zn and Ca sites. V, only has three
Ca sites and one O site nearby. Thus, the localized electronic state
arrangement is different and degenerates, as the number of under-
coordinated O-sites is lower than that in the case of Vc,.

The TDOSs of CaZnOS with Vg, have some differences
compared with the lattice with V,. As shown in Fig. 9(a), there
are two localized hole states within the band gap in the neutral
state (Vo,), 1.22 eV and 2.19 eV above the VBM, respectively.
Their spin states are all spin-down and un-paired. There are five
localized electronic states induced by the relaxed lattice near
the V,,; three are 5.05 eV, 3.37 eV, and 3.27 eV below the VBM,
while two are 0.16 €V and 0.20 eV above the VBM. For the V, in
the lattice, the alignment of the localized electronic states is
nearly unchanged; three are 5.46 eV, 3.59 eV, and 3.55 eV below
the VBM, and two are 0.16 €V and 0.50 eV above the VBM. We
can also see that the electronic states above the VBM become
more localized toward the levels deep in the gap. One of the
localized hole states is released, and the other one remains at
1.74 eV above the VBM. The scenario is more evident in the
TDOS of CaZnOS with V2, ; the localized electronic states remain
above the VBM, with energy intervals of 0.09 eV, 0.15 eV, 0.21 eV,
0.50 eV, and 0.63 eV, respectively.

We further examined the localized orbitals of the electronic
and hole states given by Vz, as well as the relaxed lattice sites,
as shown in Fig. 9(b). We can see that the shallower localized
hole state in CaZnOS with V2, is at the S site near V,,, while the
3-fold coordinated O site has another hole state deep in the mid-
gap. In CaZnOS with Vz,, the remaining localized hole state is
localized near the mid-gap, with 0.45 eV movement toward to the
VBM due to the Coulomb attractive potentials from localized
electronic states at the relaxed lattice sites neighboring V.

The formation energy calculations of V, in CaZnOS also
show differences compared to Vg, in the lattice. We can see
from Fig. 9(c) that U is positive (+0.61 eV). This arises because
the local lattice sites have minor relaxation near Vg, within
different charge states. The thermodynamic transition levels
of the states (—/—0) and (2—/—) remain at 0.54 eV below and
0.07 eV above the VBM, respectively. This indicates that V, will
cause the lattice to capture electrons and release free holes
ranging from the top to deep inside the VB, which will con-
tinuously transport the free holes to the VB edge for excitation
into or across the optical band gap.

Calcium interstitial (Ca;)

Excess Ca in CaZnOS acting as an interstitial defect (Ca;) may be
a donor-like source center to release excess electrons into the
lattice. Neighboring anion sites such as O and S will be vastly
affected, resulting in bonding hybridizations and lattice reconstruc-
tions. The local distorted sites will also influence the electronic and
hole states in the band gap or edges that accommodate the
charge carriers.

Fig. 10(a) shows that the neutral Ca; (Ca) in CaZnOS
induces an electronic state that is localized in the band gap
2.43 eV above the VBM. The Caj in CaZnOS in the lattice gives a
localized hole state 0.53 eV below the CBM; the other localized
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electronic states remain 3.05 eV higher than the VBM. The
Caf* in CaZnOS ionized two excess electrons and produced very
shallow hole states that overlap with the CB edge, remaining
right below the CBM.

We found that the Ca; in the lattice induced relaxation,
leading to a large displacement of the adjacent Zn site. The
distorted Zn site shows electronic orbital localization at the
0 and +1 states, as shown in Fig. 10(b). The Ca}" induced two
localized hole states sitting on the Ca; and adjacent Ca sites
(from the lower layer). We can see that the hole orbitals consist
of the d orbitals with components of hybridized d,» and d,._»
remaining at the Ca; sites. This arises because the 3d orbitals of
Ca* ion are not ideally empty and partially overlap with other
orbitals, acting like a d-acceptor center, as reported previously.**”*

For the formation energy calculation in Fig. 10(c), we see that
the lowest formation energies of Ca; among different possible
local sites are 8.72 eV and 5.37 eV under the S-rich and Zn-rich
limits, respectively. We also found that this interstitial defect
also presents a negative-U.g effect, with an energy of —1.68 eV.
This arises because the incidence of Ca; and results in vast lattice
relaxation toward to the ground states at the charge states of
0 and +2. Therefore, Ca; in CaZnOS only has two different
possible charge states (0 and +2, respectively).

Zinc interstitial (Zn;)

The Zn interstitial (Zn;) in the CaZnOS lattice has slightly
different electronic properties. As shown in Fig. 11(a), the TDOS
calculation tells us that neutral Zn; (Zn{) induces additional
electronic states localized in the band gap 2.74 eV above the
VBM, while also providing localized hole states 0.20 eV below
the CBM. The Zn{ in the lattice gives one shallow electronic state
localized 1.00 eV below the CBM, with only one localized spin-down
hole state remaining 0.59 €V below the CBM. The Zn" in the lattice
does not provide any localized defect levels in the band gap, nor
any localized hole states in the band gap or edges, as it ionized two
excess electrons originating from the 4s” orbital. Due to the fully-
occupied 3d"° orbitals 0.30 eV below the VBM, Zn*" is less likely to
generate a d-acceptor center than the Ca; in the host lattice.

Through further study of the localized orbitals, as shown in
Fig. 11(b), we found that the localized electronic state at the
neutral state is localized at the Zn; site and spread vertically along
the S-Zn-Ca bonds, which is mainly the sp orbital hybridization.
We can also see that the two localized hole states remain along
the Zn-Zn homopolar bond. For Znj, the localized electrons and
holes remain at the Zn; site. There is no orbital sitting at Zn?, as
there are no localized states within the band gap at this charge
state in the host lattice.

Zn; has different formation energies when it is located in
different lattice sites. As we found, the difference is as high as
1.77 eV. We can see from Fig. 11(c) that the lowest energy Zn; in
the lattice also presents a negative-U.s behavior, showing a
strong electron-lattice coupling, and the energy scale is about
—0.48 eV. The lattice relaxation mainly occurs at Zn; and the
nearby Zn, S and Ca sites. The formation energies of Zn{ in the
lattice are 6.01 eV and 4.04 eV under the S-rich and Zn-rich
limits, respectively. The thermodynamic transition level of the
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Fig. 9 (a) TDOSs of Vz, in neutral (V9,), singly negative (Vz,), and doubly negative (V2;) states. The dashed line denotes the highest occupied level for

electrons. (b) Localized electron and hole orbitals at the relaxed Vy, site (Zn =
S- and Zn-rich chemical potential limits.

state (0/2+) is 4.00 eV above the VBM, which actually slightly
overlaps with the CB edge or is buried in the CB. This indicates
that Zn; is a possible donor-like center that readily releases free
electrons. Due to the negative-Ues effect, the possible charge
states of Zn; are 0 and +2 in the host lattice.

25960 | Phys. Chem. Chem. Phys., 2016, 18, 25946-25974

gray, O =red, S = yellow, Ca = green). (c) Formation energies of Vz, under

Anion Frenkel defects (a-Fr) and Schottky defects (STK)

Based on the aforementioned native point defects, we further
examined the charge complementary pair defects, which are
usually a class of lattice distortions induced by conditions of
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external thermal fluctuation. The dominant types of these
defects are Frenkel (Fr) defects (including cation and anion
Fr defects) and Schottky (STK) defects. Among these types of
defects, the anion Fr (a-Fr) and STK defects are the main pair
defects that affect the electronic and optical properties of
CaZnOS. This arises because the cation Fr (c-Fr) requires more
formation energy to generate the interstitial cation, as dis-
cussed above. Meanwhile, the formation energies of the cation
vacancies are not primarily low compared with those of the
anion vacancies. This may result from the differences in the ionic
radii of the elements. For further consideration, two different
kinds of a-Fr will be considered; one is O-related, while the other
is S-related. Meanwhile, for the STK defects, we specified five
different kinds, which are V,.0, Vzns, Vcaos Veas, and Veaznoss
respectively.

This journal is © the Owner Societies 2016

We summarized the formation energies of these defects in
neutral states under the S-rich and Zn-rich limits, as shown in
Table 2. We found that in the a-Fr pair defects, the O related a-Fr
has lower formation energy (2.39 €V per O defect site) than the
S a-Fr (3.32 eV per S defect site), and these remain constant under
both chemical potential limits. The Vo has the lowest formation
energy under the Zn-rich limit, which is 0.42 eV per defect site; this
denotes the dominant type of defect under this chemical potential
limit compared with the other pair defects. Vgaznos also shows
consistent formation energy, with 1.03 eV per defect site regardless
of the different chemical potential limits, as it also contains the
sub-component of V0. Therefore, we direct our focus on the
electronic properties of Vo in the following discussion.

As shown in Fig. 12(a), we studied the TDOSs of five charge
states of Vo in the CaZnOS lattice (0, +1, —1, +2, and —2).
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Table 2 Summary of formation energies of anion Frenkel (a-Fr) and Schottky
(STK) pair defects in the neutral charge state (@ = 0) under both S-rich and
Zn-rich chemical potential limits (unit: eV). Note that a-Fr Vzno, Vzns, Vcao, and
Vcas are pair defects; their formation energies should be divided by two as
occurrence per defect when used for discussion, while for STK (Vcaznos), the
formation energy has been divided by four for alignment in our discussion

S-rich Zn-rich
a-Fr(0) 2.39 2.39
a-Fr(S) 3.32 3.28
Vzno 1.79 0.42
Vzns 2.31 1.79
Veao 2.13 1.44
Vcas 2.67 2.84
Veaznos 1.07 1.07

25962 | Phys. Chem. Chem. Phys., 2016, 18, 25946-25974

Vino in the lattice produces localized electronic and hole states
with energy intervals of 3.24 eV, and the electronic level is about
0.2 eV above the VBM. In the Vg, state, an extra hole state is
induced in the lattice, about 1.0 eV higher than the VBM, and
the original localized hole states move toward to the CBM, with
0.3 eV. The energy interval between the hole states is 2.57 eV.
In the V3, state, the excess electronic state remains 2.60 eV
above the VBM, and the CB edge states show ferromagnetic (FM)
behavior. For the V2. state, two pairs of hole states are localized
within the band gap area, with an energy interval of 2.50 eV. We
recall that the intrinsic persistent luminescence of CaZnOS has a
broad peak centered at 500 nm (2.48 eV). Thus, Vz5,c accounts
for the activator site of the intrinsic persistent luminescence.
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chemical potential limits.

For the VJ;,0 state, two pairs of electronic states are localized within
the band gap, with an energy interval of 3.54 eV. This arises

This journal is © the Owner Societies 2016

because of the increased Coulomb repulsive potentials due to
the increased electrons localized at the Vg site.
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Fig. 12(b) shows the localized orbitals of the electronic and
holes states induced by the V0 in the lattice. For the neutral
state, the electronic and hole states remain at the interlayer
under-coordinated S and Ca sites, respectively. In the V.o
state, the excess hole state remains at the one of the under-
coordinated S sites, while the other states remain at the same
sites. For the Vg, state, the excess electronic state surrounds
the three under-coordinated Ca sites; the other orbitals remain
at the same sites, with a slight distortion of the original hole
state. For the Vano state, the localized hole states are located at
the under-coordinated S and Ca sites. The lower energy hole
state (close to the VBM) is at two of the three under-coordinated
S sites, with spin-up and spin-down, respectively. The higher
energy hole (close to the CBM) is low lying around the three
under-coordinated Ca sites below the lower energy holes. For
the Voo state, the excess electronic states are localized at the same
sites as introduced in Vaho, while the three under-coordinated
S sites are all occupied.

In the formation energy calculation (Fig. 12(c)), we found
that Vo costs 3.59 eV and 0.84 eV to form in the neutral state
under the S-rich and Zn-rich chemical potential limits, respec-
tively. This is the second lowest energy defect after Vo in the
host lattice. This denotes that the Zn and O vacancies easily
form at the same time and provide contributions to the optical
excitations and luminescence. V,o shows all positive-Ugss
behavior among the different charged defect reactions of
2VZno = Vzno + Vznos 2Vzno = Vzno * Vzno, 2Vino = Vzno +
Vzro, and 2Vz,o — Vono + Vano, respectively.

The calculations of the electronic structures and the for-
mation of a-Frp are shown in Fig. 13(a-c); it was found that
a-Fro is also a deep donor trap center. Fig. 13(c) shows that the
transition state (2—/0) of a-Fry occurs earlier than the (2—/2+)
state, even they both have negative-U.sr. We believe this arises
because |Ueg| is actually larger than the (2—/2+) state of a-Fro. The
stoichiometric vacancy (Schottky) defect, Vcaznos, Was studied,
as shown in Fig. 14(a—c). Fig. 14(a) indicates that Vgaznos i an
acceptor trap center that captures a pair of electrons and frees the
paired hole. Fig. 14(c) presents the two negative-U.g behaviors for
the (2—/0) and (0/2+) transitions of Vcaznos.

Native defect-induced luminescence properties

(1) Four different luminescence mechanisms. Experimentally,
intrinsic persistent luminescence was originally reported for
CaZnOS under 378 nm photo excitation in the UV wavelength
range by Lian et al.*® They found that the wide green emission
wavelength is 500 nm (photon energy = 2.48 €V) at the host
lattice absorption of 378 nm. As the extrinsic doping ratio of Eu**
and Ce*" increases, this emission peak broadens but remains at
500 nm. Their observation provides a significant indication that
this is an intrinsic character not related to the dopants. Thus,
the native point defects in this material play a significant
role in determining the luminescence properties, especially for
phosphors. We summarized these native point defects in Tables 2
and 3. Their thermodynamic transitions and single-particle levels
have been summarized in Fig. 15(a) and (b). We can see that the
excitations and emissions along the zero-phonon-line (ZPL) from
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the state of (0/2+) in Vo to (—/2—) in V, give a photo emission of
521 nm, and the transition from (—/+) in a-Fro to (—/2—) in Vg,
also shows an emission of 512 nm, with mean relative errors of
4% and 2%, respectively. Moreover, the localized electronic states
mostly remain near the VBM, which affords extra deep electron
trap levels as well as a possible exchange with the electrons from
the host lattice remaining on the VBM, with thermal stimulation
in a very small barrier of 0.1 to 0.2 eV.

The experimentally observed broadened persistent lumines-
cence peak is due to many possible native point defect levels,
which participate in or assist the processes of optical excitation
and emission. However, the essential point for persistent lumi-
nescence is the energy release at the activator/sensitizer site in
the form of photon radiations, whose energies are originally
transported from the storage sites of the excited energy. Actually,
when native point defects are studied, this excited energy storage
can be seen to arise from the trapping and transporting of excited
electrons between different localized defect levels within the
fundamental optical band gap. In previous work, we illustrated
the energy conversion mechanism of intrinsic upconverted per-
sistent luminescence in Er,0,.** Here, we use this model to
illustrate the descent mechanism of the intrinsic phosphores-
cence of CaZnOS, with the assistance of the calculation results of
the single-particle levels and thermodynamic transition levels
(ionization energy).

Here, we elucidate the intrinsic persistent luminescence
mechanism of CaZnOS. From Table 3 and Fig. 15(a), we find that
the Vo and Vg, account for the lowest and the second lowest
energy defects under the Zn-rich chemical potential limit, while
O; is the lowest energy defect under the S-rich limit. According
to the related single particle levels, we found that only Vg,
VZho, and Veaznos correspond to the native activators which
enable the localized levels to accommodate the transported
charge carriers. The resulting recombination of charge carriers
between the localized levels will release corresponding photon
energies that are close to the experimental data, which is
2.48 eV (500 nm). The transport of charge carriers is accom-
plished by the localized electrons and hole levels near the VBM
and CBM, respectively.

There are four possible luminescence mechanisms with
different energy conversion and electron transport paths, as
shown in Fig. 15(c): one is oxygen vacancy (Vo) related F-center
fluorescence, and the other three involve upconverted phos-
phorescence with different activator sites and electron trans-
port paths. As we know, in luminescent materials, Vo is usually
a color center (or F-center).>**° In CaZnOS, V,, can be formed
with very low formation energy under the Zn-rich chemical
limit. This F-center dominant fluorescence by Vo with —Ue
means that the emission is a two-electron process. The experi-
mental reported UV photo-irradiation excitation wavelength of
378 nm (3.28 eV) provides high enough photon energies to
activate the electrons that are trapped at the Vy site to be
excited into the CB or the state near the CB edge. The electrons
will be de-excited back to the original ground states, with
four possible emissions with energies of 2.03 eV (611 nm),
2.24 eV (554 nm), 2.31 eV (537 nm), and 2.46 eV (504 nm),
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Fig. 13 (a) TDOSs of a-Fr(O) in charge states of O, +1, —1, +2, and —2. The dashed line denotes the highest occupied level for electrons. (b) Localized
electron and hole orbitals at the relaxed a-Fr(O) site (Zn = gray, O = red, S = yellow, Ca = green). (c) Formation energies of a-Fr(O) under S- and Zn-rich
chemical potential limits.

which originate from three localized hole states and the CB luminescence from the host lattice is a wide green emission
edge, respectively. The experimentally reported intrinsic persistent ~ centered at 2.48 eV (500 nm). We can see that the photon emission
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Fig. 14 (a) TDOSs of Vcaznos in charge states of 0, +1, —1, +2, and —2. The dashed line denotes the highest occupied level for electrons. (b) Localized
electron and hole orbitals at the relaxed Vcaznos site (Zn = gray, O = red, S = yellow, Ca = green). (c) Formation energies of Vcaznos under S- and Zn-rich
chemical potential limits.

from the CB edge to the localized electronic level has relatively high ~we found is confirmed to have partial contributions of F-center
potential, as the external excitation energy is sufficiently high to excitations and emissions to the fluorescence at the Vg site, which
pump electrons into the CB (3.28 V). Thus, the emission spectrum  is shown as a violet folded line in Fig. 15(c).
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Table 3 Summary of formation energies of native point defects in
different charge states in CaZnOS under both S-rich and Zn-rich chemical
potential limits (unit: eV); the charge state has been corrected with
conventional Markov—-Payne image charge correction. Note that a-Fr
Vzno, Vzns, Vcao, and Veas are pair defects; their formation energies should
be divided by two as occurrence per defect when used for discussion,
while for STK (Vcaznos), the formation energy has been divided by four for
alignment in our discussion

S-rich  Zn-rich S-rich  Zn-rich
Vs 0 5.01 201 Ve, 0 3.88 7.22
+1 3.07 0.07 -1 3.39 6.74
+2 0.29 —2.71 —2 2.85 6.20
Vo 0 4.95 0.23 Vi 0 3.41 5.38
+1 2.60 —2.12 -1 2.86 4.83
+2 0.05 —4.67 -2 2.93 4.90
S; 0 1.73 473  Ca 0 8.72 5.37
-1 4.60 7.59 +1 5.80 2.45
-2 5.52 8.48 +2 1.20 —2.15
O; 0 0.02 4.74 Zn; 0 6.01 4.04
—1 2.74 7.46 +1 2.26 0.28
-2 4.60 9.32 +2 —1.98 —-3.96
Vzno -2 4.44 3.07 a—Fr(O) —2 4.66 4.66
-1 2.89 1.52 -1 3.73 3.73
0 1.79 0.42 0 2.39 2.39
+1 1.55 0.18 +1 1.24 1.24
+2 1.35 —0.02 +2 0.06 0.06
Veamos  —2  1.64 1.64  a-Fr(S) 0 3.28 3.28
-1 146 1.46 Ve 0 2.67 2.84
0 1.07 1.07 Vo 0 2.13 1.44
+1 113 113 Vs 0 2.31 1.79
+2 1.17 1.17

However, the F-center dominated fluorescence by the
electronic transitions at the Vg site usually possesses a time
duration of luminescence in the magnitude of 10™° s (~ns),
which means the intrinsic persistent luminescence does not
essentially rely on this energy conversion and charge carrier
transport. Therefore, it is unlikely that the V alone contributes
to the intrinsic persistent luminescence. The thermodynamic
transition level of the Vg site also supports this, as shown in
Fig. 15(b), since the electronic transition along the zero-phonon-
line between the CB edge and (0/2+) of Vo does not match
the required photon energy from the experimental emission
spectrum.*® Therefore, although the ladder-like fine levels
given by the native point defect states provide storage levels
for electronic upconversion transport, the energy still decays
quickly by depletion of energy mismatch.

Two other mechanisms we proposed are based on an energy
conversion model related to different defect reactions within
different charge states.** The electrons in the excitation and
de-excitation are transported along the zero-phonon line (ZPL),
where the released energy contributes the photon energies with
the largest quantum yields. In Fig. 14(c), the blue and pink
folded lines denote the possible paths for electron excitation and
de-excitation corresponding to the absorption and emission
of the optical spectrum, in agreement with the experimental
photon energy of 2.48 eV.
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The formation energy calculations within different charge
states are summarized in Table 3. In the neutral state under the
S-rich limit, O; is the lowest energy defect, with nearly zero
formation energy, which denotes an almost spontaneous pro-
cess. Meanwhile, under the Zn-rich limit, V3 has the lowest
formation energy in the neutral state and V0 has the second
lowest formation energy. From Fig. 15(a) and (c), we can also
confirm that V&', Vanro, and Vanznos can all function as activator
sites; in luminescence, the key requirement is deep electron
trap levels as a storage center, where electrons can be conti-
nuously transported to the excited states and release photons
by recombination with the holes at the activator sites or energy
transfer from a higher excitation state to the lower ground state
levels. Especially for V&, the localized hole states will accom-
modate the excited electrons going through and transferring
back to the ground state electronic levels near the VBM, which
remain near each other. The energy released in the form of
photon energy indeed has a relatively wide range, as shown in
Fig. 15(c), which agrees with the experimentally reported broad
green emission peak.*®

These three upconverted phosphorescence processes arise
because with the formation of native point defects, the fine
electronic levels are localized near the VBM. The electrons from
the VBM easily interact with the localized defect levels of O; and
Vzn, as their electronic levels remain near the top of the VB. The
electrons will be transported to the higher levels gradually
through upconverted energy conversions, with an energy scale
of thermal stimulation (0.1 to 0.2 eV) or quantum tunneling
effects. The electrons will finally be excited to the delocalized
states in the CB by 378 nm UV photo-irradiation and release
photons (2.50 eV) in the emission transfer from the higher
localized state to lower levels at the Vz,o site. Meanwhile, the
electrons will continuously fill the occupied localized levels of
Vo through thermal stimulation or tunneling effects with ladder-
like levels localized near the VBM contributed by the native point
defects, such as O; and Vg, within different charge states. These
electrons are available as storage levels to supply enough charge
carriers to be excited for long-lasting energy conversions during
persistent luminescence.

From the single particle levels in Fig. 15(a), we can see that
the electrons can be easily excited by thermal perturbation from
the VBM to the localized levels produced by the Zn-vacancy (V).
We have already shown the native point defects in terms of the
various charge states. We can see that the charge transition level of
(0/2+) of Vg, is located at Ey, + 2.45 €V, where the VBM is Ey = 0. We
have found that in lattice presentations similar to the ZnO wurtzite
lattice, Schottky pair defects have lower formation energies than
Frenkel pair defects (both cation and anion types). We also found
that the reported phosphor in ZnO may be provided by the energy
transfer between Vo and Vg, from (0/2+) to (2—/0), respectively,
in a two-photon process. Similar observations have been made by
Stehr et al.®* The vacancies of Ca and Zn in the CaZnOS lattice are
acceptor (hole trap) centers that capture electrons. We can see that
the transition level (2—/—) of Zn is at Ey + 0.07 eV, which means
that it almost remains at the VBM. This will provide a large amount
of freely conductive or delocalized holes at the VB as activators.
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ed single-particle levels of intrinsic defects in CaZnOS with different charge

states (empty states = red, filled states = black). (c) Native defects (N. D.) and dopant levels related to the upconverted persistent luminescence (UPL)
mechanism. The black arrow denotes the electronic excitation directions through thermal stimulation or quantum tunneling effects. The green shaded
area converse the lengthened optical transition path for persistent luminescence, which is an intact “supply line” for electron transport. The blue folded
line shows the three different electronic transport paths for upconverted persistent luminescence. The violet folded line shows the O-related F-center
fluorescence. (d) The transport mechanism of charge carriers and energy conversions for upconverted mechano-persistent luminescence.

Fig. 15(d) shows the mechanism for the energy conversion of
the intrinsic upconverted mechano-persistent luminescence in
CaZnOS. We see that various type of native point defects within
different charge states contribute different roles to transport the
bounded charges to the positions for recombination, as summar-
ized in Table 4. The e-levels shown in Table 4 and Fig. 15(d) act as

Table 4 Summary of the native point defects that contribute the different
levels shown in Fig. 15(d)

h-level 0O 07 Vv, Voo Vzno Vino a-Frd aFry
. . 2+ + 0 + 2+
int-mid Voo Vo  Vzno Vcaznos Vcaznos a-Fro
- - o + -
elevel Vi, Vzn Vcaznos Véaznos a-Fro a-Fro

25968 | Phys. Chem. Chem. Phys., 2016, 18, 25946-25974

extra deep donors localized near the VBM, while the h-levels are
extra deep holes next to the CBM. The int-mid levels are native
point defect levels acting as intermediates to combine the holes
from the CBM and the electrons from the VBM to a deeper range
in the band gap. The charges will then move uphill through a very
small energy barrier, aided by thermostimulation or a quantum
tunneling effect, to reach deeper levels within the band gap area.
With further external excitations, such as mechano-stimuli, fric-
tion, piezoelectric fields, NIR, or UV light, the charges will further
alternate with each other, as shown in Fig. 15(d). The recombina-
tion of these opposite charges will release the energy as photons.

(2) Defect reaction-related energy conversion. Based on the
single particle levels in Fig. 15(a), we can understand the paths
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of electronic excitations and photon emissions through energy
conversion, as introduced in our previous work.*?

However, we believe it is still not very clear how the energy
conversion and electrons are transported during the process of
persistent luminescence, and how the energy is converted in the
three different luminescence mechanisms. We proposed the
ECCR (energy converted chain reaction) model in a previous study
on intrinsic upconverted persistent luminescence in Er,0;.>* This
model bridges the relationship between single particle levels
and thermodynamic transition levels, and it projects the essen-
tial electron transitions along the zero-phonon line, which
matches the experimental emissions and upconverted conver-
sions, through a series of defect reactions. Therefore, based
on Fig. 15(c), we here consider the related native point defect
reactions within different charge states under external excita-
tion. The persistent luminescence occurs in the energy transfer
by the transport of charge carriers between the deep levels near
the mid-gap, as demonstrated with the following defect reactions
in the form of a two-electron process for each defect reaction
along the zero-phonon line:

VO +2VY, — V& + 2V, + Ui 6
5
VO +2V5, — V3 +2Vi + Uiz

2V 42V 2V o4 Uers «
2V50 = 2VE +2V5, + Ueins

X
Uy 2e — 2e
—_—

D0H1Y++2e}
2h — 2h*

—2¢" 4+ 2h" — 2w (7)
AY — A2 4 2h

2 2 0 0
Véuznos T 077 = Veuznos + 07 + Uers .

2 0
Véiznos + (@F1)g = Vizu0s + (a-Fr)g + Ueirs

From eqn (5), a VQ state will release two electrons from the
site which will be captured by two V3,, as V, is a shallow
acceptor site; each V2, captures the electrons and transforms
into Vy,, with an even lower energy (Table 3 and Fig. 15(b)). The
reaction of V2, to Vg, releases a hole at the same time. The
remaining V9§ will further continue the electron transfer with
the two Vg, with further reaction of V, to Vi, when V9 trans-
forms to V3. This will release the as-discussed Ue.g; and U
from the above reactions.

Moreover, we know the U.s from these reactions are
released/absorbed energy with effective correlation energy in
form of the energy cost of electrons pairing at the same point
defect sites. This is necessary to consider within the framework
of chemical thermodynamics. Firstly, the system (the CaZnOS
host lattice) contains different types of native point defects. We
modeled these under ideal conditions where all of the defects
are perfectly solved in the solvent where the host lattice is located
and are freely dynamically mobile under thermal stimulation or
external UV excitation. Accordingly, these native point defects
mutually react with each other to convert the energy as well as
transport the excited electrons.
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The experimentally reported intrinsic phosphorescence of
CaZnOS is centered at about 500 nm, with a broad peak from
480 nm to 520 nm. The related photon energies are in the range
from 2.38 eV to 2.58 eV. We learned that this wide wavelength
range of phosphorescence is attributed to electrons continuously
recombining with holes at a level near the VB edge. Without
applying any external stress, the (2—/—) of Vz, is at the VBM;
when there is UV photo-irradiation or an external stress-induced
piezoelectric field forms, local charge separation occurs. The
defects will undergo a series of charge chemical reactions, with
associated energy conversion. As we know, Vy, is the site that
captures electrons with released holes as an acceptor trap
according to the reaction Vg, — Vz, + h — Vz; + 2h, where
h denotes the holes. In contrast to the acceptor trap site, the
Vo acts as a deep donor trap site and has a defect reaction of
V3 — V& + 2e. The two electrons released from the original
Vo sites will automatically transform themselves to Vo and
\'7 respectively due to negative-U.g, with a reaction of 2V —
Vo + V&' Therefore, the electrons at Vg, are doubly occupied or
empty, and the related emissions given by this charge carrier
recombination are usually two-photon processes.

From the defect reactions shown in eqn (5), (6) and (8), the
effective correlation energies for these two-electron related
defect reactions are Ugg; = —6.00 €V, Uegry = —4.76 €V, Uggrz =
+1.22 eV, Uegps = 19.54 €V, Uegrs = —4.98 eV, and Uggg = —4.94 €V,
respectively. This shows the coexistence of exothermal and
endothermal reactions. The negative effective correlation energies
show that the two electrons will overcome the repulsive Coulomb
potential to correlate with each other as a pair to be doubly
occupied at the defect site, such as Veaznos, Of , or a-Frg . Then,
the energies released or absorbed per electron from each defect
reaction above are 3.00 eV, 2.38 eV, 0.61 eV, 4.77 €V, 2.49 eV, and
2.47 eV, respectively. The experimental reported intrinsic wide
green luminescence has a peak centered at 500 nm (2.48 eV).
If our predicted energies can be released in wavelength in terms of
photons, the value with 521 nm (2.37 eV) has a mean relative error
(MRE) of 4%. Considering that the acceptable error usually found
in experimental measurements is 30% to 50%,*’ this prediction is
confirmed from our energy conversion model with good consis-
tency and in agreement with experimental observations."® Eqn (5),
(6) and (8) actually show a defect reaction cycle. In ideal cases, the
reactions with Ugs; and U, Will combine and are found to be
exactly the same as the energy barrier given by the reaction with
Uetrs and Uegy. Therefore, the native point defects will repeatedly
participate in the reaction cycle with specific quantum yield
(reaction efficiency) in a practical scenario. The intrinsic persis-
tent luminescence will continue until all of the energies released
from eqn (5), (6) and (8) decay to zero.

The defect reactions shown above in eqn (7) support the
possible energy conversion of electrons transported from the
VB to the higher excited states near the CB or in the CB. These
electrons originally initiated from either the O; site, the Veaznos
site, or the a-Fr(O) site, which are the source centers supplying
electrons. On the other hand, they can very readily form in
the host lattice due to the relatively low formation energy per
defect site (shown in Table 3). As we can see from the O; site,
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0f provides the localized electronic states near the VBM. As
discussed in previous sections, these are actually fine levels which
facilitate the migration of electrons from the VBM through thermal
stimulations and quantum tunneling effects. Under external UV
excitation (378 nm), the charges (including electrons and holes)
are separately excited to states near the CB and VB, respectively, so
as to ionize the native point defect sites. Consequently, Vg, Vano,
and V2,05 are activator sites that accommodate recombination
of these charge carriers. Further supported by our single particle
level calculations, we found that the electronic states of V,,o near
the VBM can also participate in this process by coupling with
different defect levels to accomplish charge transformation
through the native point defect site.

We can see that the transition level of Vg is at Ey + 2.45 eV
and the V,, transition level is at about Ey, + 0.07 eV, while Ey, =0
for VBM. Therefore, it is continuously extracting electrons from
the valence band or exchanging electrons/holes at the VBM. The
recombination path is between the transition level of Vo and
the VBM. With external UV excitations of 378 nm, the electrons
at the VBM are excited to higher occupied states localized near
the CB or far away from the VBM, while the holes from the CB
are also excited to the localized empty states near the VBM.
Therefore, the process of charge separation and rearrangement
is based on the native point defect levels in the host lattice.
Therefore, for the activator site Vano, the lower localized hole
state can accommodate the holes excited from the CB.

(3) Two kinds of energy conversion based on ECCR. Based
on our previous ECCR model, there is a possibility that the
reactions will be reversed with a quantum yield of electron
transport through different defect reactions, #. The remaining
energy (1 — n) will be released to further drive the chain
reaction. By neglecting the Arrhenius equation effect of tem-
perature, the # is nearly unchanged for the host lattice within
the process of intrinsic persistent luminescence, which is also a
constant related to the synthesis conditions. Thus, the whole
reaction for energy conversion is approximated with a more
complicated kinetics model than first-order chemical reactions.
We studied each cycle based on the time unit of seconds.
Therefore, for a single chain reaction, the rate of reaction at
the time ¢ is shown as:

Alt) = (1 — n)A )

In most phosphor materials, if # is a very small constant
(0 < 1 « 1), eqn (9) can be approximately simplified into the
first order chemical reaction rate equation, as follows:

d4

—x~—(n)A 10

dr (m)Ao (10)
Ideally, the number of photons generated is in proportion to

the concentration of a-Fr defects at each time moment. Then,

regardless of the approximation of eqn (10), the number of

photons generated by CCR at the t-th cycle is shown exactly as:

Nphoton (t) = (n)thhoton(O) (11)

If we simply assume the emission intensity is proportional
to the number of photons, this allows Ip;(t) ¢ Nphoton(t). Thus,
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the persistent luminescence decay spectrum can be simulated
as the given equation based on eqn (11):

Lo (t) = () Te(0) and 1, = —(In2/In7n) (12)
(a) Independent energy conversion model. For the experimentally
reported wide green emission peak, we can model this as three
persistent luminescence mechanisms with three independent
energy conversion models with a simple linear combination.
Fig. 16(a) is an example for eqn (5) and (6), while eqn (8) can
also follow the scheme shown in Fig. 15(a). This means that if we
consider eqn (8) as relatively independent of the chain reactions
of eqn (1) and (2), the rate of reaction at a moment ¢ is provided:

A(t) = A1 () + Ax(0) + A3(0) = (1 — 1) Ao + (1 — 12)Azo + (1 — 13)As0
(13)

where 74, 115, and 73 are the efficiencies of their independent
chain reactions, respectively. Then, eqn (10) has a corresponding
simplification, as follows:

d4
q & —(1) 410 — (12) 420 — (113) 430

(14)

A(?) is actually the total concentration of the V.0, Vcaznos,
and a-Fro defects related to the time after the external photo-
excitations; A, Az, and A;, are their initial concentrations,
respectively. We can see that eqn (14) is the linear combination
of three different first-order chemical reactions, which is similar
to the radiation decay phenomenon.

We find the behavior of eqn (14) is very similar to the experi-
ments of persistent luminescence.”**'*”% Eqn (9) and (10) show the
cases of single luminescence peaks within different charge states
due to the subtle interplay of multi-defect reactions. For a single
persistent luminescence peak with —Ugs for O-defects, eqn (11)
seems to be valid in many cases. Considering eqn (5a), the intensity
of three independent chain reactions is shown as follows:

Tor(£) = (211) Tpra(0) + (212) Tpr2(0) + (215)Tpr3(0)  (15)

t1/» can be solved from In(1/2) = In[(2n,) + (21,)" + (213)"], as their
initial intensities are relatively equal because the emissions
have nearly the same photon energies, estimated from eqn (5)—(8).
According to the small constant character of n (0 <  « 1), the
half-life is estimated to be 1, = —[In2/In2(y; + 1, + n3)] if the
approximation (2171)° + (212)" + (273)° & 2'(n1 + 2 + n5)" is valid
for small 7.

(b) Serial-type energy conversions. Considering Fig. 15(c),
it seems the energy conversion of eqn (8) is originally sourced
from eqn (5) and (6) with further efficiencies of 1, and n;. We
accordingly further modify the chain reactions with considera-
tion of the ECCR model, as shown in Fig. 16(b). Therefore, eqn (9)
is re-directed to become a new equation if the chain reactions
from eqn (5)-(8) are a serial type of ECCR model whose driving
energies are originally sourced from the defect reactions of
eqn (5); the rate equation is updated as follows:

A(t) = Ag(£) + A(t) + A3(0) = (1 — 1) Aro + [m1(1 — 12)]Az0
+ (1 = n3)'As0 (16)
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Fig. 16 (a and b) Detailed schematics of the process of energy conversion within a group of native point defects between different charge states.

and the emission intensity of the persistent luminescence
based on this new ECCR model is updated to the following:

IPL(t) = (2n1)tIPL1(0) + (annz)tIPLz(O) + (anﬂs)tIPLs(O)

From eqn (15) and (17), the so-called half-life of persistent
luminescence is a parameter that reflects the intrinsic properties
of the as-synthesized phosphor materials. With consideration
of both cases above (independent and serial type), enlarging
the u is actually the core factor that prolongs the duration
time of the persistent luminescence. However, it is wise to
increase the defect concentration and reduce the defect reaction

(17)

This journal is © the Owner Societies 2016

activation barrier. Usually, this involves increasing the defect
concentration of materials in a packed structure.®*"®”

Role of defect determination and comparison

We also considered a lattice with various defects with low
formation energies and compared this with experimental
synthesized samples using X-ray diffraction patterns. Although
the comparison is qualitative, the physical and chemical trends
for the influence of defects will be consistent with experimental
synthesized results and potentially be a reference for future
modulations of properties.
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Fig. 17(a) shows the theoretical X-ray diffraction (XRD) pattern

of the ideal CaZnOS lattice. It shows an evident match with the
experimental measured XRD from Pan et al.® and Lian et al.*®
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Fig. 17 (a) Theoretical XRD pattern of the ideal CazZnOS lattice. (b)
Theoretical XRD patterns of CaZnOS with Vo, Vzn, Oi, Vzno, Vcaznos, and
a-Fro in relatively low amounts. (c) Theoretical XRD pattern of CaZnOS
with a high density of Vcaznos.
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To consider this further, we included the low formation energy
defects such as Vg, Vzn, Oi, Vzno, Veaznos, and a-Frg in CaZnOS for
the XRD simulation. As shown in Fig. 17(b), the XRD peaks at
about 27° show a trend of broadening similar to the work of Lian
et al.*® As we know, the experiments by Lian et al. were performed
in an atmosphere of N, flow for both single phase CaZnOS and
doped CaZnOS.*® They further showed that the twin peaks at 27°
merge to a single peak under H,/N, flow, denoting that H will
passivate the defect sites, in accordance with our defect analysis.
The twin peaks at 32° become wider in defective CaZnOS in our
simulated XRD, in a similar trend to that of Pan et al.® The powder
samples synthesized by Pan et al. experienced sintering under Ar
atmosphere and were ground again after cooling of the sintered
powder. These different treatments of the CaZnOS samples may
be the cause of the slight differences in the XRD spectra of Pan
et al® and Lian et al.*®

To approach a more realistic situation, we increased the
amount of Veaznos (Schottky type defect) in the same size CaZnOS
supercell. Fig. 17(c) shows that the newly induced satellite peaks
at 27° and 32° are more obvious and are in good agreement
with the sample synthesized by Pan et al.® Thus, experimentally
grinding the sintered sample after cooling it will vastly increase
the amount of Vgaznos or form other, similar vacancy defects.

Conclusion

We have studied the native point defect levels of CaZnOS to interpret
its intrinsic persistent luminescence mechanism. We found that
low energy vacancy-type defects, such as Zn and O vacancies,
and Schottky defects mutually interplay through a series of defect
chemical reactions to transport charges and convert the energies
within different lattice sites and charge states. Under the S-rich limit,
interstitial O has a very low formation energy and readily captures
paired electrons to release holes. The CaZnOS stoichiometric
vacancy (Schottky type) is the second lowest energy defect, with
1.07 eV per defect site, and the ZnO vacancy is the third lowest.
Under the Zn-rich chemical potential limit, the O vacancy is the
lowest energy defect with 0.23 eV, and the ZnO vacancy is the second
lowest with an energy of 0.42 eV, similar in magnitude to the O
vacancy. The Zn vacancy is an active hole center with a +U.¢ because
it releases about 0.55 €V to free a hole by capturing a localized
electron near the anion (S, O) sites. In defect reaction-related energy
conversion, the ZnO and CaZnOS vacancies are the native activator
sites to accommodate the recombination of the excited electrons and
holes and release the energy by photon emission.
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