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The elastic properties of the nanotubes of self-assembled aromatic
dipeptide diphenylalanine are investigated by means of Raman
spectroscopy and a mass-in-mass 1D model. Analysis of nanotubes’
lattice vibrations reveals the essential contribution of the water in the
nanochannel core of the tubes to the Young's modulus and high water
mobility along the channel. Direct measurements of the Young's
modulus performed by nanoindentation confirm the obtained results.

Self-assembly of bioorganic materials is a convenient tool for
the fabrication of functional micro- and nanodevices with
outstanding properties.' Peptides are of particular importance
as molecular building blocks because of their unique character-
istics that can be tuned by changing the amino acid sequence and
conjugating chemical groups to achieve better functionality.?
Assembly mechanisms based on various noncovalent inter-
molecular interactions® allow peptides to readily adopt diverse
3D architectures such as vesicles, micelles, monolayers, bilayers,
fibers, tubes, ribbons, spheres, and tapes.>”

Recently, nanotubes of short aromatic peptides (namely,
diphenylalanine, FF, consisting of two molecules of amino acid
phenylalanine, F) have attracted significant attention, due to
their outstanding physical and chemical properties, which are
interesting from both the fundamental and applied points of
view.*”® Along with inherent biocompatibility, they possess high
aspect ratios,” strong piezoelectricity,'™'" ferroelectricity,">"?
and interesting optical properties related to quantum confine-
ment of electrons and holes.®** These useful functional properties
are considered to be important for the design of novel biosensors
and bioelectronic and biomolecular devices.””® For example, it has
been shown that microtubes of FF (self-assembled bundles of
the nanotubes) exhibit clear piezoelectric resonance at MHz
frequencies with high enough quality factor and can thus serve
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as piezoelectric sensors and actuators in micromechanical
systems (MEMS).!*-1%16

Special attention was paid to the remarkably rigid structure
of FF nanotubes. Its experimentally measured transversal
Young’s modulus varies from 19 to 27 GPa,"””'® and is several
times larger than that of other peptide fibrils (about 3.3 GPa'®).
An attempt to shed light on the origin of such enormous
stiffness was made using first-principles calculations.”® However,
the obtained value of the Young’s modulus was still less than a
half of the experimentally observed one, even when using the
Tkatchenko-Scheffler (TS) correction, which allowed describing
accurately hydrogen and van der Waals bonding, essential for
biomolecular crystals.*

In our opinion, the main reason for such divergence is neglecting
the water in the nanochannel core of the nanotubes. Its presence
there was confirmed by X-ray analysis,”* photoluminescence,> and
Raman measurements.>*>* Typically, FF nanotubes are produced
from water rich solution, and water plays a crucial role in the
nanotube formation.>*®” Each FF monomer creates hydrogen
bonds with water molecules,* which may thus contribute to
the mechanical properties of the nanotubes. Exceptionally high
values of Young’s moduli (up to 44 GPa) due to hydrogen bonds
between molecules were observed in several amino acid crystals.>®
A similar effect should be expected for the FF nanotubes.

In this work we developed a simple mechanical model of FF
nanotubes taking into account the existence of water in the nano-
channel core of the tubes. Analysis of nanotubes’ lattice vibrations
by Raman spectroscopy in the context of the proposed model
allowed us to calculate effective elastic constants and to demonstrate
the large contribution of water to the tubes’ Young’s moduli.

It is known that FF monomers in water-rich solution form
helical nanotubes filled with water molecules via a self-assembly
process.”>* Water molecules are held in the nanochannel core
by radially oriented hydrogen bonds with FF monomers, whereas
the latter interact among themselves via both hydrogen bonds
and van der Waals forces.>"*°

The unit cell of the nanotube (one step of the helix) consists of
two embedded interacting subsystems: an FF ring (6 monomers)
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Fig. 1 The equivalent scheme of FF nanotubes. (a) Typical unit cell of an FF
nanotube; (b) its mass-in-mass representation; and (c) nanotube formed by
aligned interacting mass-in-mass units. Solid lines show interactions with
spring constants o, f and y. The arrow shows the tube’s axis direction.

and water (24 molecules, 4 molecules per FF monomer??) inside
the ring (Fig. 1(a)). Such systems can be described by the
equivalent mass-in-mass unit of the same size (Fig. 1(b)). The
masses of the FF ring and of its water “core” are m; = 3.11 X
102* kg and m, = 0.72 x 10 ** kg, respectively. Interaction
between the FF ring and the water subsystem for the X and Y
directions is characterized by the same effective spring con-
stant «. The sequence of aligned unit cells forms the nanotube
(Fig. 1(c)). Longitudinal interaction between adjacent rings and
water therein occurs with effective spring constants f and 7,
respectively. Individual nanotubes bond together by aromatic
rings and form microtubes, which can be considered as a
hexagonal crystal.>*?°

The equations of motion for this system provide dispersive
relations in the general form:

x S (ka)g(ka) — 1
wz—zﬂ,(ka){li\/1—4lMW}, (1)

1

where ' =m; " + my~! — reduced mass, M = m; + m, — total
mass of the unit cell, f(ka) = 1 + 2(f/a)[1 — cos(ka)], g(ka) =
1 + 2(y/a)[1 — cos(ka)] and A(ka) = (f(ka)m, + g(ka)m,)/(mim,).
The sign in front of the square root corresponds to optical (+)
or acoustical (—) branches.

It is worth noting that for k = 0 eqn (1) is reduced to a simple
expression for vibrations of crystal with two atoms per primitive
cell.’® Therefore, keeping in mind the application to Raman
scattering, the frequency of the optical mode at the center of
the Brillouin zone is:*

wopt(k =0) = \/%. 2)

This expression can be used for determination of the spring
constant «, assuming m.p to be an effective frequency of lattice
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vibrations measured by Raman spectroscopy. The obtained
result will depend on the polarization conditions of the measure-
ments, and therefore different spring constants o; relating to
lattice vibrations in different directions in the nanotube can be
obtained.

The effective elastic constants of FF nanotubes can be
derived from the analysis of the Raman spectra. A comparison
of the frequencies of acoustic vibrations obtained in the context
of the used model with those calculated in continuous approxi-
mation gives a relation between microscopic spring constants
a; and macroscopic elastic constants Cy:*°

_ lojaig;

Ci=5"7" 3)

where q; is a corresponding lattice parameter (either a or ¢) and
V is the cell volume (lattice parameters for the nanotube are:*!
a=24.1 A and ¢ = 5.46 A; therefore V = sin(n/3)a’c = 2718.47 A).

For hexagonal crystals, the elastic constants form a tensor
with five independent components (Voigt notations are used):*!
Ci1, C12, Cy3, C33 and Cyy. In the most common backscattering
geometry of Raman measurements, a variation of the polariza-
tion direction allows determination of 4 components of the
effective elastic tensor (Fig. 2). For X(zz)X and X(yy)X geo-
metries, where polarization of a laser beam is parallel to the
analyzer’s orientation and is oriented either along or perpendicular
to the tube axis, eqn (2) and (3) provide Cs; and C;; constants,
respectively. In the X(zy)X geometry the polarizations of the laser
beam and the analyzer are 90°-crossed; therefore the constant C;;
can be found. For estimation of the C;, constant the spectrum has
to be measured on the end face of the tube in the Z(yx)Z geometry.
The C,, constant cannot be determined by Raman spectroscopy.
Raman spectra of all four geometries are presented in Fig. 3.

For estimation of effective elastic constants we used sufficiently
long FF microtubes grown from water rich solution using a
common procedure.”*® Raman spectra were measured using the
confocal Raman microscope Alpha300AR (WITec GmbH, Germany)

X X
_ Css B Cy
X(z2)X X(y)X
y y
z Z
X V4
C13 _ C12
X(zy)X ayz)e
y X
2z y

Fig. 2 Schemes of polarization directions for determination of the
components of the effective elastic tensor in backscattering Raman measure-
ments. Red arrow — direction of laser propagation, green arrow — laser
polarization, and black arrow — polarization of analyzed light.
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Fig. 3 Polarized Raman spectra of FF nanotubes in various geometries.
Three characteristic regions: (1) lattice vibrations, and (2) and (3) vibrations
of various functional groups. Attribution of several spectral lines to
functional group vibrations is presented.

with an excitation wavelength of 488 nm and a spectral resolution
of about 3 em ™.

A typical Raman spectrum of FF microtubes consists of three
separate regions: region 1 (from 10 to 375 cm™ ') corresponds to
lattice vibrations, whereas region 2 (from 375 to 1850 cm™*)
and region 3 (from 2750 to 3250 cm ') are due to vibrations
of various functional groups (Fig. 3). Assignment of high-
frequency spectral lines can be based on the analysis of
published data,** whereas detailed analysis of low-frequency
lines is hampered by a rather complicated tube structure and
highly overlapping spectral lines. Deconvolution of this region
into separate lines provides little information about the tube
structure, regardless of the fact that the assignment of several
low-frequency lines has been performed recently.”*

The effective frequency of lattice vibrations can be calculated
either by fitting the low-frequency spectral region by a single curve
(Lorentzian or Gaussian) or by calculating the weighted average
over this region. The second method is more precise since it takes
into account low intensive lines, whereas fitting by a single curve
mainly gives the maximum frequency in the region.

The calculation of the weighted average over the low-frequency
region of Raman spectra (Fig. 3) gives average values of the
effective frequency 131.2 and 126.8 cm ™" for X(zz)X and X(yy)X
geometries, respectively, and 134.8 and 141.9 cm™ " for X(zy)X
and Z( yx)Z geometries, respectively.

It is worth noting that edge filters, which are usually used in
spectroscopic systems, cut part of the low-frequency region up
to 50-100 cm . However, this region is usually overlapped with
a broad boson peak and shoulders of the Rayleigh line, and
therefore information about the lattice vibrations here cannot
be extracted anyway. We found that the spectral resolution
of our instrument has little effect on the resulting elastic
constants and even 30 cm ™' variation of the upper and lower
limits of region 1 changes Er and Ej, by less than 0.3 GPa.

Thus, using the measured effective frequencies and estimated
reduced mass of the ring, four independent components of
effective elastic tensor C} of the water-filled nanotubes can be
calculated. The obtained values are in line with those found in
ref. 20 within a density functional theory calculation using the
Perdew-Burke-Ernzerhof (PBE) generalized gradient approxi-
mation for the exchange-correlation (Table 1).
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Table 1 Effective elastic constants of FF nanotubes (in GPa). Constants
C;F describe interaction between FF monomers and are obtained in first-
principles calculations in PBE and PBE+TS schemes.?® Constants C)j'-v are
calculated in this work and show the contribution of water molecules
present in the core of the nanotubes. The total effective elastic constants
are C* = Y + CIf

C cy cy"
PBE PBE+TS
(o) 5.29 17.56 9.17 26.73
Cis 2.18 11.91 2.60 14.51
Cis 2.34 11.00 2.35 13.35
Css 14.08 24.05 0.50 24.55

The values of C,, and C,; are close to those calculated in
ref. 20 for empty tubes (Table 1), whereas a higher value of Cy;
demonstrates the pronounced effect of the water subsystem
on the elasticity of the tube in a transversal direction. The low
value of C;; shows that water molecules are weakly bound to FF
rings and can easily move along the nanochannel, thus making
FF tubes interesting for various micro- and nanofluidic
applications.*® At the same time, the longitudinal mobility of
water has only a negligible effect on the longitudinal stiffness of
the tube, which is therefore determined by the interaction
between FF monomers in the adjacent rings only. This inter-
action cannot be taken into account in our model, since eqn (2)
for the effective frequency of the lattice vibrations does not
include the spring constant f.

To take into account both water and FF contributions, the
total elastic constants of the FF nanotubes can be calculated:
Cy' = CY + Ci". Here C}) describes water contribution and is
found in this work in the context of the proposed model. For
Ci" we used elastic constants calculated in ref. 20 in the
“PBE+TS” approach, i.e. with the van der Waals interactions
after the Tkatchenko-Scheffler scheme included on top of the
PBE exchange-correlation. The inclusion of this interaction is
essential for accurately describing the long-range interaction
between FF rings. The obtained values of the total elastic
constants are presented in Table 1.

The hardness of the FF microtubes can be described by
transversal Er (across the tube) and longitudinal E;, (along the
tube) Young’s moduli due to the anisotropy of the microtubes.
Er and E;, can be written in terms of elastic constants:**

_ C1?C33 +2C1°C1y — 2C11 Cif? — C33Cr?

E , 4
' C11C33— C? @

_ Ci?Cs3 + 2C152C1p — 2C11C13% — C3Cr?

E
- Ci? — G

(5)
Total elastic constants Cj7* were used to calculate Er (Table 2),
which is noticeably greater than that obtained in first-
principles calculations®® and is very close to the experimentally
derived value, 19 GPa.'® This demonstrates that the water
subsystem essentially contributes to the stiffness of the FF
nanotubes in the transversal direction. This is, most probably,
due to the radial network of hydrogen bonds between FF

Phys. Chem. Chem. Phys., 2016, 18, 29681-29685 | 29683


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp04337b

Open Access Article. Published on 13 October 2016. Downloaded on 1/14/2026 12:37:03 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Communication

Table 2 Young's moduli of FF nanotubes (in GPa)

Calculations Experiments
First-principles® This work AFM This work
Er 4.24 8.75 16.77 19° 10
27 + 4° 25
Ey, 12.6 15.85 15.91 — —

@ Ref. 20. ” Ref. 18. ¢ Ref. 17.

monomers in the ring and water molecules. This effect is
similar to that observed in several amino acid crystals.?®

However, the obtained value (16.77 GPa) is far though from
another experimental value (27 GPa)."” This experimental value
was obtained by a bending beam model using an atomic force
microscope (AFM) on nanotubes suspended across the micro-
cavities. However, this method provides results strongly depending
on the nanotube fixed at the edges of the cavity.**

To get more precise values of the transversal Young’s
modulus, we performed direct measurements of Er by the
dynamical nanoindentation method. The nano-hardness tester
NanoScan-4D (FSBI TISNCM, Russia) equipped with a Berkovich
indenter (diamond pyramid) was used. The values of E; were
determined from loading-unloading curves by the Oliver-Pharr
method.?” Measurements were performed in more than 50 points
of several FF nanotubes fixed at the solid substrate. Our tests
showed an instrumental error less than 2%.

Two characteristic values of E; were revealed (see Table 2
and Fig. 4). The first value (10 GPa) is close to that obtained
from first-principles modeling of empty nanotubes.”® The
second value (25 GPa) is close to that measured in ref. 17.
The dispersion of these characteristic values is larger than
the instrumental error, reproducible and can be attributed to
inhomogeneous filling of the nanotubes due to the high
mobility of water molecules along the nanochannel.*®*° In this
case the lowest values of the Young’s modulus correspond to
almost empty nanotubes, whereas completely filled tubes provide

20

15

10 |-

Count

0O 5 10 15 20 25 30 35
Transversal Young modulus, GPa

Fig. 4 Values of Et measured directly by the nanoindentation method.
The inset shows FF nanotubes with different degrees of filling by water:
empty nanotubes, partially filled nanotubes, and completely filled nanotubes.
Blue solid lines point out values obtained from the literature and calculated
in this work.
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the largest Er (see insets in Fig. 4). It is worth noting that only a
part of the water molecules in FF tubes is considered in our
model. This corresponds to partially filled nanotubes, and
therefore the value of E; calculated in the present work falls
into the intermediate range (Fig. 4). Additional water molecules
that can exist in the nanochannel core*>*! introduce additional
stiffness into the nanotube, and therefore higher values of
Young’s moduli can be observed. The highest observed value
of Er is about 31 GPa (Fig. 4).

Finally, the value of Ey, calculated in this work is very close to
that obtained in ref. 20 in PBE-TS approximation, since movable
water molecules weakly contribute to longitudinal stiffness.
Experimental measurements of this value are conjugated with
high technical difficulties and are still to be done.

In summary, the essential contribution of water molecules
inside the nanochannel of diphenylalanine peptide nanotubes
to its transversal Young’s modulus is demonstrated. Analysis
of the low-frequency region of the Raman spectra of the
nanotubes in the context of a mass-in-mass 1D model allowed
refining four independent constants in the effective elastic
tensor and to demonstrate the high mobility of water molecules
along the nanochannels. Direct measurements of the transversal
Young’s modulus using a nanoindenter showed that its value
strongly depends on the degree of nanotube filling by water,
whereas the longitudinal Young’s modulus is primarily determined
by the interaction between peptide monomers.
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