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Role of ion hydration for the differential
capacitance of an electric double layer

Daniel L. Z. Caetano,ab Guilherme V. Bossa,b Vinicius M. de Oliveira,a

Matthew A. Brown,c Sidney J. de Carvalhoa and Sylvio May*b

The influence of soft, hydration-mediated ion–ion and ion–surface interactions on the differential capacitance

of an electric double layer is investigated using Monte Carlo simulations and compared to various mean-field

models. We focus on a planar electrode surface at physiological concentration of monovalent ions in

a uniform dielectric background. Hydration-mediated interactions are modeled on the basis of Yukawa

potentials that add to the Coulomb and excluded volume interactions between ions. We present a mean-

field model that includes hydration-mediated anion–anion, anion–cation, and cation–cation interactions of

arbitrary strengths. In addition, finite ion sizes are accounted for through excluded volume interactions,

described either on the basis of the Carnahan–Starling equation of state or using a lattice gas model. Both

our Monte Carlo simulations and mean-field approaches predict a characteristic double-peak (the so-called

camel shape) of the differential capacitance; its decrease reflects the packing of the counterions near the

electrode surface. The presence of hydration-mediated ion–surface repulsion causes a thin charge-depleted

region close to the surface, which is reminiscent of a Stern layer. We analyze the interplay between excluded

volume and hydration-mediated interactions on the differential capacitance and demonstrate that for small

surface charge density our mean-field model based on the Carnahan–Starling equation is able to capture the

Monte Carlo simulation results. In contrast, for large surface charge density the mean-field approach based

on the lattice gas model is preferable.

1 Introduction

The presence of an electrode in an electrolyte solution changes the
way ions are distributed. Mobile ions rearrange so as to screen the
charge at the electrode surface, thus forming an electrical double
layer (EDL) in this process. The EDL has great importance in
biological, colloidal and polyelectrolyte sciences,1–5 surface
conductivity,6 renewable energy systems,7,8 new methods for oil
recovery,9 and in electrical double layer capacitors, a device that
stores electrochemical energy through the EDL.10,11 The electrode is
often approximately described by a perfectly planar charged sur-
face, but other geometries have also been taken into account.12 The
most simple model of an EDL is a parallel-plate capacitor, where
one plate corresponds to the charged surface while the other plate
represents the diffuse ion cloud formed by the mobile counter- and
co-ions. Based on this, an EDL can be characterized by three
quantities: the electrostatic potential at the surface F(0), the surface

charge density se, and the differential capacitance Cdiff = dse/dF(0),
which embodies the relationship between se and F(0).

The differential capacitance Cdiff is often observed to initially
increase and then pass through a maximum as |se| increases.
Yet, no maximum is predicted by the most simple and widely
used theoretical model, which is based on the classical Poisson–
Boltzmann (PB) theory.13,14 This discrepancy, which has motivated
the advancement of theoretical models and the application of
computer simulations, appears to be related to two approxima-
tions that are inherent in the classical PB theory:15–18 first, it
treats the mobile ions as being point-like instead of accounting
for their non-vanishing sizes and, second, it ignores the struc-
ture of the solvent by assuming a structureless medium of
uniform dielectric constant.19

A simple approach to account for the finite size of the mobile
ions goes back to Stern,20 who assumed that some of the mobile
counterions adsorb onto the flat surface, thus creating a region
that separates the charged surface from the diffuse part of the
EDL. Stern proposed to treat that region as a planar capacitor
with a constant thickness equal to the effective ion radius. The
incorporation of steric effects directly into the diffuse ion layer on
the basis of a lattice gas model dates back to Bikerman.21 Since
then, several other approaches have been developed to include
steric effects, such as different modified Poisson–Boltzmann
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equations,22–24 lattice-based models,25–27 integral equation
theories,28–30 equations of state based on liquid-state theory for
hard spheres mixtures31–34 and Monte Carlo simulations.35–38

Steric effects render the structure of the EDL ion-specific.
However, ion specificity is also manifested by the formation
of a hydration shell consisting of ordered water molecules
in the vicinity of the mobile ions.39 Previous experimental1,40

and simulation studies41,42 have demonstrated that hydration-
mediated ion–ion and ion–surface interactions are soft with a
characteristic decay length corresponding to the size of a water
molecule and can exhibit oscillatory behavior.43,44 For example,
Baimpos et al.45 have observed that, depending on the type of
salt and its concentration, the measured force between two
mica surfaces becomes oscillatory when the plates approach
each other.

Reducing the non-electrostatic ion–ion and ion–surface
interaction in an EDL to steric repulsions between hard spheres
can therefore not be expected to capture the full scope of ion
specificity.46,47 In line with this, some efforts have been made
recently to incorporate soft potentials as models for hydration-
mediated ion–ion interactions into PB theory.48–50 One approach
employs a Yukawa potential,51,52 which represents not only
the most simple approximation to the soft ion–ion potentials
extracted from recent simulations41,42 but is also consistent
with the measured exponential decay of the hydration force
between two planar surfaces as demonstrated by Israelachvili
and Sornette.53 The Yukawa potential also emerges from the
phenomenological hydration model of Marcelja and Radic.54

Based on this it was shown that a thin charge-depleted region
similar to that proposed originally by Stern emerges naturally
from the presence of a repulsive Yukawa potential between the
surface and counterions.55

The present study pursues two objectives. First, we present a
theoretical approach of incorporating hydration-mediated ion–
ion interaction potentials into the PB formalism. We extend
previous works51,52 by adding independent hydration-mediated
cation–cation, cation–anion, and anion–anion potentials to the
electrostatic Coulomb interactions. Moreover, we incorporate
into our theoretical approach two frequently used methods
of accounting for excluded volume interaction between ions.
One is based on the Carnahan–Starling equation of state,56

and the other on the above-mentioned lattice gas model.21,26

Our second objective is to investigate how hydration-mediated
interactions and their interplay with finite ion size effects affect
the differential capacitance Cdiff. To this end, we have performed
Monte Carlo simulations for different combinations of hydration-
mediated and excluded volume interactions and compared their
predictions with the corresponding mean-field approaches. We
find our simulations and mean-field predictions to agree
remarkably well when both include soft, hydration-mediated
ion–ion interactions (but not in their absence), which suggests
the importance of ion–ion correlations to be diminished by the
additional soft hydration potential. Specifically, for low surface
charge densities |se| the agreement is best if excluded volume
effects are modeled based on the Carnahan–Starling equation
of state. For large |s|, however, better agreement is obtained

when accounting for excluded volume effects using the lattice
gas model.

We point out that the present study focuses on symmetric
hydration-mediated interactions, where Cdiff(s) = Cdiff(�s),
leaving the analysis of asymmetric cases to a forthcoming study.
In addition, while we include hydration-mediated interactions
in the form of non-electrostatic potentials, we ignore changes
in the dielectric constant through dielectric saturation19 and
polarization effects.57

2 Theory

We consider an extended planar surface with surface charge
density se in contact with a symmetric 1 : 1 electrolyte of bulk
cation and anion concentrations n0 and dielectric constant
eW E 80. The planar surface, which represents a flat electrode,
is located at position x = 0 of a Cartesian coordinate system that
has its x-axis point into the electrolyte; see Fig. 1 for a schematic
illustration. Mobile ions interact with each other through their
excluded volume and through a combination of electrostatic and
hydration-mediated interactions. Hydration interactions reflect
the formation of hydration shells around ions and water structur-
ing in the vicinity of charged surfaces. Inspired by a phenomen-
ological approach developed by Marcelja and Radic,54 Molecular
Dynamics simulations,42,58 and previous mean-field models,51,55

we represent hydration-mediated interactions by a Yukawa
potential. Specifically, we use for the combined Coulomb and
Yukawa pair potentials the expressions Uaa = kBT(lB + ae�k(r�a))/r
(for the anion–anion interaction), Uac = kBT(�lB + be�k(r�b))/r

Fig. 1 Schematic illustration of a planar surface with surface charge density
se in contact with an aqueous solution containing monovalent ions of bulk
cation and anion concentrations n0 and dielectric constant eW E 80. Mobile
ions interact with each other through their excluded volume, through a
Coulomb potential, and through a Yukawa potential. The latter two account
for electrostatic and hydration-mediated interactions, respectively. They are
specified by the relationships Uaa(r), Uac(r), and Ucc(r) for anion–anion,
anion–cation, and cation–cation interactions, respectively, where r is the
ion-to-ion distance; see the text for details. The strength of the electrostatic
interaction equals kBT if two ions are separated by a distance lB. Similarly, the
strength of the hydration interaction equals kBT for an anion–anion pair at
distance a, for an anion–cation pair at distance b, and for a cation–cation
pair at distance c away from each other.
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(for the anion–cation interaction), and Ucc = kBT(lB + ce�k(r�c))/r
(for the cation–cation interaction). Here r denotes the center-to-
center distance between two ions, kB the Boltzmann constant, T
the absolute temperature, and 1/k a characteristic length asso-
ciated with the hydration interaction potential. The Bjerrum
length lB = e2/(4peWe0kBT) corresponds to the separation at which
the electrostatic interaction energy between two water-immersed
elementary charges e equals the thermal energy kBT (e0 is the
permittivity of free space). Analogously, the hydration interaction
strength equals kBT at distance a between two anions, at distance
b between an anion and a cation, and at distance c between two
cations. In the following, we develop a mean-field formalism that
consistently incorporates Uaa, Uac, and Ucc.

2.1 Mean-field theory

Our model starts with the total free energy,

Ftot = Uel + Uhyd + Fmix, (1)

that accounts for electrostatic interactions (Uel), for hydration
interactions (Uhyd) and for an ideal or non-ideal mixing entropy
contribution (Fmix) of the ions in solution. We discuss each
term individually.

The electrostatic energy (in units of kBT) of the electrolyte
can be expressed as

Uel

kBT
¼ 1

2

ð
V

d3r

ð
V

d3r0
1

r� r0j j
n�ðrÞ � n0

nþðrÞ � n0

 !T

Ae

n� r0ð Þ � n0

nþ r0ð Þ � n0

 !
;

(2)

where n�(r) and n+(r) are the local concentrations of anions and
cations, respectively, as function of the position vector r. The
two integrations are carried out over the volume V that contains
the ions. The electrostatic interaction matrix in eqn (2),

Ae ¼ lB
1 �1

�1 1

 !
; (3)

specifies the prefactors for the 1/r-Coulomb potential between
two cations and two anions (the diagonal elements), and
between an anion and a cation (the non-diagonal elements).
Recall that both ions are monovalent. The Bjerrum length is
lB = 0.7 nm for an aqueous medium (eW E 80) at room
temperature. From eqn (2) we define a dimensionless electro-
static potential Ce through

�CeðrÞ

CeðrÞ

 !
¼
ð
V

d3r0
1

r� r0j jAe

n� r0ð Þ � n0

nþ r0ð Þ � n0

 !
: (4)

The reason why only one single electrostatic potential appears
in eqn (4) is the vanishing determinant of Ae. We note the
relation Ce = eF/kBT between the dimensionless electrostatic
potential Ce and the electrostatic potential F. As is well known,
applying the Laplace operator r2 to eqn (4) and using Green’s
function G(r) = �1/(4p|r|) yields the Poisson equation

r2Ce(r) = �4plB[n+(r) � n�(r)]. (5)

When expressed in terms of the dimensionless electrostatic
potential, the electrostatic interaction energy reduces to the
familiar expression

Uel

kBT
¼
ð
d3r
rCeð Þ2

8plB
; (6)

where the integration runs over all space. The energy due to
Yukawa-like interaction potentials can be expressed in analogy
to eqn (2) by

Uhyd

kBT
¼ 1

2

ð
V

d3r

ð
V

d3r0
e�k r�r0j j

r� r0j j
n�ðrÞ � n0

nþðrÞ � n0

 !T

Ah

n� r0ð Þ � n0

nþ r0ð Þ � n0

 !

(7)

with a hydration interaction matrix

Ah ¼
aeka bekb

bekb cekc

 !
: (8)

Recall that the constants a, b, and c represent the distances
where the interaction between an anion–anion, anion–cation,
and cation–cation pair, respectively, equals kBT. The values for
a, b, and c contribute to the specificity of the ion–ion inter-
action. In our present work we do not attempt to determine
these parameters. Instead, we simply assume a = b = c,
thus leaving the analysis of asymmetric interactions and the
identification with specific ions to be worked out in future
studies. We also note that the parameter 1/k = 0.3 nm accounts
for the characteristic decay length of ordered water layers.1

Based on eqn (7), we define two non-electrostatic (hydration)
potentials Ca and Cc via

CaðrÞ

CcðrÞ

 !
¼
ð
V

d3r0
e�k r�r0j j

r� r0j jAh

n� r0ð Þ � n0

nþ r0ð Þ � n0

 !
: (9)

Generally, there are indeed two independent hydration potentials
because the determinant of the hydration interaction matrix,
det(Ah), may be non-vanishing. Special cases with det(Ah) = 0
have been introduced and discussed in previous works. Specifi-
cally, Bohinc et al.52 have used Ah = lnekln{{(1 � a)2, �(1 � a2)},
{�(1 � a2), (1 + a)2}} with fixed constants ln and a. Brown et al.55

have used Ah = lhekln{{0,0}, {0,1}} with a single fixed constant lh.
As already exercised for the electrostatic interaction, see
the transition from eqn (4) to (5), we can find an operator
that produces a Yukawa-like Green’s function. The operator
is r2 � k2 and the corresponding Green’s function G(r) =
�e�k|r|/(4p|r|). With that we can cast eqn (9) into the local form

r2 � k2
� �

CaðrÞ

r2 � k2
� �

CcðrÞ

0
@

1
A ¼ �4pAh

n�ðrÞ � n0

nþðrÞ � n0

 !
: (10)

We refer to eqn (10) as Helmholtz equations (with complex
wavenumber and a source term). When expressed in terms
of the potentials Ca and Cc, the energy associated with
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hydration-mediated interactions becomes

Uhyd

kBT

¼ 1

8p

ð
d3r

rCa

rCc

 !T

Ah
�1
rCa

rCc

 !
þ k2

Ca

Cc

 !T

Ah
�1

Ca

Cc

 !2
4

3
5;

(11)

where the integration runs over all space and where Ah
�1 is the

inverse of Ah.
Consider finally the mixing entropy contribution Fmix in eqn (1).

We express Fmix as the sum of an ideal mixing contribution of
the mobile anions and cations and a non-ideal contribution
that depends only on the total concentration n� + n+ but is
otherwise general

Fmix

kBT
¼
ð
V

d3r n� ln
n�
n0

� �
� n� þ nþ ln

nþ
n0

� �
� nþ

�

þ g n� þ nþð Þ � n� þ nþð Þg0 2n0ð Þ
�
:

(12)

The function g(n) appears in the thermal equation of state
pV/(NkBT) = 1 � (V/N)g(N/V) + g0(N/V) of a gas that exerts a
pressure p at fixed particle number N, volume V, and tempera-
ture T. The choice g(n) = 0 leads to an ideal gas. Note that a prime
denotes the first derivative; for example g0(n0) = [dg(n)/dn]n=n0

.
The function g(n) can be used to account for finite ion sizes.
We consider two different choices, g = gCS(n) and g = gLG(n).
The first one,

gCSðnÞ ¼
gCS0 n2 4� 3gCS0 n

� �
1� gCS0 n
� �2 ; (13)

employs the Carnahan–Starling (CS) equation of state,31,33,56

which treats all mobile ions as identical spherical particles of
radius R and corresponding volume gCS

0 = 4pR3/3. The second one,

gLGðnÞ ¼
gLG0 nþ 1� gLG0 n

� �
ln 1� gLG0 n
� �

gLG0
; (14)

has been introduced by Bikerman and others;21,26 it embodies
a lattice gas model in which each cell occupies a volume
gLG

0 = (2R)3 that hosts no more than one single ion of spatial
extension 2R.

With all three contributions to the free energy in eqn (1)
being specified (see eqn (6), (11) and (12)), we can carry out
the first variation dFtot[Ce(n�,n+), Ca(n�,n+), Cc(n�,n+), n�,n+],
subject to the potentials Ce, Ca, Cc being related to the ion
concentrations through eqn (5) and (10). This results in

dFtot

kBT
¼
ð
V

d3r dn� �Ce þCa þ ln
n�
n0
þ g0 n� þ nþð Þ � g0 2n0ð Þ

� ��

þ dnþ Ce þCc þ ln
nþ
n0
þ g0 n� þ nþð Þ � g0 2n0ð Þ

� �	
:

(15)

Thermal equilibrium demands dFtot = 0, which can only be
fulfilled if each of the two expressions enclosed by square

brackets in eqn (15) vanishes identically,

�Ce þCa þ ln
n�
n0
þ g0 n� þ nþð Þ � g0 2n0ð Þ ¼ 0;

Ce þCc þ ln
nþ
n0
þ g0 n� þ nþð Þ � g0 2n0ð Þ ¼ 0:

(16)

These two, generally transcendental, equations define the two
relations n� = n�[Ce(r), Ca(r), Cc(r)] and n+ = n+[Ce(r), Ca(r),
Cc(r)] which upon insertion into the Poisson and Helmholtz
equations, eqn (5) and (10), yield a system of three differential
equations that define the mean-field potentials Ce(r), Ca(r),
and Cc(r).

Previous models that include hydration-mediated
interactions52,55 have focused on an ideal mixing free energy,
Fmix, which results from setting g(n) = 0 in eqn (12). This implies
the Boltzmann distributions n�(r) = n0eCe(r)�Ca(r) and n+(r) =
n0e�Ce(r)�Cc(r). We refer to this specific case as the Poisson–
Helmholtz–Boltzmann (PHB) approach.51 The corresponding
PHB equations result from inserting the Boltzmann distribu-
tions into the Poisson and Helmholtz equations.

Because for our geometry (see Fig. 1) all system properties
depend only on the x-coordinate, we replace the argument r by
x. That is, Ce/a/c(r) - Ce/a/c(x), and n�(r) - n�(x). Eqn (16) then
define the relations n� = n�[Ce(x), Ca(x), Cc(x)] and n+ =
n+[Ce(x), Ca(x), Cc(x)] that enter the Poisson and Helmholtz
equations

Ce
00(x) = �4plB(n+ � n�),

Ca
00 ðxÞ � k2CaðxÞ

Cc
00 ðxÞ � k2CcðxÞ

0
@

1
A ¼ �4pAh

n� � n0

nþ � n0

 !
: (17)

where a prime denotes the derivative with respect to x. These
three second-order differential equations must be solved sub-
ject to appropriate boundary conditions, which follow from
applying the Poisson and Helmholtz equations to an infinitely
small region in the vicinity of x = 0. The boundary conditions
for solving Poisson’s equation are Ce

0(x)|x-0 = �4plBse/e
and Ce

0(x)|x-N = 0, and those for solving the Helmholtz
equations are

�k
Cað0Þ

Ccð0Þ

 !
þ

Ca
0 ðxÞ

Cc
0 ðxÞ

0
@

1
A

x¼0

¼ �4pAh

s�

sþ

 !
(18)

and Ca
0(x)|x-N = Cc

0(x)|x-N = 0. The quantities s+ and
s� represent the surface densities of the sources responsible
for the hydration-mediated interaction with mobile cations
and anions, respectively. In our present work we identify the
sum s� + s+ with the density of ordered water molecules in
immediate contact to the electrode. Because the hydration-
mediated ion–surface interaction is of non-electrostatic origin,
it may be viewed as one contribution (among others, such as
dispersion forces) to specific ion adsorption. We note the
presence of the first term on the left-hand side of eqn (18).
It originates in the absence of mobile ions for x o 0,
which implies the exponential functions Ca(x) = Ca(0)ekx and
Cc(x) = Cc(0)ekx in this region.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Se

pt
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
1:

42
:1

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6cp04199j


27800 | Phys. Chem. Chem. Phys., 2016, 18, 27796--27807 This journal is© the Owner Societies 2016

Once the potentials Ce(x), Ca(x), and Cc(x) are known, we
can compute the relation between the surface charge density se

and the surface potential F(0) = kBTCe(0)/e, and from that, the
differential capacitance

Cdiff � dse
dFð0Þ: (19)

Recall that studying the influence of hydration-mediated interac-
tions on Cdiff is one of the main objectives of the present work.
Below we discuss Cdiff based on seven different mean-field models
that emerge as special cases from the formalism presented so far.
Based on the identification P-Poisson, B-Boltzmann, H-Helmholtz,
CS-Carnahan–Starling, and LG-lattice gas, we refer to these
models as: classical PB, PB-Stern, PCS-Stern, PLG-Stern, PHB,
PHCS, and PHLG. The first four models all ignore the presence
of hydration-mediated interactions. The most simple case, the
classical PB model, emerges upon assuming g(n) = 0 in eqn (12).
The ensuing differential capacitance is

Cdiff
PB ¼

eWe0
lD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ p02

p
; (20)

where we have introduced the definition p0 = 2plBlDse/e. Here,
lD = (8plBn0)�1/2 is the Debye screening length of the electrolyte.
Adding a Stern layer (that is, a planar capacitor of capacitance
CStern = eWe0/dStern, where the Stern layer thickness dStern = R
equals the ion radius R) to the classical PB model produces a
differential capacitance Cdiff

PB CStern/(Cdiff
PB + CStern). We refer to this

as the PB-Stern model. Adding a Stern layer to the Carnahan–
Starling model (that is, g(n) = gCS(n) in eqn (12)) yields a
differential capacitance Cdiff

CS CStern/(Cdiff
CS + CStern). We refer to this

as the PCS-Stern model. Note that no closed-form expression for
Cdiff

CS is available. Adding a Stern layer to the lattice gas model
(that is, g(n) = gLG(n) in eqn (12)) yields a differential capacitance
Cdiff

LG CStern/(Cdiff
LG + CStern). We refer to this as the PLG-Stern model.

Here, a closed-form expression for the differential capacitance in
the absence of a Stern layer is available,19,26

Cdiff
LG ¼

eWe0
lD

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2g

LG
0

n0p0
2 � 1

� �
e2g

LG
0

n0p0
2 � 1þ 2gLG0 n0

� �r
2gLG0 n0p0e

2gLG
0

n0p02
; (21)

where we recall gLG
0 = (2R)3 and p0 = 2plBlDse/e. The final three

models all include the presence of hydration-mediated inter-
actions but they differ in the expressions for Fmix. Using g(n) = 0
(that is, ideal mixing for Fmix) gives rise to the PHB model.
Similarly, the choices g(n) = gCS(n) and g(n) = gLG(n) are referred to
as the PHCS and PHLG models, respectively. Note that the
inclusion of hydration-mediated interactions removes the need
to explicitly add a Stern layer.55

2.2 Monte Carlo simulations

We have also carried out Metropolis Monte Carlo simulations in
the canonical ensemble for a 1 : 1 electrolyte of bulk concentration
n0 confined between two perfectly smooth and impenetrable walls
placed at x = 0 and x = H. In order to describe the same system
as in our mean-field approach, the surface located at x = 0
carries uniform surface densities of electric charges, se, and of

sources for the hydration-mediated interaction, s+ and s�. All
simulations were performed in a rectangular simulation cell of
dimensions H � L � L, with H = 30 nm and L = 10 nm. Periodic
boundary conditions are applied in the L directions, and overall
electroneutrality is ensured by the addition of neutralizing
counterions. The electrolyte solution is modeled within the
framework of the primitive model,59 where all ions are treated
as charged hard spheres of radius R immersed in a medium of
uniform dielectric constant eW. Hence, the electrostatic inter-
action energy between two distinct ions i and j is given by

Uel rij
� �

kBT
¼ zizj

lB

rij
(22)

if rij Z 2R and Uel(rij) - N otherwise. Here, zi and zj are the
respective valencies and rij is the nearest-image distance between
ions i and j. The electrostatic interaction energy of a given ion i
at distance xi away from the charged surface is

Uel xið Þ
kBT

¼ zilBseL 2 ln
di þ L

di � L

� �
� 4xi

L
arctan

L2

2xidi

� �� �
(23)

if xi Z R and Uel(xi) -N for xi o R. In eqn (23) we have defined

di �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2L2 þ 4xi2

p
.

Due to the long-range nature of the Coulomb potential, the
total electrostatic energy of our system is not only given by
the sum of Uel(rij) in eqn (22) over interactions of ions in the
central cell with each other, but also with ions in the image
cells. The same argument applies to the interaction of an ion
with the fixed charges on the surface; see eqn (23). In order to
include these contributions, we used the so-called External
Potential Method (EPM) developed by Torrie and Valleau.35

According to this method, each ion in the central cell interacts
with the image cells by means of the usual minimum image
convention and with an external electrostatic potential given by
the average ionic distributions in the image cells, including
the charges located at the surface (we assume that the ionic
distributions in the image cells are identical to those evaluated
in the central cell).30,35,38,60

To incorporate hydration-mediated interactions into our
simulations, we added the Yukawa-like interaction energies
Uhyd(rij)/kBT = ae�k(rij�a)/rij for an anion–anion pair, Uhyd(rij)/
kBT = be�k(rij�b)/rij for an anion–cation pair, and Uhyd(rij)/kBT =
ce�k(rij�c)/rij for a cation–cation pair. Similarly, for an anion
interacting with the charged surface at distance xi away, we
added the hydration-mediated interaction energy

Uhyd xið Þ
kBT

¼ 2p as�eka þ bsþekb
� �ð1

0

dr r
e�k

ffiffiffiffiffiffiffiffiffiffi
r2þxi2
p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ xi2

p
¼ 2p

k
as�eka þ bsþekb
� �

e�kxi :

(24)

The expression for a cation that interacts with the surface is
analogous, Uhyd(xi)/kBT = 2p(bs�ekb + cs+ekc) e�kxi/k. We point
out that the total interaction potentials used in the Monte Carlo
simulations between anion–anion, anion–cation, and cation–
cation pairs are identical to the respective interactions Uaa, Uac,
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and Ucc as introduced in Fig. 1, supplemented by an additional
excluded volume repulsion.

For each value of se, our simulations yield the ionic
distributions, n�(x) and n+(x). We used the corresponding charge
density e[�n�(x) + n+(x)] to numerically solve the Poisson
equation and thus to obtain the electrostatic potential Ce(x).
In order to compute the differential capacitance (Cdiff as defined
in eqn (19)), we first created a set of discrete points representing
the surface charge density, se, and the corresponding electro-
static surface potential, Ce(0) (see inset of Fig. 2). Then, the
values of Cdiff are determined using the algorithm developed by
Lamperski and Zydor.38 In Fig. 2, the results obtained from this
algorithm and those predicted by obtaining the derivative simply
through the slope of two neighboring data points (i.e., the two-
point derivative) are shown as black bullets and blue-colored bar
chart, respectively. We note that the Lamperski–Zydor algorithm
is able to smoothen fluctuations resulting from the simulations
and provides a reliable continuous derivative.

2.3 Parameter selection

The present work focuses on hydration interactions that are
symmetric. That is, the distance at which the hydration inter-
action strength equals kBT is the same for anion–anion, anion–
cation, and anion–cation pairs, implying a = b = c in eqn (8). We
also assume the ion–surface hydration interactions do not
distinguish between anions and cations; this entails s+ = s�.
The total source density s� + s+ = 5.0 nm�2 reflects the area
density of water molecules that are bound to a flat surface.55

Throughout this work (with the exception of Fig. 8) we consider
a 0.1 M salt concentration; this corresponds to a bulk concen-
tration of n0 = 0.057 nm�3 or, equivalently, to a Debye screening
length of lD = 1.0 nm. As already pointed out above, we fix the
Bjerrum length lB = 0.7 nm and the characteristic decay length
of the hydration potential k�1 = 0.3 nm.

3 Results and discussion

In the following, we present and discuss Monte Carlo simula-
tion and mean-field results for the differential capacitance Cdiff

as function of the surface charge density se, first in the absence
and then in the presence of hydration interactions.

3.1 Absence of hydration interactions

We first investigate the joint presence of electrostatic and
excluded volume interactions, yet in the absence of hydration
interactions. Fig. 3 shows Cdiff as function of the surface charge
density se for a fixed ion radius R = 0.2 nm. Monte Carlo
simulation results are displayed by bullets in Fig. 3. We observe
a characteristic camel-like shape, the origin of which has been
discussed intensively in the past.15–19 The initial growth of
Cdiff(|se|) as function of increasing magnitude of se is captured
by the classical PB model (see eqn (20)), which is shown by
the dotted line in Fig. 3. Note that for se = 0, eqn (20) predicts
Cdiff = eWe0/lD = 0.71 F m�2. After passing through a maximum,
Cdiff(|se|) decreases roughly according to Cdiff B 1/|se|. The decrease

Fig. 2 Monte Carlo simulation results for the differential capacitance Cdiff

= dse/dF(0) as function of the surface charge density se, obtained by two
different methods: the Lamperski–Zydor algorithm (black bullets) and the
two-point derivative (blue-colored bar-chart). The inset shows the varia-
tion of the dimensionless electrostatic surface potential, Ce(0) = eF(0)/kBT,
as function of se. (Abscissa labels in the inset and main figure are identical.)
The blue-colored bar-chart illustrates the intervals used for the two-point
derivative. The displayed example is based on an ion radius of R = 0.2 nm
and the absence of hydration interactions (a = b = c = 0).

Fig. 3 Differential capacitance Cdiff as function of the surface charge
density se. Filled circles are results obtained by Monte Carlo simulations.
The dotted, solid, dashed, and dash-dotted black lines correspond to the
PB, PB-Stern, PCS-Stern, and PLG-Stern models, respectively. The thick-
ness of the Stern layer, dStern = R, is equal to the ion radius R = 0.2 nm. The
solid gray line is the result predicted by the approximation of dense
ion packing, Cdiff = 2e0eW/[(2R)3(se/e)]. The inset shows Monte Carlo
simulation results of the counterion concentration profiles n�(x) for
various charge densities: se = 6.4 e nm�2 (red), se = 3.2 e nm�2 (green),
and se = 1.6 e nm�2 (blue). The same color scheme is used to mark the
corresponding values of Cdiff in the main plot.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Se

pt
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
1:

42
:1

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6cp04199j


27802 | Phys. Chem. Chem. Phys., 2016, 18, 27796--27807 This journal is© the Owner Societies 2016

results from packing of the counterions due to their finite size.
We capture the 1/se-dependence by a simple model in which
the counterions are forced to adopt a uniform density 1/(2R)3,
leading for a surface with charge density se to a counterion layer
thickness d = (2R)3se/e. This implies a differential capacitance
Cdiff = 2e0eW/d = 2e0eW/[(2R)3(se/e)], which is shown in Fig. 3 by
the gray solid lines in the large |se|-region. The formation of
counterion layers for large |se| is also demonstrated in the inset
of Fig. 3, which displays Monte Carlo simulation results of
n�(x) for the three specific values: se = 1.6 e nm�2 (blue curve),
se = 3.2 e nm�2 (green), and se = 6.4 e nm�2 (red). A second layer
of counterions in the latter case is visible at x = 3R = 0.6 nm.

One striking feature of Fig. 3 is the inability of the classical
PB model (dotted line, calculated according to eqn (20))
to reproduce the simulation results of Cdiff in the limit of
small |se|. Even upon the addition of a Stern layer of thickness
dStern = R (the PB-Stern model – indicated by the solid line in
Fig. 3), the discrepancy between simulation and theoretical
model persists. Combining the Stern layer with a modified
Poisson–Boltzmann model – namely the PCS-Stern model (the
dashed line in Fig. 3) or the PLG-Stern model (the dash-dotted
line in Fig. 3) – does produce a maximum in Cdiff for large |se|
but does not alter the prediction for Cdiff at small |se|. The
inability of the PB-Stern, PCS-Stern, and PLG-Stern models to
reproduce Cdiff for small |se| originates in the ad hoc assump-
tion of adding a Stern layer whose thickness does not adjust as
function of se. We demonstrate below that our approach of
incorporating hydration-mediated interactions in a consistent
manner into the ion–ion interaction potential removes the
need to invoke a Stern layer and leads to excellent agreement
of mean-field predictions with the Monte Carlo simulation
results. In particular, unlike for the exclusive presence of
Coulomb and excluded volume interactions, where density
functional theory is an established method to predict the
differential capacitance,57,61 the additional presence of a soft
hydration potential empowers mean-field models to success-
fully capture the behavior of Cdiff.

While Fig. 3 applies to a fixed ion radius of R = 0.2 nm, in
Fig. 4 we show Cdiff(se) for the three different choices R = 0.2 nm
(black triangles), R = 0.4 nm (red diamonds), and R = 0.6 nm
(green bullets), in each case together with a color-matching
solid and dashed line that correspond to the PCS-Stern and
PLG-Stern approaches, respectively. We first note that our
simulations predict the maximum of Cdiff(|se|) to move from
a nonvanishing value of se at low volume density of the ions
(small R) to se = 0 for high volume density (large R). This
transition from a ‘‘camel’’-shape to a ‘‘bell’’-shape62 is consistent
with predictions from theoretical modeling such as density func-
tional theory,62,63 modified Grahame equations,19 and Monte Carlo
simulations performed by Lamperski and coworkers.57,61,64,65

For |se| { 1 the two mean-field predictions coincide, and
they are identical to the PB-Stern model. Due to the varying
thickness dStern = R of the Stern layer, the differential capaci-
tance of the PB-Stern model varies with R according to
Cdiff = eWe0/(R + lD) for se = 0. However, our simulation results
suggest Cdiff(se = 0) = 0.5 F m�2, virtually independent of R.

Here again, as in Fig. 2, the Stern layer approach is not capable
of reproducing the simulation results in the limit of small |se|.
To rationalize for why Cdiff(se = 0) = 0.5 F m�2 remains indepen-
dent of R we refer to our discussion in Fig. 7 below. From there
it will become apparent that the predicted decrease of Cdiff

for growing R according to the Stern model is counteracted
(and effectively compensated) by a compression of the EDL due
to a larger osmotic pressure exerted by the larger ions. Only
when hydration interactions are accounted for does mean-field
modelling appear to capture this mechanism.

In the other limit, that of large |se|, we observe smaller Cdiff

for larger ion radius R. In addition, while the PCS-Stern model
qualitatively but not quantitatively agrees with the predictions
of our simulations, the PLG-Stern model exhibits remarkably
good agreement, and even better so with growing ion radius R.

3.2 Presence of hydration interactions

In the following, we discuss the influence of including hydration-
mediated interactions on the differential capacitance Cdiff. Recall
that we model hydration interactions as a soft, Yukawa-like, pair
potential that is added to the Coulomb potential between any two
mobile ions and between mobile ions and the surface. Fig. 5
displays Cdiff as function of se for fixed R = 0.2 nm. The three
differently colored sets of data points represent predictions
from Monte Carlo simulations: a = b = c = 0.2 nm (black bullets),
a = b = c = 0.4 nm (red diamonds), and a = b = c = 0.6 nm (green
triangles). Clearly, growing hydration repulsion leads to larger
ion–surface and ion–ion distances; this decreases Cdiff irrespec-
tive of se. In the limit of large |se|, all simulation results
approach the limiting behavior Cdiff E 2e0eW/[(2R)3(se/e)] (marked
by the gray curve in Fig. 5), where hydration interactions become

Fig. 4 Differential capacitance Cdiff as function of the surface charge
density se for various ion radii R when only electrostatics and finite ion size
effects (but no hydration-mediated interaction, a = b = c = 0) are taken
into account. Symbols mark results obtained from Monte Carlo simula-
tions. Solid and dashed lines correspond to the PCS-Stern and PLG-Stern
models, respectively. The Stern layer thickness is dStern = R. Different colors
correspond to R = 0.2 nm (black), R = 0.4 nm (red), and R = 0.6 nm (green).
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irrelevant because ions are densely packed. Note that the soft
nature of the hydration interactions shifts the maximum of
Cdiff(se) to larger |se|.

Fig. 5 also shows results derived from the PHB (color-matching
solid lines), PHCS (dashed lines) and PHLG models (dash-dotted
lines). For |se| { 1, the different mean-field models (PHB, PHCS,
and PHLG) coincide with each other and agree well with the Monte
Carlo simulation results. We emphasize that no Stern layer is
added. Instead, an ion depletion zone emerges naturally from the
hydration-mediated repulsion between the ions and the surface.55

The effective thickness of the ion depletion zone adjusts so as to
minimize the total free energy. As a result, the PHB model
reproduces the trends of the simulation results for |se| { 1 quite
accurately. For large |se|, ion–ion correlations and ion packing
effects become important. They can be described approximately by
the PHLG model (the dash-dotted lines in Fig. 5), which predicts
the function Cdiff(|se|) to pass through a maximum. With growing
a = b = c the maximum shifts to larger surface charge density |se|.
In other words, for stronger hydration-mediated interactions, Cdiff

continues to grow up to higher |se|. This indicates that the soft,
hydration-mediated interactions render the diffuse counterion
cloud more compressible, thus allowing its effective thickness to
decrease as function of |se|. However, for sufficiently large se, Cdiff

becomes independent of our choices for a = b = c, thus evidencing
the saturation of counterion packing near the surface. Fig. 5 also
shows the prediction of the PHB model (solid lines) and for
R = 0.2 nm the prediction of the PHCS model (black dashed line).

In Fig. 6 we study how changing the ion radius R affects Cdiff

at fixed a = b = c = 0.6 nm. Here again, Monte Carlo simulation

results are marked by symbols as indicated in the figure legend.
The color-matching solid and dashed lines display Cdiff accord-
ing to the PHCS and PHLG models, respectively. It is notable
that in the limit of small |se| our Monte Carlo simulations
predict Cdiff to increase with growing ion radius R. Based on the
simple Stern layer model, one would expect Cdiff B 1/R, which
is in contrast to what is observed in the simulations. The PHLG
model (dashed lines) predicts virtually no dependence of Cdiff

on R for small |se|, again in contrast to the simulation results.
However, the PHCS model correctly captures the increase of
Cdiff as function of R.

The mechanism that explains why Cdiff increases with R for
small |se| originates in the increasing osmotic pressure of the
ions in the bulk. The larger bulk pressure due to larger ion
radius R tends to compactify the EDL and thus increases Cdiff.
This assertion is supported by the upper diagram of Fig. 7,
which shows the local anion concentration distribution n�(x)
for fixed se = 0. The black symbols correspond to R = 0.2 nm
with a = b = c = 0 (filled circles) and a = b = c = 0.6 nm (open
circles). The green symbols correspond to R = 0.6 nm with
a = b = c = 0 (filled circles) and a = b = c = 0.6 nm (open circles).
Note that anion and cation profiles are identical for se = 0;
no excess charge is present in this case at any point in the
electrolyte. Clearly, the larger ions tend to accumulate more
near the surface. In the absence of hydration-mediated inter-
actions, the enhanced concentration of the larger ions com-
pensates with the larger distance of the ion center to the surface
so that Cdiff remains virtually unchanged (see Fig. 4). In the
presence of soft, hydration-mediated interactions, the increase
of the concentration n�(x) near the surface for larger R causes
Cdiff to increase.

Fig. 5 Differential capacitance Cdiff as function of the surface charge
density se for R = 0.2 nm and different values of a = b = c = 0.2 nm (black
bullets), a = b = c = 0.4 nm (red diamonds), and a = b = c = 0.6 nm (green
triangles). Monte Carlo simulation results are marked by the different
symbols as indicated. The color-matching solid, and dash-dotted lines
correspond to the PHB and PHLG models, respectively. For R = 0.2 nm we
have also added a dashed line (in black), which displays the prediction
of the PHCS model. The solid gray line marks the limiting behavior
Cdiff = 2e0eW/[(2R)3(se/e)].

Fig. 6 Differential capacitance Cdiff as function of the surface charge
density se when hydration-mediated interactions are present with a = b =
c = 0.6 nm. Different colors correspond to different ion size R according to
R - 0 nm (blue), R = 0.2 nm (black), R = 0.4 nm (red), R = 0.6 nm (green),
and R = 0.8 nm (orange). Monte Carlo simulation results are marked by the
different symbols as indicated. The color-matching solid, and dashed lines
correspond to the PHCS and PHLG models, respectively.
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We address the question why for small and fixed |se| the
PHCS model, but not the PHLG model, captures the increase
of Cdiff as function of R. The PHCS model is based on the
Carnahan–Starling equation of state for a bulk fluid of
spherical particles of radius R; it describes the bulk osmotic
pressure of the finite-sized ions quite accurately. This is in
contrast to the more restrictive PHLG model, which confines
the number of states by introducing a lattice model where each
cell can host exactly one or no particle. This results in a larger
osmotic pressure of the particles in the PHCS model as

compared to the PHLG model. More specifically, expanding
the Carnahan–Starling equation of state31–33 pV/(NkBT) =
(1 + Z + Z2 � Z3)/(1 � Z)3, with Z = (4/3)pR3N/V, in powers of
the particle density N/V up to second order yields

pV

NkBT
¼ 1þ 16p

3

N

V
R3: (25)

The same expansion for the lattice gas equation of state
pV/kBT = �(V/v)ln(1 � Nv/V), with v = (2R)3, leads to

pV

NkBT
¼ 1þ 4

N

V
R3: (26)

Hence the osmotic pressure exerted by the ions in the bulk is
greater by roughly a factor of 4 when the PHCS model is
compared to the PHLG model. This provides a rationale for
the PHCS model being preferable over the PHLG model when
predicting Cdiff in the limit of small surface charge density |se|.
Indeed, the black (in the limit R - 0) and green (for R = 0.6 nm)
dashed lines in the upper diagram of Fig. 7, which both refer to
the PHCS model, differ only slightly, but they qualitatively follow
the trends of the Monte Carlo simulations (larger counterion
concentration close to the surface for larger ion radius R).

We also discuss the behavior of Cdiff(se) in Fig. 6 for large
|se|. In the limit R - 0 both the Monte Carlo simulations (filled
blue squares) and the PHB model (blue solid line) predict
Cdiff(|se|) to monotonically increase. This is reminiscent of
the classical PB model (see eqn (20)). Indeed, as se grows to
large positive values, the anion-to-anion distances in the EDL
decrease until they are small compared to 1/k, turning the
Yukawa into a Coulomb interaction. The total anion–anion pair
interaction is then lB/r + a/r, which implies similarity of the
simulation data and the PHB prediction to the classical PB
model, yet with a rescaled Bjerrum length lB - lB + a for large
se. As R grows, the simulation data predict Cdiff(|se|) to pass
through a maximum, which is captured better by the PHLG
model than by the PHCS model. For R = 0.8 nm (the orange star
symbol in Fig. 6), Cdiff(|se|) decreases monotonously, which the
PHLG model, but not the PHCS model, is able to reproduce. To
understand the reason, we display in the middle and lower
diagrams in Fig. 7 the local anion distribution n�(x) as pre-
dicted by Monte Carlo simulations (with R = 0.2 nm for the
open black circles and R = 0.6 nm for the open green circles)
and according to the PHLG model (dash-dotted lines in the
middle diagram) and PHCS model (dashed lines in the lower
diagram). The black and green colors refer to R = 0.2 nm and
R = 0.6 nm, respectively. In addition, all data in the middle
and lower diagrams of Fig. 7 refer to a = b = c = 0.6 nm and to
se = 1.0 e nm�2. Regarding the Monte Carlo simulation data, we
observe that the larger counterions are more condensed onto
the surface and form a second layer near x = 2 nm. The more
pronounced condensation of the larger counterions results
from the larger osmotic pressure of the ions in the bulk.
Because at high ion concentrations in the EDL, ion–ion correla-
tions become important, mean-field theory cannot be expected
to even qualitatively capture the structural details of the counter-
ion distribution n�(x). This is indeed not the case in Fig. 7,

Fig. 7 Counterion concentration profile n�(x) near the charged planar
surface, located at x = 0, for se = 0 (upper diagram) and se = 1.0 e nm�2

(middle and lower diagrams). Black and green circles/curves refer to
R = 0.2 nm and R = 0.6 nm, respectively. Monte Carlo simulation data
are indicated by filled circles for a = b = c = 0 and by open circles for
a = b = c = 0.6 nm. Note that the Monte Carlo simulation results in the
middle and lower diagrams are identical. In the upper and lower diagrams,
dashed lines refer to the PHCS model. In the middle diagram, dash-dotted
lines correspond to the PHLG model. Dotted horizontal lines at n = n0 =
0.057 nm�3 in the upper diagram correspond to the PB-Stern model.
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neither for the PHLG (middle diagram) nor the PHCS (lower
diagram) model. However, the broader and more smeared out
distribution for n�(x) predicted by the PHLG model appears
to better account for the formation of a second (and other
subsequent) ionic layers, thus placing the prediction for Cdiff

closer to the Monte Carlo simulation data than the PHCS model
is able to accomplish.

We conclude with a brief discussion about how Cdiff depends
on the salt concentration n0. So far, all our results were derived
for n0 = 0.1 M. In Fig. 8 we redisplay Monte Carlo simulation
results for n0 = 0.1 M (filled symbols) and compare them with
results for n0 = 1 M (open symbols), where the red and green
coloring corresponds to a = b = c = 0.4 nm and a = b = c = 0.6 nm,
respectively. We first recall that for highly charged surfaces
counterions aggregate into a dense condensate, implying
Cdiff B se

�1. This limiting behavior is (again, as already in Fig. 3
and 5) shown as a solid gray line. The dense ion packing is
independent of both the salt concentration and the degree of
hydration repulsion. Hence, all simulation data for Cdiff fall onto a
single curve at high se. The PHLG model, which is shown as color-
matching (red or green) dashed (for n0 = 0.1 M) and dotted (for
n0 = 1 M) lines, captures this behavior, yet fails to quantitatively
predict the maximum of Cdiff. For small se the differential
capacitance Cdiff grows with the salt content. As we have already
observed in Fig. 6, the predictions of the PHCS model (the solid
lines in Fig. 8) agree more closely with the simulation data
than the predictions of the PHLG model. We note that for
n0 = 0.1 M both simulation and mean-field description predict
the minimum of Cdiff at se = 0. In contrast, for n0 = 1 M the
PHCS model predicts a (very shallow) minimum of Cdiff at

around se/e = 0.1 nm�2, which qualitatively agrees with the
simulation data. The corresponding minimum for the PHLG
model remains located at se = 0. So, here again, the PHCS and
PHLG models become the more favorable mean-field descrip-
tion in the low and high se-regime, respectively.

4 Conclusion

In this work we have expanded our theoretical approach of
incorporating hydration-mediated interactions into the mean-
field Poisson–Boltzmann formalism. We have not only incor-
porated distinct hydration-mediated interactions for each pair
of interacting ions, i.e., anion–anion, anion–cation and cation–
cation, but we have also taken into account the finite size of the
ions by using two different mean-field approaches based on the
Carnahan–Starling equation of state and the lattice gas model.

We have studied the influence of hydration-mediated inter-
actions on the differential capacitance using Monte Carlo
simulations and compared them with our mean-field models.
When hydration interactions are accounted for, a thin charge-
depleted region that separates the surface from the diffuse part
of the EDL emerges naturally.55 The electric potential in this
thin region drops linearly, as it does in a Stern layer. However,
unlike the thickness of the classical Stern layer, the charge-
depleted zone is able to adjust its spatial extension. As a result
we find good agreement of our simulation results with the
mean-field predictions, for small surface charge density if a
non-ideal mixing entropy according to the Carnahan–Starling
equation is employed and for large surface charge density on
the basis of the lattice gas approach.

Thus far, we have applied our mean-field model to sym-
metric hydration-mediated interactions, where all ion pairs
exhibit the same interactions irrespective of their chemical
nature. We plan to also investigate asymmetric systems with
three independent interaction parameters, a, b, and c. Note
that, so far, no dielectric saturation effects are taken into
account in our model; the assumption of a uniform dielectric
background is, in fact, what enabled us to perform Monte Carlo
simulations conveniently. Dielectric saturation effects further
decrease the differential capacitance.57 In the most simple case,
for the PB-Stern model, the differential capacitance Cdiff

PB CStern/
(Cdiff

PB + CStern) with CStern = eSterne0/dStern obviously decreases if
the dielectric constant eStern inside the Stern layer is reduced.
In the future, the combined effects of hydration-mediated
ion–ion interactions and concomitant changes in the local (or
non-local) dielectric constant should also be addressed.
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J. Phys. Chem. B, 2006, 110, 1326–1331.

31 T. Boublk, J. Chem. Phys., 1970, 53, 471–472.
32 G. Mansoori, N. Carnahan, K. Starling and T. Leland Jr,

J. Chem. Phys., 1971, 54, 1523–1525.
33 L. Lue, N. Zoeller and D. Blankschtein, Langmuir, 1999, 15,

3726–3730.
34 D. Antypov, M. C. Barbosa and C. Holm, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2005, 71, 061106.
35 G. Torrie and J. Valleau, J. Chem. Phys., 1980, 73, 5807–5816.
36 M. Valisko, D. Henderson and D. Boda, J. Phys. Chem. B,

2004, 108, 16548–16555.
37 P. Zarzycki, J. Colloid Interface Sci., 2006, 297, 204–214.
38 S. Lamperski and A. Zydor, Electrochim. Acta, 2007, 52,

2429–2436.
39 W. Kunz, Specific ion effects, World Scientific, 2010, vol. 325.
40 J. N. Israelachvili and H. Wennerstrom, J. Phys. Chem., 1992,

96, 520–531.
41 I. Kalcher and J. Dzubiella, J. Chem. Phys., 2009, 130, 134507.
42 I. Kalcher, J. C. F. Schulz and J. Dzubiella, Phys. Rev. Lett.,

2010, 104, 097802.
43 J. I. Kilpatrick, S.-H. Loh and S. P. Jarvis, J. Am. Chem. Soc.,

2013, 135, 2628–2634.
44 I. Siretanu, D. Ebeling, M. P. Andersson, S. S. Stipp,

A. Philipse, M. C. Stuart, D. Van Den Ende and F. Mugele,
Sci. Rep., 2014, 4, 4956.

45 T. Baimpos, B. R. Shrestha, S. Raman and M. Valtiner,
Langmuir, 2014, 30, 4322–4332.

46 P. Koelsch, P. Viswanath, H. Motschmann, V. L. Shapovalov,
G. Brezesinski, H. Mohwald, D. Horinek, R. R. Netz,
K. Giewekemeyer, T. S. Alditt, H. Schollmeyer, R. von Klitzing,
J. Daillant and P. Guenoun, Colloids Surf., A, 2007, 303,
110–136.

47 D. Ben-Yaakov, D. Andelman, D. Harries and R. Podgornik,
J. Phys.: Condens. Matter, 2009, 21, 424106.

48 J. Stafiej, D. Di Caprio and J. Badiali, J. Chem. Phys., 1998,
109, 3607–3618.

49 Y. Burak and D. Andelman, Phys. Rev. E: Stat. Phys., Plasmas,
Fluids, Relat. Interdiscip. Top., 2000, 62, 5296.

50 E. Ruckenstein and M. Manciu, Langmuir, 2002, 18, 7584–7593.
51 K. Bohinc, A. Shrestha and S. May, Eur. Phys. J. E: Soft Matter

Biol. Phys., 2011, 34, 1–10.
52 K. Bohinc, A. Shrestha, M. Brumen and S. May, Phys. Rev. E:

Stat., Nonlinear, Soft Matter Phys., 2012, 85, 031130.
53 J. Israelachvili and D. Sornette, J. Phys., 1985, 46, 2125–2136.
54 S. Marcelja and N. Radic, Chem. Phys. Lett., 1976, 42, 129–130.
55 M. A. Brown, G. V. Bossa and S. May, Langmuir, 2015, 31,

11477–11483.
56 N. F. Carnahan and K. E. Starling, J. Chem. Phys., 1969, 51,

635–636.
57 C. W. Outhwaite, S. Lamperski and L. B. Bhuiyan, Mol.

Phys., 2011, 109, 21–26.

PCCP Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Se

pt
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
1:

42
:1

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6cp04199j


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 27796--27807 | 27807

58 A. Mirzoev and A. P. Lyubartsev, Phys. Chem. Chem. Phys.,
2011, 13, 5722–5727.

59 T. L. Hill, An introduction to statistical thermodynamics,
Courier Corporation, 2012.

60 B. Jönsson, H. Wennerstroem and B. Halle, J. Phys. Chem.,
1980, 84, 2179–2185.

61 S. Lamperski and D. Henderson, Mol. Simul., 2011, 37,
264–268.

62 D. Jiang, D. Meng and J. Wu, Chem. Phys. Lett., 2011, 504,
153–158.

63 D. Henderson, S. Lamperski, Z. Jin and J. Wu, J. Phys.
Chem. B, 2011, 115, 12911–12914.

64 S. Lamperski, C. W. Outhwaite and L. B. Bhuiyan, J. Phys.
Chem. B, 2009, 113, 8925–8929.

65 S. Lamperski, M. Płuciennik and C. W. Outhwaite, Phys.
Chem. Chem. Phys., 2015, 17, 928–932.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

1 
Se

pt
em

be
r 

20
16

. D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
1:

42
:1

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6cp04199j



