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We investigate the ensemble and time averaged mean squared displacements for particle diffusion in a
simple model for disordered media by assuming that the local diffusivity is both fluctuating in time and
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has a deterministic average growth or decay in time. In this study we compare computer simulations of
the stochastic Langevin equation for this random diffusion process with analytical results. We explore
the regimes of normal Brownian motion as well as anomalous diffusion in the sub- and superdiffusive

regimes. We also consider effects of the inertial term on the particle motion. The investigation of the
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|. Introduction

The diffusion of a tracer particle is typically characterised in
terms of the mean squared displacement (MSD)

(¥*(1)) = szP(x, f)dx = 2K, ¢ (1)

corresponding to the second moment of the probability density
function P(x,?) to find the particle at position x at time ¢. When
the exponent y = 1 the law (1) describes normal Brownian
diffusion, otherwise we speak of anomalous diffusion. In the
latter case, the generalised diffusion coefficient K, has the
physical dimensions cm?® s™7, and we distinguish subdiffusion
(0 < y < 1) and superdiffusion (y > 1) depending on the value
of the anomalous diffusion exponent 7.

Following a surge in microscopic techniques, diffusive
phenomena of passive tracer particles can now be monitored at
unprecedented resolution.” Thus, for instance, the hydrodynamic
backflow effects of a Brownian particle could be directly probed.’?
Even more remarkable is the rapidly growing number of experi-
mental evidence for anomalous diffusion in dense fluids* as well as
in living biological cells.”*° The motion of various endogenous and
artificial tracers in live cells was shown to be subdiffusive."" "
However, when active dynamics such as driving by molecular
motors or cytoplasmic streaming are involved, superdiffusion
may also be observed."* Massive computer simulations of
pure and protein-crowded lipid bilayer membranes demonstrate
transient anomalous diffusion of both lipids and proteins, the
crossover to normal diffusion being delayed with increasing
disorder."'° In the membranes of living cells anomalous diffusion
is even observed on macroscopic time scales.'”” ™ As a general
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resulting diffusion is performed for unconfined and confined motion.

physical principle for anomalous diffusion various form of
crowding of the environment are considered.>*~>> We note that
anomalous diffusion also occurs on the level of entire organisms,
such as the subdiffusion of bacteria cells in biofilms*® or the
superdiffusion of hydra or protozoa.**

Several additional studies of crowded in vitro systems
demonstrate the existence of non-Fickian and/or non-Gaussian
motion, for instance the glassy dynamics in membrane domains,*
confined diffusion of water molecules in soft environments,>®
polymer diffusion on nanopillar-structured surfaces,” inter-
mittent molecular hopping on solid-liquid interfaces,* diffusion
of colloidal spheres in dense crowded suspensions® and
glasses,*®*" particle diffusion in porous media with heterogeneous
and position-dependent mobilities,>* and the transport of
contaminants in porous and fractured geological formations.*?
Concurrently the existence of anomalous yet Brownian diffusion—a
linear time dependence of the MSD (1) accompanied by signifi-
cantly non-Gaussian (exponential or stretched exponential) prob-
ability density P(x,f)—was demonstrated for the motion of
colloidal beads along linear phospholipid bilayer tubes,*>
particle dynamics in hard sphere colloidal suspensions,’® and
the diffusion of nanoparticles in nanopost arrays.*”

Brownian motion is bound to the Gaussian shape of the
probability density function by the spell of the central limit
theorem and thus fully characterised by the second moment (1).
In contrast, anomalous diffusion dynamics is inherently non-
universal, and therefore a large variety of anomalous diffusion
models exists (also with non-Gaussian probability densities),
depending on the exact physical circumstances defining the
dynamics.">”'° To name but a few of these anomalous diffusion
processes we recall continuous time random walks with scale
free trapping time distributions*® and a potential additional
noise source,*® general trapping models,*° correlated diffusion
processes,*™** fractional Brownian motion** and generalised
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43746 as well as diffusion in disordered
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Langevin equation motion,
media and on fractal structures.
Here we focus on models based on randomly and/or deter-
ministically varying diffusion coefficients which have recently
been under intense study. We show that when the diffusion
coefficient varies randomly such that its distribution has a
finite width, normal diffusion emerges in the long time limit.
We analyse these random diffusion processes (RDPs) in terms of
the MSD and time averaged MSD (typically evaluated in single
particle tracking and simulations studies), for both unconfined
and confined diffusion. In addition, we quantify the degree of
randomness between different individual trajectories.

In Section II we provide a concise overview of heterogeneous
diffusion processes, followed by a definition of the various
observables in Section III. In Section IV we present the details
of the specific model investigated here and the numerical
scheme used to simulate the RDPs. We then present the main
results of our calculations for the ensemble averaged MSD, time
averaged MSD, probability distribution function P(x,t), and the
ergodicity breaking parameter of RDPs in Sections V and VI,
respectively, for massless and massive particles. We consider
the situation both in the absence and in the presence of an
external confinement. Section VII summaries our findings and
discusses their possible applications and generalisations.

ll. Heterogeneous mobility: models
and examples
A. Random diffusivity models

For massless particles the study of normal and anomalous
diffusion in the presence of random diffusivity fields recently
attracted considerable attention.'®**">* Several models assume
that the instantaneous diffusion coefficient D is governed by a
steady state distribution p(D) in an annealed fashion, that is,
the instantaneous value of D is independent of the actual
particle position x. Particular attention received the idea of a
diffusing diffusivity introduced by Chubynsky and Slater.>"
They assume an exponential distribution

p(D) = Dy~ exp[—D/Dq] (2)

and weigh the standard Gaussian P(x,D,t) = (4nDt)~ " exp(—x*/[4Dt])
with this function, B(x,7) = ["p(D)P(x, D, 1)dD, to obtain the
exponential probability distribution function (PDF)

X

N v G)

The characteristic decay length of this PDF grows with the
diffusion time as ~¢"2,** but the MSD grows linearly with time,
that is, follows eqn (1) with y = 1 and K, = D,.”" Other than
exponential diffusivity distributions—for instance, power-law
forms of p(D)—were shown to lead to subdiffusive and non-
ergodic MSD behaviour.>® After the current manuscript was
submitted, the authors became aware of the simulation-based
study® of particle diffusion in rough energy landscapes with
both Gaussian and Gamma distributed local energy values.

‘B(X, t) =
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Dynamical heterogeneities—as reflected in the above assumption
of a random diffusivity—are considered a characteristic property of
systems such as supercooled or glassy liquids.**>>® Quite broad
distributions of particle diffusivities were detected in a number of
living systems, for instance, for the motion of pathogen receptors on
two dimensional cell membranes'® (see also ref. 59), the motion of
Cajal bodies in eukaryotic nuclei,”® one dimensional diffusion of
repressor proteins on the DNA,"* and for the motion of proteins
along the corrugated landscape created by the DNA sequence.®* In
these systems, the inherent stochasticity of the diffusive properties of
a tracer particle as well as the heterogeneities of its environment
contribute to the observed distribution of diffusivities subsumed in
the distribution p(D).

The reader is particularly referred to the characterisation of
the dynamical spreading of a population of nematode worms,
both in homogeneous and heterogeneous environments.®*
Other examples of living systems with diffusing individuals
obeying non-Gaussian distributions of diffusivities, speeds of
motion v, or turning angles are also mentioned in this study.
Hapca et al.®* state that the anomalous diffusion monitored in
the heterogeneous populations of worms can be solely due to
fat-tailed, e.g.,, Gamma distributed®® forms of diffusivities,
while the motion of each individual remains Brownian. This
study served as a strong biological motivation for us in trying to
unveil the properties of particle diffusion with a given time
dependent form of p(D,t).

Also note that fat-tailed leptokurtic distribution of particle
mobilities—often occurring in population of individuals of a
species—can ensure a facilitation of their colonial invasion,**
as compared to the standard Brownian diffusion law of spreading.
Such skewed distributions p(D) or p(v) (of the particle speeds) can
originate from medium heterogeneities when the organisms
explore different regions of space with different mobilities. The
notion of fat-tailed distributions and faster than standard front
propagation emerges also in long-distance dispersal of plants®®®”
and pollen,®® in patterns of fish movements,* as well as in rare
event driven spreading of plant pathogens.”

B. Deterministic variation of the diffusivity with position or
time

Following experimental observations of deterministic gradients
of the local diffusivity in both pro- and eukaryotic cells’"”> and
the existence of thermal gradient conditions,”® the model of
heterogeneous diffusion processes (HDPs) with a power-law,
exponential, and logarithmic form for D(x) was recently intro-
duced by the authors;”*7¢ see also ref. 77-80. These Markovian
processes based on a Langevin description with multiplicative
noise exhibit anomalous diffusion and weak ergodicity
breaking.”*”’® The latter emerges due to the fact that even in
the limit of long trajectories time and ensemble averages of
physical observables do not coincide,*® see below. Models with
a power-law time dependence

D(t) ~ ¢ @)

of the diffusivity exist, the so-called scaled Brownian motion
(SBM).®#'"%” SBM was originally introduced by Batchelor in the
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description of Richardson turbulence.®® Note that in the context
of such highly non-stationary processes the degree of ergodicity
breaking is controlled via introducing a time- or length-
dependent scale into the problem.*>* A combined space-time
diffusivity dependence of the form D(x,t) ~ |x|’#~* was also
investigated.’®°> Aged and confined versions of these processes
were recently considered as well.”>*® Here ageing refers to the
explicit dependence of the process on the overall time span of its
evolution, as expected for non-stationary processes. The limiting
cases with scaling exponent  — 2 for HDPs and o — 0 for SBM
were shown to lead, respectively, to an ultrafast (exponential)
and ultraslow (logarithmic) MSD growth with time.*°°

C. Massless versus massive particles

For massive particles, the situation in anomalous diffusion is often
less clear. While the underdamped limit of standard Brownian
motion®” and of fractional Langevin equation motion*® are well
understood, for other anomalous diffusion processes these limits
and general solutions are just emerging. In particular, for SBM it
was recently shown that the long time limit of underdamped
motion (including the inertia term) in general does not correspond
to the overdamped limit of the same motion.”® Also, the recent
study® addresses a giant particle diffusion in the underdamped
limit with a temperature dependent diffusion coefficient and in the
presence of a bias.

One purpose of the current study is to investigate RDPs for
massive and massless particles. A growing interest in the diffusive
behaviour of tracked particles combined with the unprecedented
precision of experimental observations, in particular, at short times
for the diffusion of small particles in living cells,'® pose a need for
the development of new and more flexible models of stochastic
processes. Thus, a larger pool of theoretical models is necessary for
quantitative descriptions of these systems, with possibly fewer
number of model parameters.

Some implications of a finite particle mass for diffusion
processes with position dependent diffusivity of the form
D(x) ~ |x|¥ were recently examined.’® The reader is also
referred to the studies'®'® regarding the inertial Langevin
dynamics in media with space inhomogeneous friction, and
conventions of how to interpret the associated multiplicative
stochastic equation as well as the existence of fluctuation—
dissipation relations for such systems. In what follows, we refer
to the diffusion coefficient D as to local variable in space and
time, rather as to a long time asymptote of the Einstein
relation, see the discussion in ref. 103.

lll. Observables of diffusion processes

Anomalous diffusion processes can be classified by the MSD
diffusion exponent y. In single particle tracking and simula-
tions studies garnering few but long individual time series x(¢)
of the particle position the time averaged MSD®*®

_ 1 T—4 5
32(4) = 7J [x(t + A) — x(1)]dt (5)
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is typically employed. Here T is the total length of the trajectory
(observation time) and 4 is the lag time. Note that while the
ensemble averaged MSD (1) is a spatial average at a particular
time instant ¢, the time averaged MSD (5) for any given lag time
4 is taken over the entire history of the trajectory x(f). As usual,
ensemble averaging is denoted hereafter by angular brackets, while
time averaging is indicated by the overline. To obtain smoother
curves for the time averaged MSD an additional average is taken
over N trajectories, defining the mean time averaged MSD*®

(7@ -+ > 5, ©)
i=1

Ergodicity in the Boltzmann-Khinchin sense typically
assumed in equilibrium statistical mechanics would imply
the equivalence of ensemble and time averaged MSD in the

limit of long measurement times, lim 62(4) = (x*(4)). Following
—00
Bouchaud'®* the breakdown of this relation is referred to as
weak ergodicity breaking,>®1057108
lim 62(4)# (x*(4)). (7)
T—o0
Continuous time random walks and HDPs are known to be
weakly non-ergodic,® while diffusion on fractals is ergodic on
the infinite cluster but not on the entirety of all clusters.*® In
contrast, other diffusive processes such as fractional Brownian
motion and SBM are only marginally non-ergodic,®®"8¢-87:109-113
A distinctive measure of non-reproducibility of individual time
averaged MSD traces is the ergodicity breaking parameter'®®

EB(4) = (£*(4)) — 1 (8)

based on the dimensionless ratio &(4) = 3%(4)/(*(4)
quantifying the spread of individual time averaged MSDs about
their mean (6). Typically EB of a weakly non-ergodic process
decays to zero with increasing trace length slower than for the
standard Brownian motion,*®**?

Jim EBpui(4) = o )

Or, EB may even attain a finite value as 4/T — 0, for instance, for
HDPs and continuous times random walks.®7*106198:111 often,
also the ratio of the time and ensemble averaged MSDs

£B(4) = (F(d)) [ (¥(4))

115

(10)
provides additional information about the ergodic properties of
the diffusion process.
IV. The random diffusivity model

In this section we describe the details of RDPs. As a generalisation
of eqn (2), the instantaneous value of the diffusion coefficient on
each simulation step is independently chosen from the Rayleigh
distribution

(11)
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The mean particle diffusivity is then given by

(D) = /n/2x D,

and the diffusivity variance is ((D— (D))*) = (2 — n/2)D,”. Indepen-
dence of successive values of the diffusion coefficient indicates no
temporal correlations in its fluctuations. Our system is thus out of
equilibrium (the temperature is not fixed) and the fluctuation
dissipation theorem does not hold.

The PDF (11) is a smooth function in the range from D = 0 to
D = oo and it vanishes on the boundaries of this interval. This
distribution p(D) is used instead of a Gaussian distributed
diffusion coefficient to avoid non-physical negative D values.
The distribution (11) is thus physically different from the
exponential p(D) form given by eqn (2) used by Chubynsky and
Slater.”* When the mean diffusivity stays constant over time, in
the long time limit the particle diffuses normally. However,
when the mean diffusivity is allowed to vary in addition
deterministically as a powerlaw,

(D)) ~ t%,

(12)

(13)

the resulting process is reminiscent of SBM. Physically, such an
increase of the mean diffusivity could be due to a diffusing
diffusivity of the form (D(¢,)) = [(D(t;_1)) + {p(t;i—1)|, where {p(¢;)
is an incremental change. This is analogous to the power-law
growth of the waiting times in the correlated continuous time
random walks.*”

We consider below both massless and massive particles
diffusing in both unconfined and a confined environments.
We implement the same algorithms for the iterative computa-
tion of the particle displacement x(¢) as developed for HDPs”*
and combined HDP-SBM motion.’? First, we simulate the one
dimensional overdamped Langevin equation

dx (1)

= VaD) % ()

driven by zero-mean and unit-variance Gaussian noise {(¢). At
step i + 1 the particle displacement is given by

2[D(t;) + Do) X (vis1 — i),

(14)

Xiy] — X = (15)

where (1 — y;) are the increments of the Wiener process. Unit
time intervals separate consecutive steps. To avoid possible
particle stalling we regularise D by adding a small constant
Do = 1072.7>7% This does not affect the intermediate- and long-
time diffusive behaviour. The particle’s initial position is
Xo = x(¢t = 0) = 0.1. In the second part of the paper, we simulate
the underdamped Langevin equation for a particle of mass m,

Sdx() | dx() V2D(1) % ((1),

1
dr ™4

with the unit damping coefficient set below to = 1. At a step

i + 1 the particle displacement is found from the iteration scheme

2[D(11)] x (yis1 = ¥i);
(17)

(16)

m(xip1 — 2x; 4+ xi1) + (X — X)) =

where the instantaneous diffusivity is taken from eqn (11) with the
mean (13).

This journal is © the Owner Societies 2016

View Article Online

PCCP

V. Results: overdamped motion
A. Free diffusion

We start with the diffusion of massless particles with a fluctuating
diffusivity and time invariant mean. As naively expected, we find
that due to friction the MSD in the long time limit is Brownian,

(18)

The MSD and the time averaged MSD are nearly identical after a
fast relaxation of the starting position x, of the particle and the
ergodicity is approximately fulfilled at all times (results not
shown here).

Now we address the more interesting case of RDPs with
instantaneous diffusivity chosen from the distribution (11) with
a time dependent mean (13). Namely, the most likely diffusivity
D,(¢) at simulation step i is

() ~ xo> + 2(D())t.

29 .,
=—=i

Van
where the prefactor is chosen for convenience and the coefficient

2 tunes the magnitude of the diffusivity. From eqn (14) we
straightforwardly compute

(Dg); (19)

((0) = x” + 29, (20)

with

y=1+o. (21)

Fig. 1 depicts the case of w = 1/2 or the MSD diffusion
exponent y = 3/2. As can be seen from the simulations the time
averaged MSD grows linearly with the lag time 4, as in the
Brownian case. This process also reveals a quite moderate

amplitude spread of individual traces 62(4), see the thin red
curves in Fig. 1. Obviously when the lag time approaches the
observation time, 4 ~ T, the amplitude scatter increases due to

the deteriorating statistic of §2(4).® Varying & in Fig. 1 we
demonstrate that, as expected, larger initial diffusivities give
rise to a faster approach of the MSD to the theoretical asymp-
tote. In contrast, for rather small diffusivities (smaller & values)
the system needs more time to approach the long time asymp-
tote, Fig. 1. A diminished magnitude of the MSD at smaller &
values inevitably leads to a decrease in the magnitude of the
time averaged MSD, see below. At intermediate to long times
the superdiffusive MSD regime with y = 3/2 emerges. Finally,
towards the very end of the trace the MSD and the time
averaged MSD coincide, as they should.®

Analytically, we obtain for the time averaged MSD from
eqn (14) for x(¢) and after averaging over the noise {(f) and
diffusion coefficient realisations p(D) the result

(57 -

This expression nicely agrees with the results of computer
simulations for all w and & values investigated, see Fig. 1
and 8. It is not surprising that both MSD and time averaged
MSD are proportional to & determining the basal value of

29T — (T — Ay — A7)
(v + (T - 4)

(22)

Phys. Chem. Chem. Phys., 2016, 18, 23840-23852 | 23843


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp03101c

Open Access Article. Published on 08 August 2016. Downloaded on 1/15/2026 2:12:37 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

PCCP
A
a
Vo
\%
a
A
o
Vv
10° 10" 10° 10° 10* 10° 10° 10" 10° 10° 10* 10°
A) tA B) t,A

View Article Online

Paper

_5

2

L0 (A), <6 (A)>

<2t)>
s 3

C)

Fig.1 MSD (x(t)) and time averaged MSD <52(A) (thick blue curves) as well as individual time traces 6%(4) (red curves) for overdamped RDPs. The
asymptotes (20) and (22) for the MSD and the time averaged MSD are shown by the dashed curves. The asymptotes often superimpose with the results of
simulations. Parameters: the scaling exponent is » = 1/2, the trace length is T = 10%, and number of traces used for the averaging is N = 150. The starting
position is xo = 0.1 and the parameter 2y /v/2n takes the values 1077, 1072, 1073, and 10~ for the panels from left to right.

the particle diffusivity, eqn (19). In the limit of short lag times,
4 « T, from eqn (22) we recover the scaling behaviour

(F@) =75

Thus, for superdiffusive RDPs with y > 1 the magnitude of the
time averaged MSD is a growing function of the trace length T,

(23)

while for subdiffusive RDPs <§> magnitude decreases with T,

in agreement with Fig. 9. In the limit 4 — T the ensemble and time
averaged MSDs coincide,® as it is easy to check from eqn (20) and
(22) and corroborated in Fig. 1. The non-equivalence of the time
averaged MSD (22) and the time averaged MSD (20) demonstrates
that the system is weakly non-ergodic. The scaling behaviour
(23)—regarding the magnitude of the time averaged MSD in terms
of the power law of the trace length T and the linearity in the lag
time—is analogous to that obtained for subdiffusive continuous
time random walks'*'%'%"1¢ and their correlated version"” as well
as for HDPs”*7>°> and SBM;**® see also ref. 8 for an overview.

For RDPs the ergodicity breaking parameter EB computed
from simulations tends to follow the asymptote (9) for Brownian
motion at intermediate and long times, Fig. 2. We observe that
the initial relaxation of EB to this asymptote is relatively fast. As
we show in Fig. 2, after this relaxation time the parameter £8
(10) becomes a power-law function of the lag time 4,

EB(A) ~ A (24)

Diffusivity distributions p(D) whose mean diffusivity grows
with time may be viewed to correspond to an effectively increas-
ing temperature in the system. The opposite case of a temporally
shrinking width may stem from a cooling of the system in the
course of time. In this respect the current process is reminiscent
of SBM.?"*7% An important example for the latter are granular
gases with a relative velocity dependent restitution coefficient.®’

The particle spreading for very subdiffusive RDPs can be
compared to the PDF of SBM, identical to that of fractional
Brownian motion for x, = 0 for natural boundary conditions of a
vanishing PDF of diffusing particles at |x| — 0.5%” Namely,
after the substitution of the corresponding MSD (20) this

produces
2
491 )"

1
P(x,1) ~ 4ngﬂexp( (25)

23844 | Phys. Chem. Chem. Phys., 2016, 18, 2384023852
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Fig. 2 Ergodicity breaking parameter EB and the parameter £B versus lag
time 4 for overdamped RDPs. The curves are computed for the parameters
of Fig. 1 with @ = 1/2. The curves for £B from top to bottom correspond to
292 /v/2n =10"",1072, 10~ and 10~#, respectively. The asymptote (9) of
Brownian motion and the relation (24) are the dashed lines.

Fig. 10 compares the conjecture (25) with the result from
simulations of RDPs. We see, however, that as the MSD scaling
exponent increases a distinct cusp of the PDF starts to develop
at the origin. The PDF of superdiffusive RDPs becomes pro-
nouncedly non-Gaussian. This spike however cannot be
described by a convolution of the diffusivity distribution (11)
with the kernels of Brownian motion and SBM motion. A more
detailed investigation is required to understand this spike at
short times and possibly exponential forms of the PDF tails at
long times. This generally non-Gaussian and jy-dependent
shape of the PDF is one important distinction of RDPs with
time dependent and in addition fluctuating diffusivities, as
compared to the SBM process with the deterministic value of
the diffusion coefficient at each step, D(¢) = (D(t)).

B. Confined diffusion

We now turn to confined RDPs on an interval —L < x < L. Such
confined motion is important especially for the understanding
of diffusion processes in biological cells. In cells—due to their
external confinement by the plasma membrane and internal
compartmentalisation—a diffusing tracer frequently collides
with boundaries. As expected, after an initial free diffusion
the MSD converges to the stationary plateau®

1

S
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Fig. 3 Same as in Fig. 1 but for confined overdamped RDPs. The box size
is L =10% o = 1/2, and 272 /21 = 0.01. The asymptote (26) and twice this
value are the dashed lines.

EB(A), EB(A)

Fig. 4 Parameters EB and &B for confined overdamped RDPs for the
parameters of Fig. 3. The Brownian asymptote (9) and the plateau €8 =2
are shown as the dashed lines.

as demonstrated in Fig. 3. The time averaged MSD, by virtue of
its definition (5), approaches twice the value of the MSD in the
long time limit.

The existence of a plateau is similar to that of standard
Brownian motion, and interval-confined SBM and HDPs.”***> Note
that SBM confined by an external potential has a time dependent
thermal value of the MSD.*** The behaviour of confined continuous
time random walks is strikingly different, there confinement
leads to a crossover to a second power-law regime in the time
averaged MSD.'*''® The PDF of confined RDPs approaches a
uniform distribution of particles on the interval.

At more severe confinement the ergodicity breaking para-
meter EB at large lag times A values starts to deviate form the
Brownian asymptote (9), see Fig. 4. In addition, we find that for
a fixed width of the confining interval and varying trace length

T the EB parameter follows the scaling relation
EB(T) ~ 1/T, (27)

as illustrated in Fig. 11A and B. This is a standard decrease of
the EB parameter for longer trajectories, a property ubiquitous
among a number of both ergodic and non-ergodic stochastic
processes.® The decrease of EB with T indicates a progressively
more ergodic diffusion for longer particle traces.

VI. Results: underdamped motion
A. Free diffusion

In this section, we study the diffusion of massive particles in
the same time dependent random diffusivity scenario (19)
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based on the underdamped Langevin equation. In particular,
we explore to what extent inertia effects modify the long time
behaviour of the MSD and the time averaged MSD, as compared
to the overdamped RDPs considered above. The general solution
for the particle MSD follows from the standard procedure for the
Brownian motion of massive particles.”” Namely, we obtain

x(1) — x(0) = V—(;(l —e )

_ éef()tJ.[ ([/)(IJ/ZC(t/)e()t’dl/
0

7 (28)

A t

+7J (P¢(eydd,

0Jo

where we defined 0 = n/m and A% = 2y2/m®. Moreover, v, is the
initial particle velocity. Then the MSD of the particles after
averaging over the noise { can formally be written as

(P0) = + 251 - e )’

2@ M PE(l -y, 200,220 (29

+4yZe "[Ei(1 — y, —00)];,.

Here Ei(n,z) = [["¢™r7"d: denotes the generalised exponential
integral.

For zero initial velocity of the particles vo = 0, as in the
computer simulations performed here, the inertial term in the
Langevin equation gives rise to the initial MSD scaling of
the form (x*(t)) ~ ¢** It is due to progressively accelerating
(heating) particles. Explicitly, for the MSD at short times we get

4gnPet?

S R R [o)

(30)
This faster than ballistic MSD regime often called hyperdiffu-
sion is known to emerge, for instance, for a power-law like
transient heating of particles with temperature variation of the
form 7 (¢) ~ .'"” This superballistic behaviour emerges for
RDPs with fluctuating diffusivities and time dependent mean,
in analogy with a faster than linear short time ballistic regime
in Brownian motion.””

Note that the short time MSD regime (30)—with the scaling
exponent by one larger than the long time MSD exponent—is
absent in the model of underdamped SBM elucidated by us
recently in ref. 85. The reason is that the damping coefficient is
set to be temperature independent in the current model,
whereas in the model of underdamped SBM #(t) is coupled to
the diffusivity variations via the generalised time-local Einstein
relation®

D(t) = ksT(2)/ (mn(2)). (31)

So, the fluctuation-dissipation theorem is valid, contrary to the
current approach. For the underdamped SBM process, the
relation 5(f) ~ T**(f) is consistent with the physical picture
of elastically colliding and relaxing particles in a bath with a
deterministically varying temperature.”® The reader is also
referred to ref. 118 for studying different relationships between
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the friction coefficient and velocity for passive and active'"®
particles, including nonlinear forms.

Note that the diffusive and ergodic properties of under-
damped SBM were recently considered as well.”® It was demon-
strated that inertial effects relax rather quickly in the course of
particle diffusion for superdiffusive (y > 1) situations. This
follows from comparing the magnitudes of the acceleration and
friction terms in the Langevin equation. Conversely, for small
positive values of y a finite particle mass yields an extensive
intermediate regime, both for the MSD and the time averaged
MSD growth behaviour with time. Interestingly, in the case of
ultraslow logarithmic SBM motion—realised for the limiting
value y = 0—the overdamped limit of particle diffusion®® is not
reached at long times, independent on the total measurement
time.”®

The time averaged MSD of underdamped RDPs follows from
eqn (28) and (5),

) =i, {5

— e 2D AEI(1 — 9, —200)]5

_ (efzer _ 2e’9’e’9(’“‘)> [F'Ei(1 — p, —200)]} (32)
+ 26 0D [FEI(1 — 5, —00))

— 2e D TE(1 — y, —91)]{)}.

This integral expression can be evaluated numerically. In the
limit of short lag times 4 « T we can evaluate the integral
and find

e—ZGT .| 1—y
(F@) ~ %@%
(33)
AZ
x[F(y+1)=T(y+ 1,—29T)]7.
Here I'(a,x)= ["t“'e”'ds is the generalised incomplete

Gamma function and I'(a,0) = I'(a) is the Gamma function.
The short time asymptotes of both the MSD and the time
averaged MSD are plotted as the dot-dashed curves in Fig. 5
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showing nice agreement with the results of computer simula-
tions of eqn (15).

Expanding the Gamma functions in the corresponding limit
we find from expression (33) for light particles or high friction
in the system—that is for 0T « 1—that

<W> N QnTr;*lAz DT (34)

my

This has the form of the short time MSD behaviour of standard
Brownian motion.’” All particle masses in this study guarantee
the validity of eqn (34) as the short time expansion for the time
averaged MSD in this underdamped limit. Comparing the

0%(T)-variation with eqn (34) in Fig. 9B further supports this

validity regarding the dependence on the length of particle

trajectory T. In the opposite limit of §T « 1—very massive

particles or low friction for the particle motion—we find
——\ 29PT'A* A

6% (4 > ~N— e~ —. 35

< (4) m*(y+1) m? (35)

Let us now describe the results of our computer simulations
and compare them with these analytical predictions. We
observe that in the particle displacement the initial condition
of zero particle velocity (vo = 0) relaxes within several initial
diffusion steps. Naturally, it takes for the system longer to
accelerate heavier particles, as shown in Fig. 5, in agreement
with eqn (30). The initial slow acceleration of heavy particles
yields slowly growing MSD that gets in turn reflected in small
amplitudes of the time averaged MSD at short lag times 4. The
MSD follows eqn (30) for short times and then crosses over to
the long time scaling (20). Note that the same initial quadratic
regime was observed in ref. 98 for the short time behaviour of
the time averaged MSD of the standard underdamped SBM
process. For the time averaged MSD the heavier particles
feature a longer ballistic regime, see Fig. 5. The magnitude of

<§> decreases with the particle mass, in agreement with

eqn (34). At longer times the MSD and time averaged MSD
approach the results expected for the overdamped RDP motion,
shown as the long time asymptotes in Fig. 5. As expected,
apart from the initial ballistic regime of the time averaged
MSD described by eqn (34), the analytical solution for the

A 100 A 0%}
a4 10 a4 10°F
e 10‘3‘ ke 10
~ s 3L
& 102 3 ,02
ol 10l G 10
A 10 A 10
=t 0 =’ 0
S 10l 5 10
V10~ Voo
1072 1072

Fig. 5 Ensemble averaged MSD, individual time averaged MSDs, and mean time averaged MSD, with the same notation as in Fig. 1, evaluated for
underdamped RDPs with particle mass m = 1, 5, 10, and 50, for panels from left to right. N ~ 102 traces are shown. The long time asymptotes (20) and (22)
are the dashed lines. The dot-dashed lines are the asymptotes for the short time regimes, eqn (30) and (34). Parameters: 2;@/\/2_ =0.01, » =1/2, and
T =10°.
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7 EBgy=44/(3T)

Fig. 6 Parameters EB and B versus lag time 4 for underdamped RDPs.
The Brownian asymptote (9) and eqn (24) are the dashed lines. The curves
correspond to varying particle mass, m = 1, 5, 10, 50; the other parameters
are the same as in Fig. 5.

overdamped limit (22) describes the long time behaviour of the
results of our computer simulations.
Similar to the overdamped situation, at short lag times the

magnitudes of <67> follow the relation (23), see Fig. 9B. We also

observe that for underdamped RDPs the spread of individual 6>
traces is similar to that of standard Brownian motion. This
small spread is consistent with the observation that the EB
parameter for this underdamped RDP motion does not deviate
strongly from the Brownian asymptote (9) at intermediate and
long times, see Fig. 6. In the region of short 4 the deviations are
quite substantial, particularly for massive particles exhibiting a

ballistic initial growth of <§> and a nonlinear growth of the

MSD, see Fig. 5. The auxiliary parameter £—again after the
initial particle acceleration—follows the asymptote (24), see
the thick curves in Fig. 6. The deviations of EB and £B at short
lag times from the Brownian asymptote is more evident for
massive particles.

B. Confined diffusion

We complete the analysis of RDPs with the study of the under-
damped motion in a confining box. We observe that at short
time the MSD develops similar to the unconfined scenario.
Once the boundary of the confined region is reached, the
plateaus start to develop at the same levels as for the over-
damped RDP case both for the MSD and time averaged MSD,
see eqn (26) and Fig. 7. Towards the very end of the trajectory
at 4 = T, the MSD and the time averaged MSD coincide, as

40 4
AL 10 e — = o — N 10
S 2 10t
Yo Vo
Vo10% T Vo10%
g il ) g 1L
Gz 10 g0 10
A 100 F A 100,
= el 5:/ o
510 v 10

1072 1 ' 1 i 4 10_
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View Article Online
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2
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L5 (), <6 )

<2(t)>
<X (t)>

A)
Fig. 8 Same as in Fig. 1 but at = —1/2 (A) and w = 1 (B) computed for

2y2/V2r=0.01 and N = 150. The asymptotes for the MSD and time
averaged MSD are shown as the dashed lines.

10° ) =
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Fig. 9 Time averaged MSD versus trace length T for (A) non-confined
overdamped RDPs for w = —1/2, 1/2, 1 (for data points from bottom to top)
and for (B) non-confined underdamped RDPs for m = 1, 5, 10, 50 (for data
points from top to bottom) and w = 1/2. Other parameters are the same as
in Fig. 1 and 2”,'9/\/% = 0.01. Dashed lines indicate the scaling relation (23)
in panel (A) and eqn (34) in panel (B).

they should.® The longer the entire trajectory, however, the
narrower the range of lag times where this convergence takes
place, and thus the more precise should be the 4-sampling in
this region—that is often computationally costly. This effect
was studied in detail for the pure SBM motion confined in
harmonic potentials®” and for HDPs confined between hard
walls.”®%?

The PDFs of confined underdamped RDPs at varying box
width L is presented in Fig. 12. We observe that for wide
intervals the particles are nearly uniformly distributed on the
interval (see the dashed lines in Fig. 12), with only insignificant
increase in the particle occupancies near the box boundaries
due to reflections. Note that the particle starting position at
X = X, is still slightly visible in the PDF for a weak confinement.

5
.}

5

,0 (A), <6 (A)>

5

L6 (M), <6 (A)>

<2t)>
<X (t)>

Fig. 7 Analogue of Fig. 5 for confined underdamped RDPs with particle mass m =1, 5, 10, and 50, from left to right. We show N = 150 traces for each set
of parameters and the interval width is L = 10%. The asymptotes for the confined motion (26) are the dashed lines.
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Fig. 10 PDF of the overdamped RDPs for o = —1/2, 1/2, and 1 (from left to right). Other parameters are the same as in Fig. 1 with 279/\/2— =0.01 and
N = 300. The PDF asymptote for subdiffusive SBM (25) is shown as the dashed curve.
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Fig. 11 EB parameter at 4 = 1 computed for free and confined overdamped RDPs (panels (A) and (B)) and for free and confined underdamped RDPs
(panels (C) and (D)). Parameters: for all the panels o = 1/2, 2~;£2/\/2 = 0.01 and (panel (A): free overdamped process) m = 0, L = oo; (panel (B): confined
overdamped process) m = 0, L = 10%; (panel (C): free underdamped process) m = 50, L = oo; (panel (D): confined underdamped process) m = 50, L = 102,

As the confinement becomes more severe, the particle accumulation
near the interval boundaries occupies a larger fraction of space
available for diffusion.

The EB parameter for massive particles deviates progres-
sively from the Brownian law (9) at both short and long lag
times 4 (not shown). This is due to slow particle acceleration at
short times (MSD plateau) and particle confinement at long
times, respectively. For free and confined underdamped
RDPs—similarly to the overdamped situation—the EB para-
meter follows the asymptote (27) with the trajectory length T,
see Fig. 11C and D. As the confinement becomes less severe, the
EB parameter approaches the value for the free underdamped
RDP motion. Fig. 13 illustrates this EB evolution with the width
of the confining interval.

107 F

1072 { ,

-100 =50 0 50
X

Fig. 12 PDF of underdamped confined RDPs for L = 3, 10, 30, and 100
(from top to bottom), computed for o = 1/2, 2y9//\/T: 0.01, T = 10°,
m = 50. Dashed lines designate the uniform distribution of particles on the
interval.
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Fig. 13 EB parameter at 4 = 1 for underdamped RDPs with varying degree
of confinement L. Parameters are the same as in Fig. 12: o = 1/2,
292 /V2r=0.01, T = 10°, m = 50.

VII. Conclusions

We examined the ensemble and time averaged characteristics
of random diffusion processes. The randomness of the diffusion
coefficient D was implemented in the model via a non-stationary
distribution p(D). RDPs are not thermalised, that is, the motion
of the particles is inherently out of equilibrium. The distribution
of the diffusion coefficient reflects individual variations of
particle diffusivities and heterogeneities of the environment.
For typical out-of-equilibrium systems such as biological cells
this does not pose any restrictions to our model. RDPs repre-
sent a quite flexible model to study asymptotically Brownian
and anomalous diffusive systems with a locally fluctuating
diffusion coefficient to model physical situations in many
complex systems.

This journal is © the Owner Societies 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp03101c

Open Access Article. Published on 08 August 2016. Downloaded on 1/15/2026 2:12:37 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

We rationalised both by computer simulations and analytically
the MSD, the time averaged MSD, and the ergodicity breaking
parameter of RDPs. Unconfined and interval-confined motion was
examined. We found that in terms of these standard characteristics
subdiffusive RDPs appear similar to subdiffusive SBM with a
deterministic diffusivity variation in time. For superdiffusive RDPs
the fluctuations grow with time. Concurrently, the average diffusion
coefficient (D(t)) grows with time together with the spread of its
values. These features reflect an increasing temperature and more
pronounced fluctuations of the medium in the course of particle
diffusion. The properties of ageing overdamped and underdamped
RDPs will be considered elsewhere and compared to the ageing
properties of SBM,”® HDPs,”® and continuous time random
walks.'"*

Living cells feature heterogeneous and densely crowded
environments established by a “melange” of various macro-
molecules and (importantly) a rather viscoelastic solution
between them. This often leads to a broadening in the distribu-
tion of diffusion coefficients and subdiffusive exponents, as
observed for obstructed diffusion of various tracers.'>”%120:121
In particular, some extensions of the standard diffusion models
to account for these effects—similar to our p(D) distribution for
the SBM like diffusion model presented above—appear neces-
sary e.g. for a quantitative fit of fluorescence recovery after
photobleaching cutves.'®® The models of SBM type—with the
diffusivity formally decaying in time according to the power law
(13)—are often implemented to describe the subdiffusive MSD
behaviour (1) of the tracer particles in cells. This anomalous
MSD scaling was observed e.g. via fitting the shape of the
autocorrelation curves of fluorescence correlation spectroscopy
measurements,'>1?>123

In single particle tracking measurements in biological cells
some time dependent scatter of the diffusion coefficients was
also detected.”®'?* It is necessary in theoretical models i.a. to
distinguish between the normal, restricted, and fully trapped
populations of the tracers. In fact, a Gamma distribution similar to
the Rayleigh distribution (11) used above was proposed in ref. 59 to
characterise the scatter of the MSD distribution of the diffusing
particles. On the level of diffusing simple organisms, Gamma
like diffusivity distributions were documented for the motion of
nematode worms.® The latter also exhibit non-Gaussian PDFs of
the particle displacements with a “spike” at the origin,®*'**
similar to some of our findings. Also, the recent study'’® of
anomalous and non-ergodic dynamics of particles within a
predator-prey model with a broad distribution of diffusion
coefficients of interacting partners needs to be mentioned here.

The current study with its preset functional form of the
diffusivity distribution and a deterministic law (13) represents a
first step into the terrain of stochastic processes with fluctuat-
ing and time varying diffusivities. A more general consideration
would correspond to a system of coupled stochastic differential
equations for the particle position and its diffusivity. The first
equation is the standard Langevin equation, while the second
equation involves an additional, generally decoupled noise
source governing D(¢) variation. The correlation function and
other noise properties—not necessarily Gaussian—determine

This journal is © the Owner Societies 2016
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then both the ensemble and the time averaged MSDs of
diffusing particles."’

Appendix

In this Appendix we present several additional figures (Fig. 8-13)
supporting the claims in the main text of the manuscript.
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