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Predicting pressure-dependent unimolecular rate
constants using variational transition state theory
with multidimensional tunneling combined with
system-specific quantum RRK theory: a definitive
test for fluoroform dissociation†

Junwei Lucas Bao,b Xin Zhang*ab and Donald G. Truhlar*b

Understanding the falloff in rate constants of gas-phase unimolecular reaction rate constants as the pressure

is lowered is a fundamental problem in chemical kinetics, with practical importance for combustion,

atmospheric chemistry, and essentially all gas-phase reaction mechanisms. In the present work, we use

our recently developed system-specific quantum RRK theory, calibrated by canonical variational transition

state theory with small-curvature tunneling, combined with the Lindemann–Hinshelwood mechanism, to

model the dissociation reaction of fluoroform (CHF3), which provides a definitive test for falloff modeling.

Our predicted pressure-dependent thermal rate constants are in excellent agreement with experimental

values over a wide range of pressures and temperatures. The present validation of our methodology,

which is able to include variational transition state effects, multidimensional tunneling based on the directly

calculated potential energy surface along the tunneling path, and torsional and other vibrational anharmonicity,

together with state-of-the-art reaction-path-based direct dynamics calculations, is important because

the method is less empirical than models routinely used for generating full mechanisms, while also being

simpler in key respects than full master equation treatments and the full reduced falloff curve and modified

strong collision methods of Troe.

1. Introduction

Unimolecular reactions, including isomerizations (A - B) and
dissociation reactions (A - B + C) are widespread in chemical
kinetics. Predicting unimolecular rate constants as functions of
temperature and pressure is a longstanding goal in kinetics
modeling.1,2 Methods developed for this purpose can also be
used for association reactions (B + C - A), whose theoretical
treatment involves common elements. The present article pre-
sents the validation of a recently proposed theoretical method
for this problem that is simplified enough to be practically
useful for mechanistic studies where rate constants need to
be evaluated for a many-reaction mechanism over a range of
temperature and pressure.

Transition state theory (TST)3 assumes that all the trajectories
originating from the reactant region cross a reactant/product
dividing surface in phase space only once, and thus all forward-
crossing trajectories lead directly to products; thus the dividing
surface is assumed to be a dynamical bottleneck. This is the
non-recrossing assumption, and the conventional TST dividing
surface passes through a saddle point on the potential energy
surface; generalized transition states may be placed at other
locations. In variational transition state theory (VTST),4–7 the
location of the dividing surface is variationally optimized either
to maximize the Gibbs free energy of activation in a canonical
ensemble or to minimize the number of states of the generalized
transition state in a microcanonical ensemble, and therefore the
non-recrossing assumption causes less error. VTST (including
recent extensions such as multi-structural VTST8 and multi-path
VTST9–12) has been widely applied in many chemically important
systems (the reader may consult reviews3,13,14 or representative
applications8–12,15–18 for examples). However, in both TST and
VTST, the phase points in the reactant region are assumed to be
in thermal equilibrium, and consequently Liouville’s theorem
guarantees that the Boltzmann distribution is also satisfied in
the generalized transition state and eventually the product
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region as time evolves. This local equilibrium assumption is
generally valid in gas-phase bimolecular reactions,19 except for
diatomic dissociation,20 because inelastic collisions of the reactants
are efficient enough to repopulate their rovibrational states and
maintain local equilibrium in phase space, and in liquid-phase
reactions, but not in gas-phase unimolecular reactions. In the latter
case, unless the pressure is extremely high, the rovibrationally
excited states at not in local equilibrium, and the rate constants
depend on pressure, falling off as the pressure is lowered and the
reactive states are depleted faster than they can be repopulated.

The reactive states of the unimolecular reactant can be
populated by a chemical reaction or by thermal collisions; the
former scenarios is called the chemical activation mechanism
and the latter is called thermal activation or the Lindemann–
Hinshelwood mechanism.21 In these mechanisms, only the
rovibrational quantum states that are of the ground electronic
state are populated; the atoms move on a single Born–Oppenheimer
potential energy surface, and the whole chemical reaction is
electronically adiabatic. In the chemical activation mechanism,
the rovibrationally excited unimolecular states (which are
denoted as P*) are generated by reactive collisions between
reactants A and B, and P* can either be de-energized to form
the product P (the stabilized adduct) by inelastic collisions
with bath gas molecules or undergo further dissociation or
isomerization to form product P0. The low-pressure rate constant
of the formation of P is lower than the high-pressure-limit, while
the dissociation/isomerization reaction rate constant is larger
than the high-pressure-limit. In the Lindemann–Hinshelwood
mechanism, thermally activated unimolecular states A* of a
reactant A are created by thermal collisions between the reactant
A and bath gas M; then A* reacts to form the products. The high-
pressure-limit unimolecular rate constants are higher than the
rate constants at lower pressures. The pressure-dependence of
the unimolecular rate constant is known as the ‘‘falloff’’ effect
because of the decrease of the thermal rate constant as the
pressure decreases.

Modeling the falloff curves as functions of pressure p and
temperature T has attracted considerable interest dating back
to 1921.1,22–24 A complete solution to the problem would
require solving the time-dependent kinetics equations for all
state concentrations as functions of time; this is called the
master equation.14,25 A simpler approach is the strong collision
approximation that an energized molecule is completely deac-
tivated by every collision and therefore every reactive state is
produced in a single step from a molecule in an unactivated
state.24 The classic work of Troe26 provided a detailed analysis
of energy transfer processes during the collisional activation
and de-activation, which he deduced based on approximate
solutions to the master equation and from which he developed
a modified strong collision model,27 which relates the collision
efficiency to the amount of energy transferred and the energy
dependence of the density of states. Jasper and co-workers28

carried out classical trajectory calculations for modeling the
collisional energy transfer process, and concluded that Troe’s
modified strong collision model is a very good approxima-
tion to the real situation. In order to calculate the falloff curves,

Troe and colleagues29 developed a central broadening factor
(Fcent) based empirical method for computing the ratio of
k(p; T) to the high-pressure-limit value as a function of pressure;
in this treatment a number of parameters are required, and
these parameters are either estimated empirically or fitted using
the experimental data. This method has played an important
role in interpolating or extrapolating limited experimental data
points to a wider range of p and T.30

Attempts have been made to diminish empiricism for predicting
falloff curves and to provide treatments simple enough for modeling
reaction mechanisms of many-component mixtures, such as
involved in combustion. Whereas solving a one-dimensional
master equation is not a highly computationally demanding
task, building the master equation involves providing micro-
canonical rate constants as input, and it could be very expensive
to compute the required values of k(E) reliably. There are two
aspects to nonempirical calculation of reliable rate constants:
the level of dynamical theory employed and the potential energy
surfaces on which that theory is based. The majority of applica-
tions of the master equation make the Rice–Ramsperger–Kassel
assumption that the rate constants are functions of only the total
energy (we call such rate constants microcanonical) and use
conventional Rice–Ramsperger–Kassel–Marcus (RRKM) theory31

as the dynamical theory; this is the same as conventional
transition state theory for a unimolecular reaction,32 rather than
microcanonical variational transition state theory4 (mVT), but we
note that the variational effect (which is a shorthand name for
the difference of variational transition state theory from conven-
tional transition state theory) is sometimes very important.
Furthermore, the internal rotations are usually simply treated
using 1D hindered rotors or even by the harmonic oscillator
approximation, as contrasted to a more complete treatment33 of
the contributions from multiple conformational structures. Also,
the energy-resolved multidimensional tunneling is ignored in most
treatments due to high computation cost. VTST, multidimensional
tunneling calculations based on the directly calculated potential
energy surface along the tunneling path, and multistructural
treatments of torsions require more information about the
potential energy surface than do conventional TST calculations,
but in modern work canonical VTST can be carried out efficiently
obtained by direct dynamics calculations8–12,15,17,33,34 with
affordable, but reliable exchange–correlation density functionals35

to generate the input data. Microcanonical VTST calculations are
also affordable but considerably more expensive, and so we would
like to not require them for mechanism modeling.

Influential work done by Dean, Westmoreland, Bozzelli, and
coworkers36 demonstrated the value of combining quantum
Rice–Ramsperger–Kassel (QRRK) theory37 for microcanonical rate
constants with the modified strong collision model. Although a
master equation solver is widely implemented in many kinetics-
modeling programs,38 Dean and Bozzelli showed that their
QRRK approach could provide similar results with greater
simplicity and lower cost and effort in generating the input
data.39 In their earlier work, empirical methods, such as group
additivity and Evans–Polanyi correlations, were used to estimate
the Arrhenius pre-exponential factor A and thermodynamic
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functions because of the lack of reliable first-principles data.
Although these empirical methods are tremendously helpful
for rapidly providing the necessary thermochemical kinetics
information as input for mechanistic studies, the accuracy of
the so-produced data are sometimes unreliable. For example, the
thermodynamic functions estimated by single-structure-based
group additivity method can deviate significantly from values
measured experimentally or computed using high-level theory
for highly branched molecules;40 and estimating the energies of
activation as temperature independent or depending linearly on
temperature is inadequate over a wide temperature range
because the activation energy at low temperature could be very
much lower than the one at high temperature.41 The early QRRK
work now has led to more advanced work. In recent studies by
Dean and Bozzelli and coworkers,42 the CBS-QB3 electronic
structure method is used for computing electronic energetics,
thermodynamic functions are computed using 1-D hindered rotor
with torsional potential scanned using the B3LYP density functional,
and conventional TST rate constants with one-dimensional
tunneling are computed, fitted (assuming a linear temperature-
dependence of Ea) and serve as high-pressure-limit input for
QRRK. Their work shows how one can diminish empiricism in
fall-off calculations, and it motivated us to incorporate our own
more complete high-pressure-limit rate constants into this kind
of treatment.

Recently, we proposed the system-specific quantum RRK
(SS-QRRK) method,43,44 which retains the theoretical and com-
putational simplicity of the original QRRK model, yet is able to
incorporate high-level electronic structure calculations into the
potential energy surface and variational effects, multidimensional
tunneling based on the directly calculated potential energy surface
along the tunneling path, and torsional and other vibrational
anharmonicity into the dynamical theory. Our SS-QRRK rate
constants are calibrated by full high-pressure-limit canonical
VTST direct dynamics calculations, and (aside from estimating
collision rates with widely available Lennard–Jones parameters)
the only empirical parameter needed for predicting falloff curves
is the average energy transferred. A key advantage is that the VTST
calculations based on the most accurate available electronic
structure methods for the potential energy surface are required
only for canonical rate constants, with SS-QRRK theory serving as
a way to generate the required microcanonical data from the
canonical rate constants.

In the present work, we tested our SS-QRRK method for the
dissociation reaction of fluoroform (CHF3), whose dissociation
products are difluoromethylene radical (CF2, with the electro-
nic ground state being of 1A1 symmetry) and hydrogen fluoride
(HF). Fluoroform is found in the atmosphere (where it is a
greenhouse gas) as a consequence of its use for applications
such as refrigeration, fire retardant, and plasma etching. Troe
and coworkers45 pointed out that the decomposition of fluoro-
form is a unimolecular elimination without extraneous com-
plications and that it can therefore serve as a test case for
modeling the falloff behavior of a simple, rigid molecule. They
noted that, whereas previous attempts to understand it, dating
back 50 years,46 were unsuccessful or fragmentary, their new

analysis ‘‘has brought about a complete consistency of measure-
ments and modelling.’’45 The reaction ‘‘therefore presents itself
as an exemplary unimolecular thermal elimination reaction.’’
For this reason, and because of its simplicity and the availability
of experimentally measured rate constants over a wide range of
pressures and temperatures that are of interest in combustion
chemistry, we believe it presents an ideal case to validate our new
SS-QRRK approach. Troe and co-workers used conventional TST
to compute the high-pressure-limit rate constants, and they
fitted the experimental falloff data with reduced falloff curves,
in which a number of parameters are estimated empirically or
fitted. We carried out direct dynamics variational transition state
theory calculations with multidimensional tunneling based on
the directly calculated potential energy surface along the tunnel-
ing path; and we use the so-obtained high-pressure-limit data to
calibrate SS-QRRK microcanonical rate constants. We will show
that our computed falloff curves by the SS-QRRK approach is in
excellent agreement with experimental results.

2. Theoretical methods
2.1. Choice of electronic structure method

We use CCSD(T)-F12a, which is explicitly correlated coupled cluster
theory with single and double excitations and a quasiperturbative
treatment of connected triple excitations,47 with the jun-cc-pVTZ48

basis set to obtain reference values of the classical barrier heights
and classical reaction energies. (‘‘Classical’’ barrier heights and
energies of reaction are differences in potential energy without
considering zero point energy, and reference values are highly
accurate values used to validate more affordable levels of theory
to be used for the dynamics calculations.) Single-point calculations
were then carried out with various combinations of exchange–
correlation density functionals and basis sets at geometries
optimized by CCSD(T)-F12a/jun-cc-pVTZ. The results are presented
in ESI.† These tests shows that the M08-HX49/aug-cc-pVTZ50 method
is very accurate; its mean unsigned error (MUE) for the classical
forward barrier height, reverse barrier height, and energy of reaction
is 0.15 kcal mol�1. The reference values are respectively 77.75, 18.46,
and 59.30 kcal mol�1, and the M08-HX/aug-cc-pVTZ values are 77.93,
18.67, and 59.25 kcal mol�1. Therefore this method was chosen for
the direct dynamics calculations.

All the electronic structure calculations (except for the
coupled cluster calculations, which are performed using Molpro51)
are performed using the locally modified Gaussian 09.52 Density
functional calculations are computed with a numerical integration
grid of 99 radial shells and 974 angular points per shell.

2.2. High-pressure-limit rate constants

Canonical variational transition state theory (CVT) is used for
the first determination of the high-pressure-limit thermal rate
constant of the reaction CHF3-CF2 + HF. This reaction has
significant hydrogenic motion in the reaction coordinate, and
therefore another set of calculations was carried out including
tunneling; in particular the small-curvature tunneling approxi-
mation53 (SCT) is used for treating the underbarrier quantum
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mechanical tunneling and the overbarrier nonclassical reflection.
The multidimensional SCT method incorporates the corner-cutting
quantum centrifugal effect by using an effective mass that is
dependent on the reaction-path-curvature, and it is based on the
directly calculated potential energy surface along the tunneling
path. Because the effective mass used in the imaginary action
integral is less than the mass used to scale the coordinates, this
is equivalent to shortening the tunneling path, and this
increases the tunneling as compared to tunneling along the
mass-scaled isoinertial minimum-energy path (MEP). The SCT
tunneling approximation is a very well validated method that is
applicable to large and complex systems,6,53,54 and one of the
strengths of the method employed here is that it allows one to
include this accuracy in falloff calculations at an affordable cost,
as discussed in Section 2.3.

The MEP, with a scaling mass of 1 amu, was computed from
�2.75 Å to +2.75 Å with a step size of 1.06 � 10�3 Å by using the
Page–McIver algorithm55 along with the reorientation of the
dividing surface (RODS) algorithm56 for re-orienting the generalized-
transition-state-theory dividing surface. The generalized normal
mode analysis is carried out using non-redundant curvilinear
coordinates;57 the Hessians are computed and diagonalized at
every ninth step along the reaction coordinate. Vibrational
anharmonicity is included along the reaction coordinate by
scaling the generalized normal mode frequencies with a factor
of 0.975.58

The high-pressure rate constant is fitted to the following
formula appropriate to an endothermic reaction:12

k1uni Tð Þ ¼ A
T

300

� �n

exp � E T þ T0ð Þ
R T2 þ T0

2ð Þ

� �
(1)

where R is the ideal gas constant (1.9872 cal mol�1 K�1), and
A (in s�1 for unimolecular reactions), E (in kcal mol�1), T0 (in K),
and n (dimensionless) are fitting parameters. Locally (i.e., in a small
temperature range centered at temperature T) fitting the value
and slope to an Arrhenius-like form AN

uni(T) exp[�ECVT/SCT
a (T)/RT].

The Arrhenius activation energy is defined as:

Ea ¼ �R
dðlnkÞ
dð1=TÞ (2)

This gives the high-pressure local Arrhenius activation energy as

ECVT=SCT
a ðTÞ ¼

E T4 þ 2T0T
3 � T0

2T2
� �

T2 þ T0
2ð Þ2

þ nRT (3)

and the high-pressure local Arrhenius pre-exponential factor as

AN

uni(T) = kNuni(T) exp[ECVT/SCT
a (T)/RT] (4)

We should not confuse AN

uni(T) with the constant parameter A of
eqn (1).

Direct dynamic calculations were performed with Polyrate59

interfaced with Gaussian 09 via Gaussrate.60

2.3. Pressure-dependent rate constants

This section partially contains a brief review about the classic
theories of unimolecular reactions because a review of the
classical theory helps us make clear the connection between

the way the old theory treats physical effects and the way the
new theory does this; and we are able to clearly state the
reasons for how and why we choose the physical parameters
such as A and Ea that are used in SS-QRRK model.

2.3.1. Energy-independent Lindemann theory. Before we
proceed to consider energy-resolved rate constants, we first
examine the classical Lindemann mechanism22,30 for our studied
reaction CHF3 - CF2 + HF:

Step 1: CHF3 þM �! �
k1ðTÞ

kcðTÞ
CHF3

� þM

Step 2: CHF3
� ���!k2ðTÞ

CF2 þHF

In the original Lindemann model, the rate constants are
assumed to be temperature-dependent and energy-independent.
The thermal activation rate constant k1 is modeled as:

k1 = Z exp(�E0/kBT) (5)

where E0 is the threshold energy, kB is Boltzmann’s constant,
and Z is the bimolecular collision rate constant (in units of
cm3 molecule�1 s�1) between the reactant CHF3 and the bath gas M:

Z = ps2hnreli (6)

where s is the collision section between CHF3 and M, and hnreli
is the average relative velocity. The rate constant kc of the
de-activation step is simply equal to Z, which assumes that
every collision of the energized molecule CHF3* with M leads to
de-energization (this is the strong collision assumption). The
dissociation rate constant k2 is simply the high-pressure-limit
Arrhenius pre-exponential factor AN

uni. Using the steady-state
approximation for CHF3*, the unimolecular dissociation rate

constant kuni (which is defined as � 1

½CHF3�
d½CHF3�

dt
) is:

kuni ¼
k1½M�

1þ kc½M�=k2
(7)

In the high-pressure-limit ([M] c 1),

kNuni = k1k2/kc = AN

uni exp(�E0/kBT) (8)

and the unimolecular dissociation is a (pseudo-) first-order
reaction; in the low-pressure-limit ([M] E 0), k0

uni = k1[M], and
the dissociation reaction is of second order.

2.3.2. Energy-dependent Lindemann–Hinshelwood theory.
Our approach goes beyond the original theory of Section 2.3.1. It
has been described in two previous papers43,44 but is summarized
here in a form intended to make its connection to other work in the
field clearer.

In our approach, kNuni(T) is computed using CVT/SCT theory;
and the threshold energy E0 of the unimolecular dissociation
reaction (step 2) is set to be equal to the temperature-dependent
high-pressure-limit Arrhenius activation energy ECVT/SCT

a (T) com-
puted as described in Section 2.2. The value of AN

uni(T) is now
temperature-dependent and we shall call it the frequency factor
when it is used in SS-QRRK theory (see below).

The energization and dissociation rate constants are treated
as energy-dependent using SS-QRRK theory, and the collisional
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de-energization rate constant is computed based on modified
strong collision model, which are discussed next. In particular,
we consider the following thermal activation mechanism:

Step 1: CHF3ðT Þ þM �! �
k1ðE;TÞ

kcðTÞ
CHF3

�ðEÞ þM

Step 2: CHF3
�ðEÞ ���!k2ðEÞ

CF2 þHF

Step 1 is the thermal activation step, in which the thermally
equilibrated fluoroform molecules (denoted as CHF3(T) in the
mechanism) at temperature T collide with bath gas M to
produce the rovibrationally excited reactant CHF3*(E) with total
rovibrational energy E randomized among all modes. The rate
constant of thermal activation k1 is a function of energy E and is
parametrically dependent on T. The de-activation collisional
rate constant kc is assumed to be temperature-dependent as in
Lindemann–Hinshelwood theory; it is computed as

kc(T) = Zbc (9)

where Z is the Lennard-Jones collision rate constant, and bc is
the collision efficiency discussed in Section 2.3.3.

To model k1(E;T) and k2(E), we use single-frequency quantum
RRK theory (QRRK), in which rotation is not treated explicitly, and
the molecule consists of s identical oscillators with vibrational
frequency �n, where we express �n in wave numbers (cm�1). In
practice, we set s equal to number of vibrational degree of freedom
(for CHF3, s is 9), and �n is chosen to be the reactant geometric
mean frequency (for CHF3, �n = 1036.69 cm�1, which is computed
by M08-HX/aug-cc-pVTZ). In the QRRK model of the micro-
canonical rate constant at energy E equal to nhc�n (where h is
Planck’s constant, and c is the speed of light), a unimolecular
reaction happens when a specific vibrational mode associated
with the reaction coordinate possesses a critical energy (or threshold
energy) E0 equal to mhc�n. Note that n and m are not usually integers.

First consider k1(E;T). The equilibrium constant for step 1 is
the fraction of the molecules with n quanta of excitation,
which is

KQRRKðn;TÞ ¼ exp
�nhc�n
kBT

� �
1� exp

�hc�n
kBT

� �� �sðnþ s� 1Þ!
n!ðs� 1Þ!

(10)

The equilibrium constant equals the ratio of forward to reverse rates:

KQRRK(n,T) = kQRRK
1 (E = nhc�n;T)/kc(T) (11)

Substituting eqn (10) into eqn (11) and solving for the forward
rate yields kQRRK

1 (E;T).
Next consider the QRRK rate constant k2(E); this is equal to

the frequency factor times the fraction of molecules with at
least m quanta in one chosen mode, and for a quantum
mechanical oscillator with s identical frequencies �n and tem-
perature T, this is given by30,61

kQRRK
2 ðE ¼ nhc�nÞ ¼ AQRRK n!ðn�mþ s� 1Þ!

ðn�mÞ!ðnþ s� 1Þ! (12)

In SS-QRRK, we set the frequency factor AQRRK equal to AN

uni(T)
given by eqn (4), and we set the threshold energy equal to the

high-pressure local Arrhenius activation energy given by eqn (3),
which yields

m = ECVT/SCT
a (T)/hc�n (13)

The analog of eqn (7) is

kuniðT ; pÞ ¼
Xþ1
n¼m

kQRRK
1 ðE ¼ nhc�n;TÞ½M�

1þ kcðTÞ½M�
kQRRK
2 ðE ¼ nhc�nÞ

(14)

where kc(T) is obtained by eqn (9), kQRRK
1 (E;T) is obtained by

eqn (10) and (11), and kQRRK
2 (E) is from eqn (12).

Now it can be shown why we choose the frequency factor and
threshold energy by eqn (3) and (4). In the high-pressure-limit,
eqn (14) reduces to:

kuniðT ; pÞ ¼
Xþ1
n¼m

k1ðE ¼ nhc�n;TÞk2ðE ¼ nhc�nÞ
kcðTÞ

(15)

and, by carrying out the summations, eqn (8) is obtained. The
high-pressure-limit canonical rate constants computed by SS-QRRK
theory are therefore same as the ones determined by CVT/SCT
theory. Therefore our SS-QRRK microcanonical rate constant form-
alism can build in variational effects, multidimensional tunneling
based on the directly calculated potential energy surface along the
tunneling path, and vibrational and torsional anharmonicity with
approximately the same computational effort that CVT/SCT allows
one to include them efficiently in the high-pressure limit (although
in the present case, multi-structural and torsional-potential
anharmonicity are not needed.)

The variational effect can be very important in the computa-
tion of k(E), and ignoring it can be a significant source of
error.43 The ability of the new method to incorporate variational
effects in k(E) has been validated in our previous work43 by
comparison to full microcanonical variational transition state
theory calculations. To compute the energy-resolved quantum
tunneling would involve using eqn (32) of ref. 43, and this
would be very time consuming if based on the directly calcu-
lated potential energy surface along the tunneling path. The
variational effect, multidimensional tunneling, and multi-
structural torsional anharmonicity (MS-T) are usually ignored
in current practice for falloff effects, but the present formalism
allows their incorporation in falloff calculations with approxi-
mately the same affordable effort as is required for the
canonical-ensemble high-pressure limit.

2.3.3. Parameters used in collisional energization/
de-energization. The Lennard-Jones parameters needed to calcu-
late Z in eqn (9) are taken as e/kB and s equal to 114 K and 3.47 Å
for Ar and as 268 K and 4.04 Å for CHF3.62

At high temperatures, the collision efficiency can be much
smaller than unity, which means that only a small fraction of
collisions lead to fully de-activated CHF3. The collision effi-
ciency bc is computed using Troe’s modified strong collision
model:27

bc
1� bc1=2

¼ DEh ij j
FEkBT

(16)
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where FE is the thermal population of unimolecular states
above the threshold energy of the reactant normalized by a
density of states factor at the threshold energy, and hDEi is the
averaged energy transferred per collision during both activation
and de-activation processes. We use |hDEi| equal to 58 cm�1 as
determined by Troe and coworkers45 for the reaction studied
here. The sensitivity to the value of the energy transfer parameter
is tested and discussed in Section 3.

In this work, Whitten–Rabinovitch approximation27 is used to
compute FE. Notice that in our approach, the threshold energy
used in Whitten–Rabinovitch approximation is not the zero-point
inclusive barrier height; instead, for consistency with the SS-QRRK
treatment, we use the temperature-dependent CVT/SCT activation
energy ECVT/SCT

a (T) as the threshold energy. Our computed FE

values at 298 K, 600 K, 800 K, 1000 K, 1600 K, and 2000 K are
1.060, 1.118, 1.162, 1.210, 1.365 and 1.477 respectively; the
corresponding collision efficiency bc at these temperatures are
0.159, 8.76 � 10�2, 6.66 � 10�2, 5.31 � 10�2, 3.14 � 10�2, and
2.39 � 10�2. If the zero-point-included barrier had been used
as threshold energy, the computed FE values at 298 K, 600 K,
800 K, 1000 K, 1600 K, and 2000 K would have been 1.056,
1.119, 1.164, 1.212, 1.378 and 1.510 respectively; we do not use
these FE values in the paper, but we present them simply to
show that the results in the present case are not sensitive to the
choice of threshold energy in the FE calculation.

The single-structure Whitten–Rabinovitch approximation
does not account for multistructural anharmonicity. This is
not an issue in the present case, but when multi-structural
torsional-potential anharmonicity (MS-T)33 is important, FE will
be computed using Troe’s definition:26

FE ¼
Ðþ1
E0

rðEÞe�E=kBTdE
kBTr E0ð Þe�E0=kBT

(17)

where the rovibrational density of states are computed by inverse
Laplace transform of the MS-T conformational-rovibrational
partition function.

The collision efficiency can also be estimated as:63

bc ¼
DEh idown

DEh idownþFEkBT

� �2

(18)

where hDEidown is the averaged energy transferred for only the
de-activation process. Both eqn (16) and (18) involve the assump-
tion that the probability of energy transfer obeys the exponential-
down model. We use eqn (16) rather than eqn (18) for computing
collision efficiency in the current work.

3. Results and discussion
3.1. Structure and energetics

We computed T1 diagnostic64 values by CCSD(T)-F12a/jun-cc-pVTZ
level for CHF3, CF2, HF, and the transition state structure and
obtained respectively 0.0112, 0.0164, 0.0084, and 0.0195, all of
which are smaller than 0.02, which is the suggested65 criterion
for closed-shell species having multireference character. There-
fore, we concluded that our studied reaction CHF3 - CF2 + HF

does not involve significant multireference character, and the
energetics can be reliably computed using single-reference methods,
such as Kohn–Sham density functional theory and coupled cluster
theory.

Both experimental and theoretical studies have confirmed
that the electronic ground state of CF2 radical is 1A1.66 Our M08-HX/
aug-cc-pVTZ calculation shows that the CF2

3B1 state is 2.39 eV
energetically higher than its 1A1 state; this is in good agreement with
the experimentally determined adiabatic excitation energy 2.46 eV.67

Absorption and microwave spectroscopy studies68 have revealed
the equilibrium geometry of ground state CF2 to have RC–F = 1.300 Å
and y(F–C–F) = 104.941. Our coupled cluster calculation gives
RC–F = 1.300 Å and y(F–C–F) = 104.81; and our M08-HX/aug-cc-
pVTZ calculation gives RC–F = 1.300 Å and y(F–C–F) = 104.41.
Thus our calculated reactant geometries are quite accurate.

The dissociation of CHF3 is an endothermic reaction; the ZPE-
inclusive energy of reaction as computed by M08-HX/aug-cc-pVTZ,
CCSD(T)-F12a/jun-cc-pVTZ, CBS-QB3,69 and G4,70 is, respectively,
53.7, 53.3, 54.1, and 52.8 kcal mol�1. The ZPE-inclusive forward
barrier heights computed at these levels are respectively 73.6, 73.1,
74.5 and 73.1 kcal mol�1. Thus M08-HX/aug-cc-pVTZ appears to
be more accurate than CBS-QB3; and it has similar accuracy as
G4, but M08-HX is computationally much less expensive than G4.

3.2. High-pressure-limit rate constants, variational effect and
tunneling

CVT/SCT computed high-pressure-limit unimolecular dissocia-
tion rate constants (s�1) are tabulated in the ESI†; they are
fitted using eqn (1), which yields A = 3.020 � 109 s�1, n = 4.231,
E = 54.7658 kcal mol�1, and T0 = 129.465 K.

Fig. 1 shows the canonical variational recrossing transmis-
sion coefficients (i.e., the ratios of the CVT rate constant to the

Fig. 1 Canonical variational transmission coefficients GCVT(T) (blue curve)
and small-curvature tunneling transmission coefficients kSCT(T) (red curve)
at various temperatures (K); the left ordinate scale is for GCVT(T), and the
right ordinate is for kSCT(T).
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conventional TST ones) and the small-curvature tunneling
transmission coefficients at various temperatures.

From 300 K to 900 K, the variational transmission coeffi-
cients are larger than 0.96 and hence, the canonical variational
effect is not important at these temperatures; for temperatures
higher than 900 K, the variational transmission coefficients
decreases from 0.97 at 900 K to 0.88 at 2400 K. Fig. 2 shows the
vibrationally adiabatic ground-state potential energy VG

a (which
is the sum, along the MEP, of the electronic potential energy
and the zero-point vibrational energies of all the modes that are
orthogonal to the reaction coordinate) along the minimum
energy path (MEP), plotted with two key distances RC–H and
RF–H (Å). At 300 K to 900 K, the variational transition state is
very close to the saddle point; the location of the variational
transition state at 300 K, 400 K, 600 K and 800 K are 0.025,
0.029, 0.037 and 0.045 Å away from the saddle point (in
isoinertial coordinates6 scaled to 1 amu). As temperature
increases, the variational transition state moves away from
the conventional transition state; at 2400 K, the canonical
variational transition state is 0.091 Å away from the conven-
tional transition state.

The dissociation reaction of CHF3 is a hydrogen-transfer
reaction; therefore quantum mechanical tunneling plays an
important role. At 298 K, the small-curvature tunneling (SCT)
accelerates the reaction rate by a factor of 21.7; at 550 K this has
decreased to a factor of 1.9, and by 900 K it has decreased
almost to 1.2. If reaction-path curvature had been ignored in
computing the tunneling transmission coefficients, the tunneling
effect would have been greatly underestimated. For example, at
298 K, the tunneling transmission coefficient would have been only
8.7. (The Wigner approximation71 for the tunneling transmission
coefficient is even less accurate, giving a transmission coefficient
that is 7 times smaller than the SCT tunneling transmission
coefficient at 298 K).

3.3. Pressure-dependence of dissociation rate constants.
Pressure-dependent unimolecular dissociation rate constants
k( p) were computed using the SS-QRRK method calibrated with
the high-pressure-limit CVT/SCT rate constants and using an
average energy transfer parameter of 58 cm�1. Fig. 3 shows the

unimolecular dissociation rate constants (in the unit of s�1)
computed at high-pressure-limit, at 1.0 bar, at 0.1 bar and at
0.001 bar at various temperatures. The figure shows a significant
falloff effect at high temperature and low pressure. Fig. 4 shows
the predicted falloff curves at various temperatures from 10�3 bar
to 103 bar. At 298 K, the unimolecular rate constants are essentially
pressure-independent; the value of log10[k(p)/k(N)] varies from
�2.65 � 10�3 at 103 bar to �6.89 � 10�3 at 10�3 bar. However,
at temperatures of 600 K and higher, falloff of the unimolecular
rate constants is important. At 2400 K, dissociation rate constants
at 103, 1.0, and 10�3 bar are decreased from the high-pressure-limit
values by a factor of 8.87 � 10�2, 3.46 � 10�4, and 3.59 � 10�7

respectively.

Fig. 2 Vibrationally adiabatic ground-state potential energy (kcal mol�1)
along the minimum energy path (MEP), depicted with distances of RC–H

and RF–H (Å).

Fig. 3 Computed unimolecular dissociation reaction rate constants (s�1)
at various temperatures (K) at high-pressure-limit, 1.0 bar, 0.1 bar and
0.001 bar.

Fig. 4 Computed falloff curves at various temperatures (K) with average
energy transfer parameter being 58 cm�1.
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We compared our computed unimolecular rate constants
with 34 experimentally measured data from 1490 K to 1960 K,
with pressures ranging from 2.12 bar to 18.04 bar. With |hDEi| =
58 cm�1, the average ratio of computed to experimental rate
constants is 0.76, with a standard deviation of 0.20. This excellent
agreement indicates that our SS-QRRK methodology is a simple yet
accurate way for predicting falloff behaviors, and this is the central
result of the present paper.

The uncertainty of |hDEi| in real applications could be quite
large because of the lack of available experimental values. In
principle, trajectory calculations could be carried out to determine
|hDEi|, but it is not clear if readily available approximations to the
potential energy surface would be accurate enough to yield
reliable values. In practice, |hDEi| values from similar systems,
when available, are often used in modeling falloff. In fact there are
three kinds of errors in the energy transfer. First, we do not know
the mean value of |hDEi|. Second, even if we knew it at one
temperature, the true value should be temperature dependent,
even though most treatments used in combustion modeling treat
it as temperature independent or energy independent. Third, even
if we knew the correct value as a function of temperature, we
would have errors from the assumption of the exponential-down
model rather than using a full set of state-to-state vibrational-
rotational energy transfer rates,72 not just a single average
|hDEi|. In the combustion community, the |hDEi| value is
often treated as a fitting parameter that is fitted to limited
experimental data; alternatively, |hDEi| is adopted from other
‘‘similar’’ systems to approximately model the current system
of interest.

Because of these uncertainties in the one empirical parameter
needed in our treatment, and in order to test the sensitivity to
this parameter and try to rationalize the possible reliability of the
falloff calculations given the uncertainty of |hDEi| people used in
the literature, we tested the sensitivity of the calculated rate
constant to the value of |hDEi| used in our falloff calculations;
full details are given in the ESI,† and here we just present
key findings. Fig. 5 shows a scatter plot for the distribution of
kcalc/kexptl at 34 data points, with different energy transfer para-
meter being used. For |hDEi| = 29, 58, 116, 232, and 464 cm�1,
the average ratio of computed to experimental rate constants
over 34 data points are 0.47, 0.76, 1.17, 1.72 and 2.41. In thermal
activation mechanism, increasing the energy transfer parameter
produces activated states more rapidly; therefore, the predicted
unimolecular rate constants are larger and the falloff effect is
smaller.

At very low pressures, the rate constant, now bimolecular,
increases with the magnitude of the average energy transfer,
but more slowly than linearly. At the higher pressures of Fig. 5,
a factor of 5.1 difference is observed in the unimolecular rate
constant when |hDEi| ranges over a factor of 16 (from half the
value (58 cm�1) of Troe and coworkers to eight times their value).
On one hand, the sensitivity to |hDEi| is quite small; on the other
hand, our deviation from experimental values is smaller than the
sensitivity to the |hDEi| parameter. Our simpler treatment works
well and allows one to avoid a more expensive master equation
treatment. Note that a falloff calculation also requires the user to

provide the energy transfer parameter in the input; if the error in
using the SS-QRRK method is smaller than the error due to the
uncertainty in the energy transfer parameter, there is no solid
motivation for making the treatment more laborious. However,
we do not want to imply that the master equation should be
abandoned or avoided for treating reaction networks; our approach
is an alternative way and computationally less expensive way,
since E-dependent variational rate constants and microcanoni-
cal tunneling are not needed. Notice that, in the current master
equation solvers, the microcanonical variational effects and
energy-resolved tunneling are generally not included; and the
thermally averaged quantum tunneling are treated using Eckart or
Wigner models, which are not as accurate as SCT approximation.

3.4. Activation energies

Arrhenius activation energies in the high-pressure-limit and at
100 bars, 10 bars, 1.0 bars and 0.01 bars are plotted in Fig. 6. In
the high-pressure-limit, activation energy increases monotonically
as temperature increases; the activation energy at 298 K is
12.7 kcal mol�1 smaller than the one at 2400 K; however at
lower pressures, Fig. 6 shows non-monotonic behavior. At lower
pressures and temperatures higher than 600 K, the activation
energies decrease as pressure decreases; and higher the tem-
perature, the more significant amount of the Ea decreases. This
is consistent with what we showed in Fig. 3; the magnitude of
the curvature of ln k vs. 1/T curve (which is equal to, from the
definition of Ea, the Arrhenius activation energy Ea multiplied
by �1/R) decreases at higher temperatures and lower pressures.
At temperatures lower than 600 K, the activation energy at
1.0 bars increases with the same trend as the one for the high-
pressure-limit; the falloff effect is negligible at temperatures
lower than 400 K. Then, as temperature increases, the activa-
tion energy starts decreasing, from 72.8 kcal mol�1 at 600 K to

Fig. 5 A scatter plot for the distribution of kcalc/kexptl at 34 data points,
with different energy transfer parameter being used. Data point n on the
x-axis corresponds to the n-th data point listed in Table S6 (in ESI†).
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40.4 kcal mol�1 at 2400 K; at 2400 K, the activation energy in the
high-pressure-limit is 40.0 kcal mol�1 higher than the one at 1.0 bar.

Fig. 7 shows the calculated Arrhenius activation energies in
the high-pressure-limit, both with (green curve) and without
(red curve) SCT tunneling; and it also shows the activation
energies at 1.0 bar computed using SS-QRRK calibrated by CVT/
SCT rate constants (blue line) and calibrated by high-pressure-limit
CVT (without SCT) rate constants (orange line). The SS-QRRK
method effectively includes the SCT tunneling into the micro-
canonical rate constants while avoiding the high computational
cost of calculating energy-resolved microcanonical tunneling
because SCT is only calculated rigorously for canonical ensembles
in the high-pressure-limit. Quantum mechanical tunneling
effectively lowers the activation energy, which is noticeable at

low temperatures; at high temperatures, Ea computed by CVT/
SCT and by CVT are very similar. At 1.0 bar, the maximum of the Ea

curves arises from the balance between temperature-dependence
of the high-pressure-limit activation energy (Ea increases as
T increases) and the fall-off effects (Ea decreases as T increases).

4. Summary

In the current work, we applied the system-specific quantum
RRK theory combined with Lindemann–Hinshelwood thermal
activation mechanism to study the kinetics of dissociation
reaction CHF3 - CF2 + HF, which is taken as a well understood
reference case for validating the relatively new approach. The
high-pressure-limit rate constants are computed using canoni-
cal variational transition state theory with the small-curvature
tunneling approximation based on the directly calculated
potential energy surface along the tunneling path. The pre-
dicted falloff curves and pressure-dependent unimolecular rate
constants agree very well with experimentally measured values.
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