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Vibrational ladder-climbing in surface-enhanced,
ultrafast infrared spectroscopy

Jan Philip Kraack* and Peter Hamm*

In a recent work (J. Phys. Chem. C 2016, 120, 3350–3359), we have

introduced the concept of surface-enhanced, two-dimensional

attenuated total reflectance (2D ATR IR) spectroscopy with modest

enhancement factors (o50) using small plasmonic noble metal

nanoparticles at solid–liquid interfaces. Here, we show that

employment of almost continuous noble metal layers results in

significantly stronger enhancement factors in 2D ATR IR signals

(4450), which allows for multi-quantum IR excitation of adsorbed

molecules, a process known as ‘‘vibrational ladder-climbing’’, even

for weakly absorbing (e o 200 M�1 cm�1) nitrile IR labels. We show

that it is possible to deposit up to four quanta of vibrational energy

in the respective functional group. Based on these results, optical

near-fields of plasmonic nanostructures may pave the way for

future investigations involving ultrafast dynamics of highly excited

vibrational states or surface-sensitive coherent control experiments

of ground-state reactions at solid–liquid interfaces.

Surface-enhanced infrared absorption (SEIRA) spectroscopy has
emerged as a powerful tool for obtaining the vibrational spectra
of molecules at interfaces.1–5 Starting from initial reports,6,7

increasingly sophisticated approaches have pushed the sensitivity
of SEIRA to a very low surface-coverage of adsorbates. Most SEIRA
approaches are based on the application of plasmonic near-fields
for the enhancement of weak IR responses. To obtain surface-
enhancement, initial SEIRA reports used thin noble and coinage
metal layers (a few nanometers to tens of nanometers in thickness),
which consisted of differently sized nanoparticle aggregates.3,6–8

Many recent SEIRA reports, however, use specifically designed
nanostructured materials such as nanoantennas,2 nanoslits1 or
nanotips,9 which allow for very high (4105) enhancement
factors.10,11 The strong progress in SEIRA has recently triggered
interest to also exploit this effect using ultrafast spectro-
scopy.9,12–14

The largest number of ultrafast IR techniques existing
today15,16 (e.g., two-pulse pump–probe, three-pulse transient grating,
and many variants thereof) are based on the third-order nonlinear
susceptibility (w(3)), where an initial excitation of the 0–1 vibrational
transition takes place through two light–matter interactions.
Depending on the strength of the electric field in the sample,
however, molecules can also interact more than two times with
the excitation field, resulting in higher-order signals (w(5), w(7),. . .).
In laser-based IR spectroscopy, this process is termed ‘‘vibrational
ladder-climbing’’ (Fig. 1(a)).17–34 Significant interest has been
attributed to ladder-climbing even at the very early stages of
time-resolved IR spectroscopy, since the process makes an
energetically large range of vibrational levels of the electronic
ground state potential accessible. Furthermore, ladder-climbing
has allowed selectively surmounting of ground state potential
energy barriers and steering chemical reactions.18,19

The strong increase in optical near fields around metal nano-
structures under illumination makes ladder-climbing likely as a
signal contribution in surface-enhanced, ultrafast IR spectro-
scopy; however, the effect has not been observed so far experi-
mentally. Here, we demonstrate that ladder-climbing can indeed
be observed in surface-enhanced 2D ATR IR spectroscopy13,35–38

even for weakly absorbing samples (e(CN) E 170 M�1 cm�1), i.e.,
for the nitrile stretching vibrations of a monolayer of para-
mercapto-benzonitrile (p-PhCN) on an ultrathin gold layer.

The principles of 2D ATR IR spectroscopy in pump–probe
geometry (Fig. 1(a)), as well as the methods to sputter-coat the
CaF2 ATR prisms, have been introduced and discussed in detail
before.13,35–38 Extending our previous work,13 we start by deter-
mining enhancement factors for significantly thicker Au layers
up to 4 nm. To that end, we apply exactly the same procedure as
outlined in detail in ref. 13: in brief, we first calculate the ratio
between the (enhanced) 2D ATR IR signal magnitude from a
p-PhCN monolayer and its in situ measured linear ATR absorbance
(i.e., we calculate the ‘‘2D ATR IR signal per ATR IR absorbance’’).
Secondly, we compare the results to a similarly determined value of
(non-enhanced) 2D ATR IR signal per ATR IR absorbance of a
reference sample in bulk solution. The ratio of the two values yields
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the signal enhancement factor.13 This procedure avoids having
to determine the exact surface coverage of the monolayer. Since
we used thicker Au layers in the present study as compared to
ref. 13, we had to reduce the pump intensity in the 2D ATR IR
(B150 nJ) in order to avoid light-induced damage of the metal
layers, which otherwise occurs for thicknesses near the percola-
tion threshold, i.e., when long-range connected Au structures
are formed (Fig. 1(b)).

Fig. 2 shows the enhancement factor of a p-PhCN monolayer
depending on the average Au layer thickness for s-polarized
(s-pol., solid black) and p-polarized (p-pol., open black) pump-
and probe beams in the 2D ATR IR experiment (see Fig. 1 for a
definition of the polarization directions). As a general observa-
tion, the enhancement factors are larger for s-pol. as compared
to p-pol., in agreement with previous observations.13,39 How-
ever, the very different evolution of enhancement factors with

metal layer thickness indicates distinctively different enhance-
ment mechanisms for the two polarization conditions.6,39,40

That is, while the enhancement factor remains small (o10) for
p-pol. below 3 nm Au thickness and then increases relatively
abruptly, the enhancement factor for s-pol. increases more steadily
over the whole range before it reaches a maximum of 470 at
3 nm Au. Further growth of the metal layer thickness results in
the reduction of the enhancement factors for both polariza-
tion directions due to the increasing intrinsic absorption of the
pump beam.

The different enhancement mechanisms can be explained
as follows. ATR signals acquired with s-pol. exploit near-fields
in the voids between Au nanoparticles or patches by polarizing
the particles in the prism surface plane, as explained in detail
in ref. 13 and 39. In these voids, the near fields of the highest
intensity of different nanoparticles cooperatively generate ‘‘hot-
spots’’ of increased intensity (Fig. 3(b)).13,39 Therefore, s-pol.
measures signals predominantly from molecules adsorbed in
the voids between the Au patches (Fig. 3(a)). In contrast, signals
acquired with p-pol. can only ineffectively polarize the nano-
particles in the prism surface plane due to a predominant
polarization component of the evanescent wave in the direction
of the normal to the prism surface.13,41 However, once the Au
layer becomes thicker than the percolation threshold, which is
the case at a thickness of 3.5 nm (see Fig. 1(b)), it becomes
macroscopically conducting, and surface-plasmon polaritons
are excited (Fig. 3(c)), which is then responsible for the signal
enhancement of molecules on top of the Au layer.13,39,42,43 For a
perfect surface (i.e. a single crystalline structure of Au), s-pol.
light cannot excite surface plasmon polaritons and in fact not
excite molecules at all. Note, however, that even for the almost
continuous Au layers employed here (Fig. 1(b)), our surfaces are
far from such an ideal case, which still allows the polarization of
nanoparticle structures by the incident fields in the prism plane.

In addition to the electromagnetic enhancement discussed
above, the orientation of functional groups with respect to the
surface also plays an important role in SEIRA on a polarizable

Fig. 1 (a) Sketch of p-PhCN monolayers on an Au-coated prism in 2D
ATR IR. The inset shows the vibrational ladder-climbing mechanism for the
CN stretching mode. The black solid arrow indicates p-polarization of the
2D IR sequence, while the arrow pointer in the paper plane indicates
s-polarization. (b) Scanning electron microscopy (SEM) image of a CaF2

substrate sputter-coated with a 3.5 nm thick Au layer, showing an almost
continuous Au layer.

Fig. 2 Evolution of enhancement factors for the CN stretching vibration
of p-PhCN monolayers on Au depending on the sputtered Au thickness.
Solid circles represent data determined for s-polarization (s-pol.), while
open circles represent values for p-polarization (p-pol.).
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metal surface. This is because transition dipole components
parallel to the surface are diminished by adsorbate-induced
mirror-dipoles in the substrate (the ‘‘surface-selection rule’’).3,13,44,45

Thus, only transition dipole components along the local surface
normal are enhanced, i.e. the normal of the nanoparticles (Fig. 3).
For the rough surface structures employed here, we in fact expect a
broad distribution of orientations of the functional groups with
respect to the prism surface plane. Due to the different enhance-
ments that molecules for instance on top of the nanoparticles and in
the voids experience, the determination of the average orientation is
currently not possible with 2D ATR IR.

Next we turn to the observation of vibrational ladder-climbing
in strongly enhanced 2D ATR IR signals. Fig. 4 shows the
polarization-resolved 2D ATR IR signals of p-PhCN dissolved in
bulk methanol ((a) and (d)) along with signals from the monolayer
sample ((b) and (e)) on 3.5 nm thin Au layers for a population time
T = 0.3 ps, acquired under the same conditions apart from the
applied polarization (s-pol./p-pol.). The monolayer signals have
been obtained after subtraction of a background, which stems
from the bare metal layer.35,38 Note that the 2D ATR IR signal is
inverted with respect to the bulk solution sample for s-pol.
light. This inversion is due to well-known lineshape distortions

originating from the metal layers, which have been purposely
tuned here to result in complete anti-resonances for s-pol. by
choosing a layer thickness of 3.5 nm and an appropriate angle
of incidence. By coincidence, one retains absorptive resonances
for p-pol. for the same layer thickness.35,39

In any case, strong ground state bleach/stimulated emission
(GSB/ESE) signals are observed along the diagonal (solid white
lines in (a)/(d) and (b)/(e)) together with spectrally red-shifted
excited state absorption (ESA) signals, the latter of which
appear differently in shape for the bulk solution versus mono-
layer samples. That is, the bulk solution reference data exhibit
a single peak corresponding to the 1–2 transition ((a)/(d)),
independent of polarization, whereas for the monolayer data
the ESA signals exhibit multiple peaks. For a better visualiza-
tion of the multiple ESA bands, Fig. 4(c) and (f) show cuts along
the opr-axis at a pump-frequency of 2228 cm�1, which corresponds
to the maximum ATR absorption. For monolayer signals acquired
with s-pol., four distinct peaks spaced equally by ca. 23 cm�1 and
with decreasing signal magnitude for decreasing opr-positions
can clearly be discerned, corresponding to the 1–2, 2–3, 3–4,
and 4–5 transitions. For p-pol. signals (Fig. 4(f)), multiple ESA
signals are observed as well, however, only the 1–2, and 2–3
transitions are resolved. The spacing of the signals stems from
the anharmonicity of the CN stretching potential. The multiple
peaks are a signature of vibrational ladder-climbing (Fig. 1(a)),
since the energy spacing of adjacent vibrational levels decreases
linearly with the increasing quantum number in the slightly
anharmonic potential of the CN stretching mode.

The origin of ladder-climbing for these peaks has been
confirmed by their disappearance at reduced pump power.
Fig. 5 shows ML signal magnitudes obtained from a pump–
probe experiment for the 1–2 (black), 2–3 (red) and 3–4 (blue)
ESA transitions as a function of the applied pump power with s-
pol. light. Thick solid lines correspond to linear (black), quad-
ratic (red) and cubic (blue) fits to the data over a limited power
range. Fitting over a limited range of data is necessary since the
multiple excited states are subjected to saturation in their
corresponding populations with increasing power. Nevertheless,
over the considered ranges the signals can be well explained by
one-, two- and three-photon absorption pathways, respectively,
as expected from vibrational ladder-climbing.

The observation of vibrational ladder-climbing in surface-
enhanced, ultrafast spectroscopy even for weakly absorbing IR
labels (here: the CN stretching vibration, e B 170 M�1 cm�1)
can be viewed from two perspectives. On the one hand, the
excitation of higher-lying vibrational states results in additional
signal contributions (Fig. 4) compared to the pure third-order
response. However, the w(3) response is often the wanted signal
and higher order contributions make the sought signals more
complicated to interpret. This holds especially for time-resolved
data, for which the population of multiple excited vibrational
levels may result in multi-exponential relaxation dynamics.26,46

One also needs to keep in mind that very popular IR labels in
ultrafast spectroscopy exhibit strong absorption coefficients
(e 4 1000 M�1 cm�1),47,48 e.g. carbonyl or nitrile stretching vibra-
tions from transition metal complexes.49,50 Molecules containing

Fig. 3 Schematic depiction of polarization-dependent enhancement
mechanisms in 2D ATR IR spectroscopy (a) and (b) with metal nano-
particles, and (c) metal surfaces. p-Pol. light predominantly induces optical
near fields as sketched in (a), while s-pol. light generates near fields as
indicated in (b). For continuous metal surfaces p-pol. light can excite
surface plasmon polaritons as depicted in (c). Plus and minus signs indicate
local charges in the metal structures while white arrows indicate transition
dipole components. Dashed red lines indicate local electric field lines and
shaded regions indicate concentrated electric fields.
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such carbonyl bands have recently gained considerable attention in
IR surface spectroscopy51–53 due to their performance as catalysts.54

Application of these IR labels in surface-enhanced spectroscopy will
make ladder-climbing a more likely contribution, thus potentially
limiting their use in combination with plasmonic substrates for
immobilization.

On the other hand, ladder-climbing can also be regarded as a
very useful effect, which allows for many interesting applications.
For instance, one may spectroscopically characterize energy regions

of the electronic ground state potential, which are difficult to
access via direct IR excitation. It will therefore be interesting to
see in future studies how higher-lying vibrational states are
involved in intra- as well as inter-molecular excitation energy
transfer within, e.g. a closely packed monolayer or between a
monolayer and the surrounding solvent. Moreover, ladder-climbing
has triggered interest in controlling chemical reactions directly in
the electronic ground state by mid-IR pulse shaping.18,19 The strong
optical near-fields around plasmonic nanostructures can thus be
envisioned as useful control parameters for laser-induced chemical
reactions to reach energy regions close to transition states on a
multi-dimensional potential energy surface. Using the high optical
near field intensity, coherent control might be applicable for a
much broader range of samples as reported before, not limited to
very strong IR absorbers.18,19 This can be particularly interesting
regarding substrates for which much higher enhancement factors
can be expected, for instance nanoantennas12 or nanotips9 in
ultrafast IR spectroscopy, which might hence be ideal candidates
for coherent control at solid–liquid interfaces.

In conclusion, we have demonstrated vibrational ladder-climbing
in organic monolayers with weakly absorbing IR labels, studied
using surface-enhanced, ultrafast 2D ATR IR spectroscopy. Using
ultrathin (3.5 nm thickness), almost continuous gold layers on an
ATR crystal, we observe polarization-dependent ladder-climbing
signals up to the v = 4 level of the CN stretching vibration of
p-PhCN. The highest surface-enhancement and therefore the
strongest signatures of ladder-climbing (up to the 4–5 transition)
are observed for s-polarization, exploiting the excitation of hot-
spots in the voids between patches of the gold layer. Weaker
ladder-climbing contributions (up to the 2–3 transition) are

Fig. 4 Vibrational ladder-climbing in 2D ATR IR observed for p-PhCN on a 3.5 nm thick Au layer on CaF2. (a–c) s-Pol., (d–f) p-pol. Panels (a) and (d) show
the 2D ATR IR signals of a p-PhCN reference sample in bulk solution for s-/p-pol., respectively, and panels (b) and (e) of the same for p-PhCN monolayers
incubated with methanol. Note that the 2D ATR IR signals have been saturated by a factor of four to better visualize the weaker ladder-climbing signals.
Panels (c) and (f) show cuts along the white dashed lines ((a)/(b) and (d)/(e)) at a pump frequency of 2228 cm�1 for s-/p-pol., respectively. Cuts for bulk
solution data are shown as dashed lines and those for monolayer data as solid lines.

Fig. 5 Power-dependence of the 1–2 (black), 2–3 (red), and 3–4 (blue)
ESA transitions in a pump–probe experiment on p-PhCN MLs with s-pol.
light. Open symbols are experimental data and thick, colored lines corre-
spond to linear (black), quadratic (red) and cubic (blue) fits over a limited
power range, as explained in the text. Note that the signal magnitudes for
the higher ESA transitions have been multiplied by the indicated factors.
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observed for p-polarization, exploiting the excitation of surface
plasmon polaritons in the ultrathin metal film. The presented
results pave the way for a broad range of future investigations
regarding the combination of nanostructured surfaces and
femtosecond IR spectroscopy, for instance comprising ultrafast
dynamics of highly excited vibrational levels, energy transfer or
surface coherent control.
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