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having additional functional units which do not branch out further. We investigate the dynamics of these
structures with the inclusion of local semiflexibility and analyze their eigenmodes. The functionalized
units clearly manifest themselves leading to a group of eigenvalues which are not present for

homogeneous dendrimers. This part of the spectrum reveals itself in the local relaxation, leading to a
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1 Introduction

Dendrimers are hyperbranched polymers with a very high
symmetry. Due to their perfectly branched structure, dendrimers
are promising materials in the fields of chemistry, biology, and
medicine, see e.g., ref. 1-3. While the conventional dendrimers
were synthesized several decades ago,*” recently new types of
dendrimers have been created, see ref. 8 for review. Among them
the internally functionalized dendrimers are of special interest.”
Their structure differs from homogeneous dendrimers: the
internally functionalized dendrimers possess additional func-
tional groups at each branching point (apart from the core).
These functional units have distinct chemical properties so that
they do not branch out further. As it has been highlighted in
ref. 10, there are two major pathways to achieve functionalized
dendrimers: premodification (i.e., functionalization before the
construction of the macromolecule) or postmodification (i.e.,
functionalization after the construction of the macromolecule).
With respect to these strategies one uses orthogonal protecting
groups or groups that can be selectively activated.'® In particular,
as has been recently shown,"”'* the use of orthogonal click
reactions based on epoxy-amine and thiol-ene chemistry is very
efficient for the introduction of functional groups at each
dendritic layer. The advantage of these compounds is that the
attachment of drugs or imaging agents to the internal groups
can lead to good solubility and biocompatibility properties in
comparison to conventional dendrimers.'> Moreover, internally
functionalized dendrimers can be used as multichromophoric
light-harvesting systems, in which the internal functionalization
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corresponding process in the imaginary part of the complex dielectric susceptibility.

helps to establish complex energy gradients.'* Furthermore, the
layers with different polarities allow the internally functionalized
dendrimers to operate as unimolecular catalytic nanosytems.’

In this paper we investigate the dynamics of internally
functionalized dendrimers. For their description we use the
model of semiflexible treelike polymers (STPs) which includes
semiflexibility by restrictions on the bonds’ orientation."®
As has been shown previously for dendritic structures, such
orientational restrictions are an important parameter for the
characterization of dendrimers.’”! In particular, for the local
dynamics, which can be investigated by means of the dielectric
or NMR relaxation,?* 2’ the orientational correlations cannot be
disregarded.?®*">® However, the STP framework leads to a higher
computational effort stemming from the next-nearest neigh-
boring interactions in the dynamical matrix. Nevertheless, due
to the high symmetry of dendrimers, one can block-diagonalize
the dynamical matrices very effectively as it has been shown for
regular dendrimers.>® But, in contrast to regular semiflexible
dendrimers,?® for which the set of eigenmodes of ref. 30 can be
readily transferred, for internally functionalized dendrimers the
set of eigenmodes of ref. 30 is not straightforwardly applicable.
The reason for this feature lies in the symmetry breaking due to
the functional units, for which the corresponding degrees of
freedom have to be consecutively included. These fundamental
degrees of freedom for internally functionalized dendrimers lead
to an additional group of eigenvalues, which is not present for
regular dendrimers. The ensuing relaxation spectrum leaves its
fingerprints on the dynamic properties of the macromolecules.
Here we focus on the mechanical and dielectric relaxation, and
investigate, in particular, the role of the functional beads.

The paper is structured as follows: in Section 2 we recall
briefly the STP-model® and its formulas for dynamic quantities.
In Section 3 we apply the STP-model to the internally function-
alized dendrimers. Then, we introduce a complete set of
eigenmodes which is used for the diagonalization of dynamic
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matrices. (The recursive construction of the resulting reduced
matrices is relegated to Appendix A). We close Section 3 by analysis
of the dynamics of internally functionalized dendrimers. Finally,
Section 4 presents an overview of the most important results.

2 Theoretical methods
2.1 The model

The dynamics of internally functionalized dendrimers is modeled
in the STP framework,'® which we recall here briefly.

The STP model describes polymers as treelike structures of
N beads that are connected by springs. Moreover, the bond
variables (i.e. springs) {d,} are constrained to have: (i) fixed
mean-square lengths, (d,-d,) = % (ii) two adjacent bonds d,
and d,, connected by bead i, fulfilling (d,-d,) = +I°q;, where ¢;
denotes the stiffness parameter of bead i, the plus sign applies
for a head-to-tail orientation of d, and d, and the minus sign
for all other configurations of d, and d; (iii) for two non-
adjacent bonds d, and d,, connected by the path (b,, by,...,
bkfl, bk), one has <da'da> = <da‘db1><db1'db2>' : '<dbk‘dc>lizk.

As has been shown in ref. 16, the above listed restrictions
(i)-(iii) on bonds {d,} lead to the potential energy V({d,}),

{da} Z Wahd db7 (1)

ab

where K is the spring constant that is related to temperature T
and the mean-squared bond length * by K = 3k57/I%. In eqn (1)
the matrix W = (W,;) is very sparse; its nonzero elements are
either diagonal or related to adjacent bonds. It was shown in
ref. 16 that the restriction (iii) follows from maximizing entropy
under constraints (i) and (ii) and therefore no Lagrange multipliers
associated with restriction (iii) are needed, i.e., the corresponding
entries of W are zeros.

We note that the vectors {r;} labeling the beads’ positions are
related to the bonds’ vectors {d,} through

do =3 (G),mi @)

i

where G is the so-called incidence matrix®* and T denotes the
transposition. Each line of G” is related to a bond and contains
only two nonzero entries (+1 and —1) on the places related to
the beads connected by the bond.*" Transforming eqn (1) to
bead variables (using eqn (2)) yields the matrix AS™® = GWG".
Given that W couples only adjacent bonds and that the non-
vanishing elements of G are related only to beads directly
connected by a bond, the nonzero elements of AS™ are either
diagonal or related to the nearest neighboring (NN) and to the
next-nearest neighboring (NNN) beads, vide infra.

The dynamics of a polymer is described by a set of 3N
Langevin equations. The equation for the x-component of
vector r; labeling the position of the ith bead reads

x, )+ ZASTP filt )/K. 3)
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Fig. 1 Nearest (e.g., i) and next-nearest (e.g., iks) neighbors of a bead i of a
treelike network.

Here 1, = {/K, where ( is the friction coefficient and K is the
spring constant. Moreover, fi() is the x-component of the
stochastic force obeying white noise relations. Furthermore,
the structure of a polymer (connectivity and local stiffness) is
coded through the matrix A®™ = (43™"), whose elements are
known in a closed form.'® To introduce them, Fig. 1 shows the
NN and NNN of a bead i of a treelike structure. The NN beads of
i are denoted by i; and the NNN ones by i; . With this notation,

the elements of the matrix AS™ read as follows:
_ .2
ASTP i + fzk )CI,A 7
1 - fz - 1 Z )q’k - (f’k )qsz
(4)
STP _ 1= (fi = D)(fi — Vg, 5)
" (1= (fi=Da)(1 = (fi = Vi)
and
STP __ ix (6)

s 1- (‘ﬁ'/{ - 2)qu - (f;A - l)qi/\ZA

Here, f; and f; or g; and g; denote the functionality or the
stiffness of the beads i and i, respectively. All other elements of
the matrix AS™ vanish.

2.2 Dynamic quantities

AS™ are fundamental for the

The properties of the matrix
dynamics of STP.**?? Using the eigenvalue spectrum of the
matrix AS™ one can compute the complex shear modulus
G*(w) = G'(w) + iG"(w).** G'(w) denotes the storage modulus
and G"(w) the loss modulus. Using dimensionless variables one
can obtain the reduced moduli*®

o Gl@) 15 (0m/24)°
(G ()] = vksT — N451 4 (w0 /24))° )
and
1" 7G”( ) i MO—/z/l]
(G )] =0 NS 1+ (wn0/20)” .
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The sum includes all non-vanishing eigenvalues {/}. The
eigenvalue 4; = 0 and its corresponding eigenvector describe
the translation of the whole macromolecule.

Using additionally the eigenvectors of the matrix AS™ one can
compute further quantities like the autocorrelation function

Mi(£) = (do(t)-do(0))/? 9)

which turns out to read®”*®

-3 [(@e), 22 g

=2 4

Here the matrix Q is constructed from the eigenvectors and the
sum runs over all non-vanishing eigenvalues. As we proceed to
show in Section 3.2 the eigenvalues {4;} are usually very degen-
erate for symmetric hyperbranched structures. Denoting the
amount of different nonvanishing eigenvalues by (G), eqn (10)
can be rewritten as

2(G)
M{(1) =Y Clexpl-1/ul (11)
k=1
with 15 = 10/ The coefficient C% stands for
a T 2
=X ], /x (12)

where the sum runs over all eigenvectors belonging to the
eigenvalue A;. Using this coefficient one can determine through
the Fourier-Laplace transform the complex dielectric suscepti-
bility e*(w) = ¢'(w) — i¢"(w) for any segment d,.*® The real and
complex parts read®”

, _ 2(G) CZ
& (0)) = ;m (13)
and
1G) ~a
& () = ZM (14)

=1+ (w‘fk)z’

respectively, where the sums run over the distinct nonvanishing
eigenvalues.

3 Results and discussion
3.1 Analysis of AS™" for SFDs

In this subsection we analyze the matrix AS™ for semiflexible,
internally functionalized dendrimers (SFDs).

First of all, we recall the topology of these structures. The
internally functionalized dendrimers differ from homogenous
dendrimers by having additional functional beads which do
not branch out further. The construction of a functionalized
dendrimer is analogous to the homogeneous ones wherein the
core bead is connected to f; beads and all the other beads to
fbeads. Therefore, the difference r = f — f; gives the number of
functional beads attached to each bead except the core. Thus,
setting fc = f leads to a homogeneous dendrimer of function-
ality fc. The number of beads of an SFD is hence given by the

19052 | Phys. Chem. Chem. Phys., 2016, 18, 19050-19061
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Fig. 2 Schematic drawing of an internally functionalized dendrimer
of functionalities fc = 3 and f = 4 and generation G = 3. The different
shellsg =1, g = 2, and g = 3 are indicated by dashed circles. The functional
beads are depicted in red.

number of beads of a homogeneous dendrimer®® plus the
number of functional beads,

G-1_
1) 2 I (1s)

yfelfe=1=2 | (fe ~

fc=2 Jo—
Fig. 2 shows the topology of an internally functionalized
dendrimer of functionalities fc = 3 and f = 4 and generation
G =3.

Based on the SFD structure, the matrix elements of
which for an SFD we will call in the following by AS™°, can be
readily constructed. We assume a homogeneous situation
which means that all internal beads except the core have the
stiffness value g. The core being different from all other beads
has a stiffness value gc. First, we present the diagonal elements

{45"P}, then the NN elements {A-SFD}, and at last the NNN

Ty,

STP
A”,

elements {ASFD}.

i
For the diagonal elements one obtains eight different situa-
tions (for visualization, see Fig. 3, where the open circles mark
the beads corresponding to the discussed matrix element):
(a) If i is a peripheral or functional bead, one has f; = 1.
Moreover, i has exactly one neighbor with functionality f (for

G > 2). Using eqn (4), the element AJ'°, denoted by u,, equals

(f =g
1= (f=2)g—(f-1)g*

pp=1+ (16)

(b) For G = 2, a bead in the first shell has functionality f
and possesses (f — 1) peripheral neighbors. The core is its
inner neighbor with functionality fc. With this, the matrix
element reads

f n (fe — g

=T (=g 1= (e =2ac = e=Tae 17

(c) For G > 2, a bead adjacent to a peripheral bead has
functionality f. Its (f — 1) neighbors are peripheral and the

This journal is © the Owner Societies 2016
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Fig. 3 Schematic drawing represents the diagonal elements of the
matrix AS"°. The core is depicted in orange, the other internal beads in
black, the functional beads in red, and the peripheral beads in blue. Open
circles mark the beads which are related to the elements {u;}.

remaining one inner neighbor has functionality f. It follows

7 f (f = 1)g?
L S § AL i

(d) A bead adjacent to the core has functionality f for G > 2.
Hence, one of its neighbors (namely, the core) has functionality
fc, r neighbors have functionality 1 and (fc — 1) neighbors have

functionality f. Therefore, one has
— S
[—(f— )y

(fc = Dy
T (e = 2ac - (fe - e

(e) A bead well inside the dendrimer of G > 2 has functionality f

and possesses fi neighbors with functionality f and r neighbors
with functionality 1. Therefore, the matrix element reads

oy | (f — )2
I i P L O PR

(f) The core has functionality fc and (for G > 2) f; neighbors
with functionality f. This leads to

h— I (f = D¢’
Tl (fe—Dge TNT—(f-2)g—(f - g

(g) For G = 1, the core has f¢ neighbors with functionality 1, so
the matrix element reads

(18)

(f = D¢
—(f=2)q—(f-1)¢

(19)

(20)

+/fc (21)

= 2)

— (fc —1gc

(h) For G = 1, a peripheral bead has one neighbor with
functionality fc, therefore, one has

(fc — Dac’
(Je = 2)qc — (fc = Dac?

pyg=1+41— (23)

Next, we turn to the NN elements, the corresponding inter-
actions are depicted in Fig. 4 by wavy lines. There are four
different elements:(i) If one of the beads is peripheral or
functional, the other bead has functionality f (for G > 2).

This journal is © the Owner Societies 2016

View Article Online

PCCP

Eqn (5) then leads to the matrix element, denoted by vy,
1
L=(/=Dq

(j) If one of the beads is the core, the other bead has function-
ality f (if G > 2). Therefore, one gets

1 = (fe = D(f = Dgqc
(1= (fc=Dgc)1 = (f—Dgq)

(k) If both beads are inside the dendrimer, but none of them is
the core, they have functionality f, which leads to
1+(/—1)g
V3= ———F 26
S o)
() For G = 1, the element related to the core and to a peripheral
bead reads

V) = — (24)

(25)

V) =

1
1—(fc—1)gc

The NNN elements 43" depend only on the bead between
the two considered beads see eqn (6). Therefore, there are two
possible distinct elements (the corresponding situations are
exemplarily shown in Fig. 4):

(m) If the middle bead is the core, eqn (6) leads to

V4 = — (27)

_ qc
P (e~ Dge — (e — e (28)

(n) If the middle bead is an inner bead with functionality f,
one has
Py = 1
TI-(-9¢- (-1

All other elements of the matrix AS*® vanish.

(29)

3.2 Eigenmodes

In this subsection, we present a complete set of eigenvectors
of the matrix AS*P. The construction of the set is based on
the fundamental procedure which was first introduced for
flexible, homogeneous dendrimers®’ (of functionality f = 3) and
later generalized for other flexible dendritic structures.*®™*°

iy

Fig. 4 Schematic drawing of the nonvanishing nondiagonal elements of
the matrix AS'C, where the corresponding interactions are indicated by
wavy lines. The color scheme is as in Fig. 3.
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Fig. 5 Functionalized dendrimer of generation G = 3 with functionalities
fc = 3 and f = 4. The color codes different subwedges Z'¢2): 29 (blue),
7@ (green), and 2% (red).

In ref. 29 it was shown that the same construction of eigenvectors is
valid also in the semiflexible case. Here, we extend these methods to
examine SFDs of functionalities f and f and generation G.

Using the symmetry and the SFD structure, the set of eigen-
vectors can be divided into (G + 1) groups. The first group consists
of all eigenmodes in which only peripheral beads are moving.
The second group consists of the eigenmodes in which the
peripheral and their NN are moving. This scheme continues
until the group (G + 1) is reached in which all the beads including
the core are moving, see Fig. 6 and 7 for an illustration.

To be able to describe the eigenmotions of the SFD more
accurately, we introduce the notation of the subwedge. A subwedge
is a part of the dendrimer which starts with another bead rather than
the core. Fig. 5 depicts subwedges 2©?) of different generations G..

As discussed in Section 2.1, the dynamics of SFDs is given by
a set of Langevin equations, eqn (3). The corresponding set of
homogeneous differential equations reads

N
w0%/(1) + > A Pxi(t) =0 forall /. (30)
k=1

By choosing convenient eigenmodes, the system of equations
can be simplified to a few nontrivial equations.

The first group of eigenmodes consists of eigenvectors
which describe the movement of two NNN peripheral beads,

see Fig. 6. Denoting the two moving beads as i and j, the
amplitudes x; in eqn (30) read

X=X = —X; (31)

x=0 fori #1#]. (32)

Here, x, labels the single nonvanishing amplitude. Using the
respective matrix elements, the single nontrivial equation of
motion reads

—Tok1 = f1X1 — PoX1 = (U1 — p2)X1. (33)

All other equations of motion are trivial. For the NN and NNN
of the beads i and j, the terms of the two moving beads cancel
each other because they move with the same amplitude but in
the opposite direction. This is sufficient to leave the rest of the
dendrimers in rest as well. Therefore, there is one eigenvalue

19054 | Phys. Chem. Chem. Phys., 2016, 18, 19050-19061
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(a)
)
(b)
Fig. 6 (a) A sketch of a possible motion related to the first group.

(b) A sketch of a possible motion related to the first group involving two
functional beads of an SFD of functionalities fc = 3 and f = 5. The moving
beads i and j are highlighted by color. See text for details.

belonging to the first group of eigenmodes, denoted by /). The
described motion involves any two NNN peripheral beads. Each
subwedge 2® contains ( f — 1) peripheral beads which leads to
(f — 2) different, linear independent eigenvectors. Given that the
number of Z® subwedges is equal to fo( fi; — 1)°~2, the eigenvalue
M for r < 1is fo(fe — 1) 2(f — 2)-fold degenerate.

In the case of generation G = 1 one has to use different
matrix elements which leads to the equation of motion

—Tok1 = (g — p1)X1- (34)

Furthermore, having r > 2, the movement of two functional
NN beads (see Fig. 6(b)) exactly leads to the same equation of
motion as eqn (33) and therefore to the same eigenvalue. Hence,

G-2
Ye=" =1 a
Je—=2
degenerate. Altogether, the degeneracy of the eigenvalue con-
nected to the first group is

the eigenvalue AV is additionally fc(r — 1)

(fe—1)" 71

fc=2
The second group consists of eigenvectors which describe the
motion of two subwedges #® against each other, see Fig. 7(a).

Di=fclfe =192 =2) +felr—1) (35)

Because of symmetry, all topologically equivalent beads of one
subwedge move with the same amplitude, the respective beads
of the other subwedge with the same amplitude in the opposite
direction. There are two eigenvalues belonging to this group,
denoted by /%) and /). Following an analogous discussion as
above, the degeneracy of each of the eigenvalue is

D, = fe(fo — 1)°73(fc — 2). (36)

This journal is © the Owner Societies 2016
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(a)

(b)

Fig. 7 (a) A sketch of a possible motion related to the second group.
(b) A sketch of a possible motion related to the third group. The involved
subwedges are colored in green and orange. See text for details.

The third group of eigenmodes describes the motion of two
subwedges 2 ®), see Fig. 7(b). Here appears the first structural
difference to the homogeneous dendrimer®® because the sub-
wedge 2©) includes r nonperipheral functional beads. These
beads are described by another matrix element than the
internal beads in the same shell. Therefore, an extra equation
of motion is required. This means that the change in the
topology leads to an extra degree of freedom. Hence, there are
four eigenvalues connected to the third group of eigenmodes
instead of three as it is in the case of homogeneous dendrimers.
The respective degeneracy is given by

D; = fe(fo — 1)°7(fc — 2). (37)

Now, one additional degree of freedom appears in each
iteration from one group to the next one. That means, continuing
the procedure leads to two new degrees of freedom for each
transition, one for the internal beads of the new involved shell
and one for its functionalized beads. Therefore, to the n-th
group of eigenmodes (n = 2,...,G) belongs 2(n — 1) eigenvalues.
The degeneracy is given by

Dy =fclfe — 1) " fe —2)

forn=2,..., (G — 1) and by D; = fc — 1 for the G-th group.

In the group (G + 1) all beads including the core are moving.
All topologically equivalent beads move with the same amplitude
which leads to (2G — 1) degrees of freedom and therefore to
(2G — 1) nondegenerate eigenvalues.

To verify that this set of eigenmodes is complete one has
to show that their number is equal to the number of beads N.

(38)
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The number of eigenmodes is given by
G
Dy +> 2(n—1)D,+(2G—1)=N. (39)
n=2

Here we used eqn (15) giving the number of beads of an SFD.

3.3 Reduced matrices

The knowledge of eigenmodes presented in Section 3.2 allows
formulating the respective reduced Langevin equations for each
group. The eigenvalues can be then determined by diagonalizing
the corresponding reduced matrices.

In the first group of eigenmodes, two peripheral NNN beads
move against each other. The Langevin equation is given by

—To¥1 = fuXy — Pa¥X1 = (fta — p2)¥1. (40)
Hence, the respective eigenvalue reads
m !
MW = (= p,) = (41)

1+g¢

for G > 2. For G = 1, q has to be replaced by gc.
The second group leads to the system of equations (G > 3)

—19X1 = X1 +vix2 + (f — 2)psx)
(42)
—10X2 = UzX2 + (f — 1)V1x1 — PrX2.
For G = 2, the second equation of set (42) changes to
—Toxz = UpXy + (f_ 1)1/1x1 — P1X2. (43)

The coefficient matrix for these two cases (G > 3 and G = 2) reads

<,u1 +(f =2)p, v )
A, = .

(44)
(f = M3z — P2

Here and in the following, the first index in the last matrix entry
has to be used in the case n < G and the second index in the
case n = G, where n denotes the discussed group of eigenmodes.

For the third group of eigenmodes, one gets the reduced matrix

Aj
m+(f=2)p, Vi 0 2
(/=D wm+(fe=2)p, 2 V3
B 0 (e-Dpr  m+G—Dp
(f=D(fc=1Dpy (fc—Drs3 v Usa— P2
(45)

Here, different from homogeneous dendrimers, one observes
the additional row and column, as discussed in Section 3.2.

By following this procedure one can construct iteratively
the matrices up to group G. These matrices are relegated to
the Appendix.

Next, we discuss the group (G + 1). In this group, all beads
including the core are mobile. All beads which are topologically
equivalent move with the same amplitude. For a dendrimer of
generation G = 1 the system of equations of motion for the

Phys. Chem. Chem. Phys., 2016, 18, 1905019061 | 19055
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second group reads
{ —ToX1 = pgx1 + vax2 + (fo — 1)x;
—T0X2 = fevaXy + Uy Xx.

Therefore, the corresponding reduced matrix is given by

Br_(%+(knm W). )
Jeva Iy
For generations two and three one gets
o+ (f=2)p, vy 0s
B, = (=D m+(fe=Dp m (48)
(f = Dfcps Jeva He
and
i+ (f=2)ps Vi
(/= Dwi 1+ (fe = 2)p,
B; = 0 (fe =1)py
(f=Dfe=Dpy  (fe—Drs
0 (fe = Dfeps

The B,-matrices for n > 3 can be constructed iteratively
from the matrices of an SFD of the previous generations. As for
A, these matrices can be found in the Appendix.

3.4 Dynamics of SFDs

We start the discussion of dynamic properties of an SFD by the
analysis of the eigenvalue spectrum of ASFP. Using the reduced
matrices of Section 3.3, one can easily compute the eigenvalue
spectrum of a very large SFD.

Fig. 8(a) shows the eigenvalue spectra of an SFD of generation G =
10. The core’s functionality is f = 3, its stiffness parameter is gc =
0.49. The functionality of the inner beads is f = f; + r, their stiffness
Je—1

parameter follows ¢ = ¢¢ T Such choice of g ensures that both

stiffness parameters reach the two limiting cases at the same

time 334142

1
One can observe in Fig. 8(a) that the eigenvalue T

takes a larger part of the spectrum with increasing amount of
functional beads. This is obvious since this eigenvalue describes
the motion of two peripheral beads against each other. The number
of such beads increases for growing r. On the left-hand side of this
plateau there is a difference between the cases =0 and r # 0. While

1
the plateau of eigenvalue T for r = 0 is preceded by a jump from

q
another (smaller) plateau, for r # 0, the transition to this plateau is

rather steady. The corresponding in-between eigenvalues (which do
not exist for the homogeneous dendrimer, r = 0) originate from the
additional degrees of freedom due to the functional beads. As
discussed in Sections 3.2 and 3.3 these degrees of freedom appear
starting from the third group, i.e. they exist for dendrimers of G > 3.
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Based on the spectra of Fig. 8(a) we compute the reduced loss
moduli [G"(w)] which we show in Fig. 8(b). (We focus on the loss
modulus because it typically displays a richer structure than the
corresponding storage modulus.*®) As can be inferred from Fig. 8(b),

1
the increasing influence of the eigenvalue T manifests itself in
q

increasing significance of the left maximum. The growth of the
jump after this eigenvalue with a larger amount of functional beads
squeezes the region of higher eigenvalues; consequently leading to a
shift of the right maximum to higher frequencies.

Now, holding the functionality of the core fixed and varying the
amount of functional beads leads to a different functionality of all
other beads. Thus, it is also interesting to compare a homogeneous
dendrimer of functionality f = 4 (r = 0) and stiffness parameter
q = 0.32 with an SFD of functionalities f; = 3 and f = 4 and stiffness
parameters gc = 0.48 and g = 0.32. Therefore, we have a comparable

0 12 0
rpy V3 P2

t + (r=1)p, Vi P2 (49)
z tyt (fe=Npy 1
Jerp, Jera He

setup concerning the functionalities and stiffness, while the number
of beads of the two dendrimers differs. Fig. 9(a) shows the eigenvalue
spectra of the considered dendrimers (and the corresponding SFD
spectrum, rescaled with the number of beads). One can see that the
spectra look similar after rescaling. The significant difference is the
absence of a jump for SFDs in front of the longest plateau as
discussed above. There are also minor differences in some of the
eigenvalues and in their degeneracy, but they are rather insignificant.
Therefore, these two spectra lead to very similar loss moduli as
shown in Fig. 9(b). This feature can be traced back to the fact that the
periphery of the dendrimers contains a large part of the molecular
mass, so that it influences very much the mechanical relaxation,
what has been also observed for heterogeneous dendrimers.*?

Since one can find a homogeneous counterpart to SFDs which
lead to similar mechanical relaxation moduli, we are going to look
at local properties of such counterparts. The relaxation of single
segments is described by the correlation function Mi(¢) (see
eqn (10)). This quantity requires the knowledge of coefficients
involving eigenvectors. Although one can do rigorous calculations
of these coefficients by means of projection operator** or reduced
description®* techniques, here for investigation of the local prop-
erties it is enough to perform brute-force computations for an SFD
of a smaller generation. Hence in the following we discuss
dendrimers of generation G = 5 and the setup of Fig. 9.

Fig. 10(a) shows the autocorrelation function M7 for differ-
ent segments of a homogeneous dendrimer and of an SFD as a
function of time. Due to the symmetry, for homogeneous
dendrimers the segments belonging to the same shell g have the
same dynamics. For SFDs there are two types of segments (function-
alized and non-functionalized) in each shell g > 1, see Fig. 2. In
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Fig. 8 (a) Eigenvalue spectra and (b) the corresponding reduced loss
moduli of an SFD of generation G = 10 and functionality fc = 3 with different
amounts of functional beads, r = f — fc, see text for details. In (a) the
highlighted area indicates the eigenvalues of an SFD (r > 1) that originate
from the additional degrees of freedom due to the functional beads.

order to have a direct correspondence to the homogeneous dendri-
mer, we consider for the SFD non-functionalized segments only. One
can see that the relaxation of the segments of the homogeneous
dendrimer is slower than that of the corresponding ones of the SFD.
The difference is smaller for the more peripheral segments. To
understand this behaviour we look at the amplitudes Cf of the
relaxation decays given by eqn (12) for different relaxation times
T = o/, see Fig. 10(b). As is known,”” homogeneous semiflexible
dendrimers have one dominating coefficient Cf for each shell. The
same behaviour we find for the SFD, as can be observed in Fig. 10(b).
However, in the case of SFDs the dominating coefficient has a
smaller influence than for the homogeneous dendrimer. Moreover,
for SFDs there are some additional amplitudes in the region between
7o and 107,. These amplitudes arise from the eigenvalues in front of

the plateau in the eigenvalue spectrum, as it was observed in

1
l+gq
Fig. 8. Furthermore, for each shell g > 1 the most significant
relaxation time of SFDs is smaller than that of the homogeneous
dendrimer. These two facts lead to faster decaying correlation
functions for higher g.

Now, using the amplitude Cf one can compute the real part
¢/(w) and the imaginary part ¢’(w) of the complex dielectric
susceptibility, see eqn (13) and (14). Here we focus on the &’(w)
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Fig. 9 (a) Eigenvalue spectra of a homogeneous dendrimer (f = 4, g = 0.32)

and an SFD (fc = 3, gc = 048, f = 4, g = 0.32) of generation G = 10. The
green line represents the rescaled spectrum of the SFD. (b) Reduced loss
moduli computed based on the spectra of figure (a). See text for details.

since it displays more emphasized differences. Fig. 11 shows the
¢'(w) computed based on the amplitudes of Fig. 10(b). As can be
inferred from the figure, ¢’(w) is dominated by two processes. The
right maximum originates from the large eigenvalues, i.e. from
the relaxation times t; < 7,. This maximum is less pronounced
since the corresponding amplitudes C{ are small in this region.
The left maximum originates mostly from the dominating, very
large amplitude. Moreover, for lower g the left maximum appears
for the SFD at a bit higher frequencies than for the corresponding
shells of the homogeneous dendrimer. This indicates that the
viscosity and the gyration radius of the SFD is a bit lower than
those of the corresponding homogeneous dendrimer, because the
behavior of these characteristics is dominated by lower eigenva-
lues, see the ESIT for details. Now, for functionalized dendrimers
there is an additional shoulder in the intermediate frequency
region, which is significantly developed especially for internal
shells (i.e. for lower g). This additional process in the ¢’(w) arises
from the relaxation times between 7, and 107, see Fig. 10(b). Thus
the presence of functional beads is clearly manifested in the local
dynamics of the non-functionalized segments on intermediate
frequencies. We note that for fully-flexible structures the presence
of the additional process in ¢’(w) is hardly pronounced, ie., the
semiflexibility highlights the presence of functionalized units, see
the ESIt for details.

Phys. Chem. Chem. Phys., 2016, 18, 19050-19061 | 19057


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c6cp02406h

Open Access Article. Published on 16 June 2016. Downloaded on 1/13/2026 7:57:10 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

PCCP

(a) i ; ; . . .
1.0} g=2 — g=3 — g=4 — g=5

t/ T
(b)
1.0 @)
v e o o
0.8} ®g-1 Vo]
@ g=2
s 08f ® g=3 A \Y 1
x @ g=4
O o4l ®g-5 ]
0.2F J
vV e ‘o Ve
0.01 0.10 1 10 100
T/ To
Fig. 10 (a) Autocorrelation function M3(t) and (b) the corresponding amplitude

C;, of the relaxation decays of different segments of a homogeneous (f = 4) and
a functionalized (fc = 3, f = 4) dendrimer of generation G = 5. In (a) the solid lines
are related to segments of the homogeneous dendrimer, while the dashed lines
represent the results of the corresponding non-functional segments of the SFD.
In (b) the dots indicate the amplitude C} for the homogeneous dendrimer and
the triangles for the SFD. The dendrimers’ shells are numbered by g in an
ascending order, starting from the core shell, as indicated in Fig. 2.

We close this section by discussing the role of the dendri-
mers’ generation G. In Fig. 12 we display the autocorrelation
function

)

)
N

o

(@]
o

log1o(w1o)
Fig. 11 Imaginary part of the complex dielectric susceptibility corres-

ponding to the structures of Fig. 10. The lines and the color code are
the same as in Fig. 10.
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Fig. 12 (a) Autocorrelation function Mi(t) and (b) the corresponding

imaginary part of the complex dielectric susceptibility ¢”(w) for function-
alized (fc = 3, f = 4) dendrimers of generations G = 5 (dashed lines) and
G = 7 (solid lines). The dendrimers’ shells are numbered by g in an
ascending order, starting from the core shell, as indicated in Fig. 2.

Mi(t) and the corresponding imaginary part of the complex
dielectric susceptibility ¢”(w) for different shells g of an SFD of
generations G =5 and G = 7. As it was observed for homogeneous
dendrimers,”” for higher g the curves overlap each other: the
corresponding segments feel the size of the branches which
originated from them, but not the total size of the dendrimer,
i.e., G. The behavior of the core segments is somewhat different.
Here the difference between the core beads and all other beads is
also revealed. In particular, the similarity of neighborhood for
core segments of both dendrimers (G = 5 and G = 7) is reflected
in the initial decay of M{(¢) or at higher frequencies of ¢'(w).

4 Conclusions

In this work we studied the dynamics of semiflexible, internally
functionalized dendrimers (SFDs). Based on their symmetry we have
block-diagonalized the dynamical matrix stemming from the STP
framework. The ensuing reduced matrices grow linearly with the
generation G of the dendrimer, whose molecular mass has an
exponential dependence on G. The reduced scheme provides not
only the computational effort, but also gives a better understanding
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of the SFD’s eigenmotions. Starting from generation G = 3 the
SFD eigenmodes become distinct from those of a homogeneous
dendrimer. These differences come from the functional beads inside
the SFD, resulting in the group of new relaxation times close to the
segmental relaxation time. While the mechanical relaxation of SFDs
is mostly determined by the peripheral shells, and hence one can

A Appendix

Here we present reduced matrices A, and B, for n > 3.

View Article Online

PCCP

find for each SFD a homogeneous counterpart with a similar
behavior, the local dynamic properties allow uncovering the
presence of functional units. These lead to an additional process
(related to the group of new relaxation times close to the segmental
relaxation time) in the imaginary part of the complex dielectric
susceptibility in the intermediate frequency region.

The fourth and fifth groups of eigenmodes lead to the matrices

w + (f = 2)ps Vi 0 I 0 0
(f =D us + (fe —2)p, rpy V3 0 P2
0 (fc=Dpy  w+(r—=1)p, 2 0 P2
Ay = (50)
(f=D(fce=1Dps  (fe=Drvs vy ps + (fc = 2)p, rps v3
0 0 0 (fe=Dpy  m+(r—1)p; Vi
0 (fe=1°py  (fe=Drpy  (fo—1ws 2 Hsa = P2
and
As
i+ (f=2)ps v 0 0, 0 0 0 0
(f=Dvi s+ (fe=2)p, rps V3 0 P2 0 0
0 (fe=Dpy  m+(r=1)p, Vi 0 P2 0 0
(f=D(fc=1py  (fc—Dus v us+(fe—2)p, Py V3 0 P2 (51)
- 0 0 0 (fe=Dpy  m+r—Dps  m 0 P2
0 (fe=17py  (fe=Vrpy  (fe=1)ws o ps+(fe=2p o vs
0 0 0 0 0 (fe=Dpy  m+r=Dpy, 1
0 0 0 (fe=1%py  (fe=Vrpy  (fe=1)ws M Hsa— P

For higher groups the matrices can be constructed iteratively. Th

e matrix A, is a 2(n — 1) x 2(n — 1)-matrix and it reads

0 0 0
0 0 0
An—l P2 0 0
P2 0 0
A, = , (52)

V3 0 I25)
2 0 12
0 ... 0 (Je=1’py (Jo—Drpy (Jo—1ws v us + (fe = 2)p, Py V3
0 ... 0 0 0 0 0 (Je=Dpy  m+0—=1)p, Vi

0 ... 0 0 0 (fe=17%py (fc—Vrpy  (fc— s 2 Isja — P21

where the matrix A,_, is obtained by crossing out the last row and the last column of the matrix A,_;.
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The B-matrices of generations four and five read
w4 (f = 2)ps Vi 0 P2 0 0 0
(f = Du s+ (fe = 2)p, P2 V3 0 P2 0
0 (fe=Dpy  m+(r=1)p, Vi 0 P2 0
) By = | (f = D(fc—1)ps (Je=Drs v ts + (fe = 2)p, ps V3 P2 (53)
)]
Q
g 0 0 0 (Je=Dpy i+ —=1)p, Vi P2
2
B 0 (fe —1)%p, (fe = Drp, (fc = Drs v s+ (fo=Dpy 12
(=]
5% 0 0 0 (fe =1 fcp, Jerps Jera He
3
é and
8
<
2
£ (= 2)p, v 0 o2 0 0 0 0 0
O
E (=D ms+(fe=2)p, P V3 0 P2 0 0 0
8
5 0 (fe=Vpy  m+(r—Dps 0 pr 0 0 0
©
g (f=Dfe=Dpy  (fo=Dus o st (fe=2)p o vs 0 P2 0
=]
g = 0 0 0 (fc=Dpy  w+(r=1)p, vy 0 0 0
= 0 (fe=1Pp  (fe=Drpy  (fo=1)vs wi ps+(fe=2p ) v
[
2 0 0 0 0 0 (fe=Dpy  wm+(r=1)p, Vi P2
[
€ 0 0 0 eV oD el o mte-Up
0 0 0 0 0 (fe=1)fcpa Jerpa Jera He
(54)

(cc)

(2n — 1) and reads

En—l
B, =
0 ... 0 0 0 (fc—1)p,
0 ... 0 (fe=10py (fo—Drpy  (fc— s
0 ... 0 0 0 Jfelfc = 1)p,

For higher generations, the matrix can be given in an iterative form. The matrix B, (n = 6,..

., G) is of the dimension (2n — 1) x

0 0 0
0 0 0
0 Po 0
0 02 0 | (55)
Py V3 P2
m + (r=1)py Vi P2
vy ty+(fe=1Dpr v
Jferp, Jfera U

where the matrix B,,_, is obtained by crossing out the last row and the last column of the matrix B,,_; and replacing its last entry

(i.e. (Bn—1)2n—a,2n—4) By uts + (fc — 2)p>.
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