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On the calculation of equilibrium thermodynamic
properties from molecular dynamics
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The purpose of statistical mechanics is to provide a route to the

calculation of macroscopic properties of matter from their constituent

microscopic components. It is well known that the macrostates

emerge as ensemble averages of microstates. However, this is more

often stated than implemented in computer simulation studies. Here

we consider foundational aspects of statistical mechanics which are

overlooked in most textbooks and research articles that purport to

compute macroscopic behaviour from microscopic descriptions based

on classical mechanics and show how due attention to these issues

leads in directions which have not been widely appreciated in the field

of molecular dynamics simulation.

Introduction

There are a few fundamental questions in science. While the
discussion of and attempted resolution of these questions are
of widespread interest, not only to scientists but also to the
general public, they rarely appear to affect the day to day work
of jobbing scientists.

One such question concerns the nature of time, in particular
how to make sense of the fact that while the microscopic
description of matter is time-reversal symmetric, macroscopic
behaviour is temporally asymmetric.† Thermodynamic systems
are observed to approach equilibrium; they do not retreat from it.
Conventional attempts to explain this time asymmetry frequently
proceed from the paradoxical assumption that the reversible
microscopic world, which we cannot directly apprehend, is the
true one; while the observable irreversible macroscopic world is an
illusion, however persistent. That such an interpretation does not
stand up to scientific scrutiny has been pointed out by numerous
authors of scientific and philosophical works.1–7

In short, if one regards the concept of equilibrium as being
as valid as the quantum mechanical or classical description of

the molecules comprising the systems governed by thermo-
dynamics, then we are obliged to reconcile these seemingly
incompatible representations of matter.

Dynamical systems, ergodic theory and
the approach to equilibrium

In this article, we shall only consider classical systems. Our aim
is to discuss the use of classical molecular dynamics for the
determination of macroscopic properties, in particular the Gibbs
free energy for systems at equilibrium. While the formulation of
classical mechanics typically presented in expositions of molecular
dynamics found in textbooks of molecular dynamics is based on
Newton’s equations of motion (and their equivalent Hamiltonian
and Lagrangian formulations), there is a further probabilistic
representation to which relatively scant regard is paid. However,
it is important to always keep this representation in mind,
especially when considering statistical mechanics. Instead of
working with Newton’s equations of motion, in the probabilistic
representation we employ the Liouville equation

qtrt = Lrt (1)

Lrt ¼ H; rtf g ¼
XN
i¼1

@H

@pi

@rt
@qi
� @H
@pi

@rt
@qi

� �
(2)

where rt is the (6N + 1)-dimensional probability distribution
function defined on the phase space, qt = q/qt, L is the Liouville
operator (i.e. the Poisson-bracket of the classical Hamiltonian
acting on rt) and N is the number of particles in the system.

Macroscopic averages are given by ensemble averages of
dynamical observables, G, denoted hGit. Thus

Gh it¼
ð
GðxÞrtðxÞdm (3)

where x denotes the 6N phase space variables and m is the
invariant measure associated with it.

Despite the frequent assertion that the Newtonian, trajectory
based, formulation and the probabilistic description are equivalent,
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the two representations of dynamics cannot always be used
interchangeably. In particular, this is the case in discussing the
approach to equilibrium and, indeed, the very concept of
equilibrium itself. To see this, one can use the inverse Laplace
transform to show that the solution of the Liouville equation
may be written as

rt ¼
1

2pi

ð
g
dz

ezt

z� L
r0 (4)

where the contour g avoids any singularities in the complex
z-plane. Thus the long time behaviour of a dynamical system is
governed by the spectrum of L. A system possesses an equilibrium
state if the solution of this equation asymptotically approaches a
time-independent state re:

lim
t!1

rt ¼ re (5)

We are primarily concerned with equilibrium states of matter here,
so the equilibrium value of G, denoted hGieq, is of considerable
interest. Thus

Gh ieq¼ lim
t!1

Gh it¼ lim
t!1

ð
GðxÞrtðxÞdm ¼

ð
GðxÞreðxÞdm (6)

Thus an equilibrium state will exist if one is able to interchange
the limit with the integral in eqn (6), which follows from
Lebesgue’s dominated convergence theorem and so holds
almost everywhere, except possibly for a set of zero measure.‡
Mathematically, it is well known that, for an equilibrium
distribution to exist (eqn (5)), the dynamics must be at least
that of a mixing flow in the language of ergodic theory. A mixing
system is one for which

lim
t!1

m At \ Bð Þ
mðBÞ ¼ mðAÞ (7)

where m(A) is the measure of an initial region of phase space A,
and m(At) the same at time t. This property means that the
dynamical system exhibits sensitivity to initial conditions, such
that the late time behaviour of the system is totally uncorrelated
with its early time properties. That is to say, the system possesses
at least one positive definite Lyapunov exponent or, in more
colloquial language, the system is ‘‘chaotic’’. This result is of
fundamental significance here.

Mixing systems are one class of dynamical systems in the
classification provided by ergodic theory8,9 rooted in the probabilistic
description of dynamical systems governed by the Liouville equation.
Ergodic theory has grown out of the relationship between the global
properties of dynamical systems and statistical mechanics.10–12

Unfortunately, due to the level of mathematical rigour involved in
the subject, it has become rather detached from workaday research
in statistical mechanics and computer simulation. In a nutshell, the
ergodic hierarchy embraces (i) ergodic; (ii) mixing; (iii) Kolmogorov;
and (iv) Bernoulli dynamical systems, whose distinct properties are
governed by the nature of the spectrum of L. These systems display
an increasing level of dynamical instability, each implying the
properties of the level before it, but not being implied by it.

In many textbooks on statistical mechanics and molecular
simulation, attention is focused on ergodicity to provide the

link between dynamics and thermodynamic equilibrium. Ergodic
systems are ones that pass through every available point in
phase space (given sufficient time), but ergodicity is not a
sufficient condition: such systems do not display an approach
to equilibrium. A greater degree of instability in the dynamics is
required. As noted above, mixing systems are ergodic and they
also display an approach to equilibrium. Kolmogorov and
Bernoulli systems manifest even greater dynamical instabilities
than mixing flows; they too display an approach to equilibrium
and are, of course, also ergodic.

The key point is this. From ergodic theory, we know that if
a system is going to exhibit an equilibrium state, it must
be at least mixing. There is, however, an important additional
requirement for these properties to be relevant to statistical
mechanics. That is, in thermodynamics we are dealing with
systems with very large numbers of atoms and molecules. In
particular, statistical mechanics works because, in the thermo-
dynamic limit (large N and large volume V, such that the
density (N/V) is constant), ensemble averages converge to the
same behaviour as the average properties of a single system,
since the fluctuations become negligible.§

Classical molecular dynamics

As noted, many textbooks and research papers in the domain of
interest here pay no attention to the foregoing discussion.
Instead, they advocate the calculation of ‘‘statistical averages’’
from molecular dynamics by reference to the ‘‘ergodic theorem’’
(and the associated ‘‘ergodic hypothesis’’). In short, they assume
that it is possible to perform a sufficiently long single micro-
scopic trajectory calculation such that, in the long time limit,
one may replace the ensemble averages hGi which are fundamental
in statistical mechanics by time averages:

�G ¼ lim
T!1

1

T

ðT
0

G xtð Þdt (8)

since the ergodic theorem holds that hGieq =
�
G. Thus, for

example, one reads in Understanding molecular simulation that
molecular dynamics is concerned with time averaging.13 The
problem with eqn (8), however, is obvious. The equation is valid
in the infinite time limit; in practice this has been taken to
mean that one runs a simulation for as long as is possible,
computes its time averaged properties, and then claims that the
values reported represent the macroscopic thermodynamic
properties of the system. More fundamentally, such an approach
to computing macroscopic averages lacks the generality one seeks
in statistical mechanics. It is manifestly restricted to the case
of systems in equilibrium; it cannot be employed for non-
equilibrium systems where the system’s properties depend
explicitly on time.

What is more or less universally ignored is the requirement,
if an equilibrium state is to be reached, that the probabilistic
dynamics must be at least mixing. Neighbouring trajectories
in the ‘‘underlying’’ phase space diverge exponentially fast. A
single trajectory will never capture such behaviour since on the
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Newtonian trajectory level of representation each instant in
time is equivalent to every other. Indeed, in this representation
the very concept of equilibrium has no meaning.

Rather than pursue such a tenuous approach to determine
equilibrium properties based on single trajectories—no matter
how ‘‘long’’ they be—we prefer to embrace the tenets of
statistical mechanics and directly compute ensemble averages
by running sufficiently large numbers of replicas of the system
of interest.

None of the foregoing theory tells us anything about whether
the systems under investigation in molecular dynamics simulation
fulfil the mixing or higher instability properties in the ergodic
hierarchy. Nor does that theory say anything about the rate at
which equilibrium is approached, or the number of replicas one
needs to include in an ensemble. As regards the first of these
questions, it is known that rigorous proofs aiming to show that
real systems reside in a specific class within the ergodic hierarchy
are almost impossible to establish; but since these properties are
the ones known to guarantee equilibrium behaviour, one must
assume them to be at least mixing unless they are proved not to be
so.¶ It is the central purpose of non-equilibrium statistical
mechanics to calculate kinetic descriptions that describe the rate
at which equilibrium is attained.11 However, the existing rigorous
theories are again restricted to idealized and often abstract
dynamical systems.14–16 Both the first and the second question
therefore need to be investigated by computational means. And
this is precisely the programme we have pursued.

The ensemble approach to free energy
determination using molecular
dynamics computer simulation

Although the use of ensemble simulations in molecular dynamics
was first proposed some time ago,17,18 the approach was not
systematically investigated. We focus here on the calculation of
the Gibbs free energy of binding of a ligand to a protein in
water. Assuredly these systems display experimentally observed
equilibrium states, and one can measure the Gibbs free energy
of binding. It follows from this that the system, if faithfully
described by classical molecular dynamics, is at least a mixing
system with trajectories that diverge exponentially in time, no
matter how close they are initially.

We start, therefore, from a suitably selected ensemble of
initial conditions, working within the probabilistic interpretation
of the dynamical behaviour. As noted earlier, statistical mechanical
theory provides no guide as to how large such ensembles should
be, while we must also keep an eye on the thermodynamic limit.
Starting, for example, from an initial structure provided by X-ray
diffraction, we build models with the ligand docked into the
active site of the protein. Once the models are constructed and
ready for molecular dynamics analysis, a sufficiently large
number of replicas are created, which differ only by the random
number seed that assigns them the differing velocities of all the
atoms at the initial time when the simulations kick off. Two
issues arise. First, how many replicas are required, and second

what role is played by the thermodynamic limit? The answer to
the first is established by numerical simulation; the thermo-
dynamic limit is simply attained by the same process – a
macroscopic system of this kind would just have of order one
mole of ligand and protein present. Since there are no significant
interactions between the individual ligand–protein complexes, we
can access the thermodynamic limit directly by aggregating the
properties of the replicas in the ensemble.

Our extensive studies of numerous protein–ligand systems
show that such ensembles require no more than 4 nanosecond
duration simulation and no fewer than 25 replicas in order to
return errors on the free energy predictions of around 1 kcal mol�1

or less. The free energies are computed by two classes of method,
known as ESMACS19,20 and TIES.20,21 One can control the errors in
these free energy calculations through a combination of the
duration in time of each molecular dynamics simulation and
the number of replicas used. Errors at this level, which for one
of our methods of free energy determination (TIES) are certainly
less than experimental values, are also reproducible. Accuracy,
precision and reproducibility of binding free energy predictions
are all hallmarks of these ensemble based methods, while being
notoriously elusive in the history of the use of molecular dynamics
to predict these quantities.

What emerges from these studies is that the properties one
computes from individual molecular dynamics trajectories are
well described by Gaussian random processes. That is, they can
be thought of as stochastic processes with mean and standard
deviation conforming to a Gaussian distribution (Fig. 1a).9 This
in turn makes it possible to reinterpret numerous equations
and calculational routes in statistical mechanics as stochastic
integrals (of which just one example are the equations for relative
free energy changes in terms of thermodynamic integration over
alchemically combined pairs of distinct molecular states), thereby
allowing us to draw on the theory of stochastic calculus to compute
relevant properties reliably.9

The use of these ensemble simulations can be compared to
what happens when one performs a ‘‘long time duration’’ single
trajectory simulation. Our work demonstrates compellingly that
such long simulations (in cases we have studied, these have
been run for up to a couple of microseconds or longer) produce
predictions that are no better than those of a single replica
taken from a 25-member ensemble, even though the former is
several times longer in temporal duration than the entire
ensemble simulation (Fig. 1).19,22 Our free energy studies show
that binding affinities obtained from two independent simulations
of the same molecular system, differing only in initially assigned
atomic velocities, can vary by up to 10 kcal mol�1 in the small
molecule–protein complexes,23,24 and by up to 43 kcal mol�1 in the
peptide–MHC (major histocompatibility complex) systems.19

These variations are much larger than the experimentally observed
maximum binding free energy difference of the inhibitors under
investigation.

We use bootstrapping analysis to quantify convergence and
deduce errors in these ensemble simulations for a given number
of replicas and simulation duration.24 A very large number of
bootstrap samples are generated, drawing with replacement
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from the population of the original data set. The standard
deviation of the bootstrap samples provides an estimate of the
error in the original data set. The magnitude of the estimated
error decreases by increasing the number of replicas in an ensemble
simulation, directly providing information on convergence of
the results.

Thus, the success of such ensemble based simulation studies
is due to a highly effective exploration of the relevant parts of
phase space. One can of course envisage situations when there
may be multiple minima pertaining to different ligand–protein
bound states, or even simply a number of separate rotameric
states of (say) the ligand, which may not be accessible from the
initial ensemble within the timeframe of 4 ns. The absence of
active–inactive transitions and the lack of sampling of inactive
conformations do not make a significant contribution to the
free energies of binding. If such transitions (translating into
so-called ‘‘on’’ and ‘‘off’’ rates) and additional bound states are

of interest, then one must ensure they are targeted by inclusion
of ensembles of initial conditions that guarantee there is an
appreciable probability for these processes to occur. One-off
(single replica) simulations do not have any reliability owing to
the random nature of molecular dynamics trajectories.

When the kinetics of conformational transitions and/or ligand
binding is of interest, much longer molecular simulations, usually
on the microsecond timescale,25,26 will be required than those
recommended in our studies for equilibrium binding affinities.
The kinetic information, as well as equilibrium properties, can
be reconstructed from studies with so-called ‘‘enhanced
sampling techniques’’ which are usually based on tempering
the system, modifying the underlying potential energy surface,
or a combination of both. Such enhanced sampling methods
may be required to obtain relevant metastable states for computing
equilibrium properties if barriers are sufficiently high between these
states. However, attempts made to report kinetics from single
simulations are likely to be just as error prone as single
simulation based attempts to calculate free energies. Extreme
caution must be exercised in seeking to make general inferences
about a system’s behaviour based on these, no matter how long
the simulated time is reported to be.

Previous molecular dynamics studies have demonstrated
that protein systems can get trapped in one or a few conformations
even in a relatively long time duration simulation. The epidermal
growth factor receptor (EGFR), for example, may25 or may not25,27

overcome the energy barrier between its active and inactive states
in the course of molecular dynamics simulations on a time scale of
10 ms or longer. Even if the transition does occur, a probabilistic
description cannot be meaningfully constructed because of the
rare nature of the events concerned.

The increasing speed of modern computers is largely determined
by the number of cores and accelerators available on them. This
development in computer architectures is well aligned with the
need articulated here to perform ensemble-based molecular
dynamics studies since, in the elapsed time needed to perform
one such simulation, we can do all of them if the machine is
large enough. The ability to perform such calculations fast – in a
few hours – and reliably will have an important impact on the
use of such methods in areas such as drug discovery and clinical
decision making.20,28

Conclusions

We started by recalling known properties of dynamical systems
which approach and reside in equilibrium states. The central
property, largely overlooked in discussions of statistical mechanics
and molecular simulation methods designed to compute
equilibrium properties from the microscopic level, is that of
‘‘mixing’’ in the ergodic hierarchy which classifies the types of
global behaviours leading to thermodynamic equilibrium states
under dynamical evolution.

Basing the determination of equilibrium properties on ergodic
theory in this manner ensures that we compute ensemble-
averaged behaviour in a manner which is truly consistent with

Fig. 1 Comparison of ensemble and single trajectory simulations of four
peptide–MHC complexes. Results for one peptide sequence, AAAKTPVIV
(9 amino acid residues in single-character notation), are shown here as an
example. All others exhibit similar behaviour. (a) The Gaussian distribution
of free energies from ensemble simulation, comprising 50 independent
replicas each of 4 ns duration, has a larger spread than from any individual
replica; single microsecond trajectories (red line), five times longer than
the aggregated length of all replicas in the ensemble, behave like 4 ns
replicas.19 (b) The ensemble simulations correctly predict the ranking of
the binding energies for the four peptides considered (black circles and
dashed line), while single long trajectories produce rankings which are
anti-correlated with those observed (red circles and dashed line).
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the methods of statistical mechanics. We indeed find that
neighbouring trajectories diverge very rapidly in phase space.
Properties derived from these show all the hallmarks of Gaussian
random processes.

Calculating macroscopic properties in this manner from
classical molecular dynamics provides the means to report
reproducible results including errors intrinsic to the method.
The errors are under the direct control of the person performing
the calculations through the choice of number of replicas and
duration of the molecular dynamics simulation time.

In several respects, this approach to molecular dynamics
calculations is analogous to weather forecasting. To predict
tomorrow’s weather today, meteorologists do not run a single
simulation. They recognise that they will never know exactly the
initial conditions that are required to perform a single fluid
dynamics based calculation, in a system of Navier–Stokes
equations known to exhibit dynamical chaos. So they perform
many simulations with slightly varying initial conditions—i.e.
they compute the behaviour of ensembles—in order to make
reliable probabilistic predictions of what the weather will look
like the next day. Speed too is of the essence here as it is there.
Just as the public wishes to know tomorrow’s weather today,
not in three weeks time, for the application of free energy
calculations in drug development and clinically based personalised
medicine28 we must be able to deliver accurate and reliable results
within hours to drive decision making.
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† We are excluding the strange decays of the long-lived kaon, which
violate time-reversal symmetry.
‡ The computable numbers form a set of zero measure so it is possible
that computer generated molecular dynamics trajectories will behave
pathologically.
§ An important issue here is whether or not the limits t - N and
N - N commute, which is assumed here. There is good reason to
believe that they do not commute for some systems. One way in which
the commutativity of these limits can break down is if the system
becomes trapped in a ‘‘metastable’’ state and stays there for a very long
time (cf. the later discussion on metastable states).
¶ There exist dynamical systems that are neither ergodic nor integrable,
the so-called non-integrable systems, to which the KAM theorem is
applicable. However, the general view on these systems, to which we
subscribe, is that the measure of phase space in which regular motion
takes place tends to zero in the thermodynamic limit; at which point
these systems are all members of the ergodic hierarchy with instabilities
at least of the mixing variety.
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