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Enhancement of island size by dynamic substrate
disorder in simulations of graphene growth†

Gwilym Enstone,*a Peter Brommer,bc David Quigleybd and Gavin R. Belld

We demonstrate a new mechanism in the early stages of sub-monolayer epitaxial island growth, using

Monte Carlo simulations motivated by experimental observations on the growth of graphene on copper

foil. In our model, the substrate is ‘‘dynamically rough’’, by which we mean (i) the interaction strength

between Cu and C varies randomly from site to site, and (ii) these variable strengths themselves migrate

from site to site. The dynamic roughness provides a simple representation of the near-molten state of the

Cu substrate in the case of real graphene growth. Counterintuitively, the graphene island size increases

when dynamic roughness is included, compared to a static and smooth substrate. We attribute this effect

to destabilisation of small graphene islands by fluctuations in the substrate, allowing them to break up and

join larger islands which are more stable against roughness. In the case of static roughness, when process

(ii) is switched off, island growth is strongly inhibited and the scale-free behaviour of island size

distributions, present in the smooth-static and rough-dynamic cases, is destroyed. The effects of the

dynamic substrate roughness cannot be mimicked by parameter changes in the static cases.

1 Introduction

Two-dimensional (2D) materials, such as graphene1–3 and BN,4,5

and layered materials such as Bi2(Te,Se)3,6,7 Mo(S,Se)2,8,9 are
attracting enormous interest due to their potential in electronic
and spintronic devices. For such applications, large single crystal
grains and low-angle grain boundaries are advantageous, hence
high quality orientationally-ordered films with low nucleation
density and few defects are very desirable. Chemical vapour
deposition (CVD) has become established as the most promising
scalable route to graphene and BN growth.2 In the last few years,
a lot of effort has gone into improving graphene grain sizes for
CVD growth on low-cost polycrystalline copper substrates by
manipulating substrate temperature, growth rate and substrate
cleaning protocols. Growth temperatures of around 1000 1C
mean that copper substrates are nearly molten;10 indeed, graphene
can be grown on liquid surfaces.11,12 A great deal of copper
sublimation occurs during a typical surface preparation and CVD
growth run. Furthermore, a structural feedback effect has been
noted, whereby the copper surface restructures by faceting only

after CVD growth of a graphene overlayer.3 Combined, these
observations strongly imply that the Cu substrate can be far
from equilibrium during CVD growth, and hence cannot be
considered as a perfectly static crystal facet. The role of substrate
roughness in controlling graphene nucleation has been described
as pivotal,13 but this role has yet to be included in any kinetic
growth model based on rate equations.

While recent density functional tight binding (DFTB) simula-
tions14 have probed the early stages of graphene nucleation on
semi-molten copper, these cannot access the wider range of time
and length scales over which important processes occur.15,16

These range from atomistic events on a timescale around 10�12 s
to the scale of hundreds of microns and minutes for graphene
grain completion. Monte Carlo (MC) models allow microscopic
events to be aggregated efficiently so that, for example, the
nucleation, growth and coalescence of 2D islands17–20 or 3D
nano-clusters21–23 on a surface can be studied. The key ingredient
of a MC model is the list of microscopic events which can occur
and their rates or probabilities. Typically such models are
constructed on a static lattice: monomers (atoms) can occupy
discrete sites, which are identical in the substrate, so that
only occupancy by monomers in the dynamic growing layer
differentiates the sites. This type of model does not seem to be
appropriate for a growth system where the substrate is highly
active during growth, such as copper in graphene CVD.

A great deal of insight into fundamental surface growth
processes can be gained by studying growth well below mono-
layer (ML) coverage, i.e. when monomers have aggregated to
islands which do not completely fill the layer and have not
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begun to coalesce. The island size distribution (ISD) can reveal
much about the underlying processes in surface growth.1,24,25

In particular, under many surface growth conditions one
expects to observe dynamic scaling behaviour of the ISD, i.e.
the shape of the distribution does not depend on the average
size of the islands (which increases with coverage). The precise
forms of ISDs have been discussed for many years.26–28 Experi-
mentally, one can use a technique such as scanning tunnelling
microscopy (STM) to study island formation and growth with
atomic-scale precision, normally quenching the sample after
sub-ML growth and working ex situ.1,25,29 Atomic resolution
STM is well suited to ultra-high vacuum growth techniques, and
can even be performed in situ.30 Performing STM in a CVD
growth environment31 is very challenging: more generally, in situ
CVD growth monitoring is far from routine,32,33 especially on
polycrystalline and non-planar substrates such as Cu foil. This
gives modelling studies an important role in connecting experi-
mental parameters to post-growth film characteristics, and in
bridging the gap between microscopic behaviour and large-scale
island characteristics measured ex situ.4

In this paper, we report simulations on the early stages of
graphene growth using a minimal MC model constructed to mimic
the semi-molten dynamically rough nature of a hot copper substrate.
While the effect of dynamic roughness on individual ad-atom
diffusion has been studied in lattice-gas models,34 the effect on
growth has not been previously quantified. We find that dynamic
substrate disorder actually enhances the growth of large, regular
islands, and preserves the scaling of the ISDs over a wide range
of coverages. By contrast, static disorder hinders the growth of
large islands, compared to a uniform lattice, and destroys ISD
scaling. Our dynamic substrate approach is applicable to many
surface growth systems.

2 Methods

We study an abstract lattice-gas growth model, with parameters
motivated by graphene CVD growth on copper. This consists of
Metropolis MC on a periodic, two dimensional honeycomb lattice,
simulated in the semigrand ensemble.35 We use a honeycomb
lattice to replicate the coordination number of carbon in graphene.
In such models, precise structural details are abstracted into an
effective picture. Our choice of lattice symmetry is hence essentially
arbitrary and is not in any way intended to reflect the symmetry of
preferential absorption sites on a facetted copper surface.

Lattice sites are occupied by either hydrogen (H) or carbon
(C) atoms. Energetics are captured via nearest neighbour inter-
actions with Hamiltonian

H0 ¼
X

hi; ji
ECCsisj þ

X

i

dsi ;0 min
j

ECHdsj ;1
� �

(1)

where si = 0 (si = 1) if site i is occupied by H (C). EXY is the
effective bond energy between two atoms of species X and Y.
The first term in eqn (1) runs over all nearest-neighbour pairs,
and in the second term j runs over the nearest neighbours of
each lattice site i. To reflect realistic valence behaviour in an
abstract fashion, each hydrogen site interacts with only a single

neighbour selected to lower the energy of the system. For
ECH o EHH this effectively leads to hydrogen-terminated carbon
clusters as the mobile species, however detailed bonding con-
straints and topology are not included.

The relevant thermodynamic potential is

G = H0 � mCNC � mHNH, (2)

where m and N are the chemical potentials and species number
respectively. We work in reduced units such that ECC = �1
corresponds to the strength of a C–C bond in graphene relative
to the H–H bond in an adsorbed H2 dimer, i.e. EHH = 0. On this
energy scale, a C–H interaction strength ECH of �0.1 captures
an energetic penalty to forming interfaces between graphene
flakes and the hydrogen saturated surface.

Provided ECH { ECC the exact choice of this parameter does
not significantly alter the characteristics of simulated growth.
In these units, a temperature of T = 1000 K scales to a lattice
temperature of B0.01.

Simulations are initialised with hydrogen (assumed to be in
excess), occupying every lattice site. All simulations reported
here were performed on a lattice with N = 36 864 sites, and
consist of growth and annealing phases. During growth, carbon
is inserted into the lattice via transmutation of H into C,
capturing the displacement of molecular hydrogen by hydro-
carbons during CVD. In addition to transmutation, our simula-
tions model diffusion of carbon via exchange with H atoms on
lattice sites within the same hexagonal unit. Possible diffusion
moves are represented in Fig. 1. Inclusion of moves which are
equivalent by symmetry results in 12 move targets, which are
selected with equal probability.

To motivate this model selection, Fig. 1 also shows repre-
sentative snapshots from simulations with nearest-neighbour
moves, as well as using all 12 diffusion targets. In the former
case, carbon islands form disjointed fractal shapes. The greater
isotropy of the latter case generates smoothly terminating
regular islands, representative of experimental graphene
islands.

A single MC sweep consists of N trial moves, each attempted
on a randomly selected lattice site. We interpret our simula-
tions on a notional time scale by connecting the mean square
displacement hdr2i of single C atoms over an MC sweep to
a timestep via dt = 4Dhdr2i. For convenience, we choose D
such that dt = 1, i.e. time is incremented by one unit per
MC sweep.

During growth, transmutation and diffusion moves are
attempted with ratio F = 10�5 up to a fixed coverage y. With
this choice of F, the timescale of diffusion is far longer than the
timescale of insertion. During the annealing phase, only diffusion
moves are permitted, for a further tA sweeps of the system. In
principle, results can be scaled to real time units via experimental
measurements of effective D and F, however such data are not
typically accessible.

Chemical potentials are chosen such that insertion moves
are effectively always accepted (mC 4 mH). As the simulation
temperature is low compared to the effective carbon–carbon
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bond energy, events which involve breaking these bonds once
formed, are rare. Growth is irreversible under these conditions.

Surface roughness is introduced into the model by assigning
each lattice site i a ‘‘roughness energy’’ ei drawn from a top hat
distribution of width x, centred about 0.

Hr ¼ H0 �
X

i

siei (3)

This reflects the spatial variation in carbon attachment
energy expected of a disordered substrate. The exact shape of
distribution is inconsequential to the results described in this
paper, provided it is symmetric about zero.

As well as the roughness amplitude captured by x, we model
the mobility of the substrate roughness. Sites are permitted to
exchange their roughness energies ei with that of their neigh-
bours. This roughness move is subject to the same Metropolis
acceptance criteria as the diffusion moves in Fig. 1, but using a
separate ‘substrate temperature’ Ts, interpreted as a roughness
mobility parameter. Decoupling these moves from the simula-
tion temperature allows us to vary this parameter from a totally
static surface roughness (Ts = 0) through to a freely diffusing
molten substrate (Ts = N). These roughness moves occur with
the same frequency as carbon diffusion moves, and varying this
frequency was seen to have little to no effect on the final island
size distribution.

For typical examples of growth in three key cases (x = Ts = 0,
x = 1.2, Ts = 0 and x = 1.2, Ts = N), we refer the reader to the
ESI.† For reference, a full list of kinetic and thermodynamic
parameters is shown in Table 1.

3 Results

Varying the roughness amplitude and mobility parameters has a
dramatic effect upon island size and formation. In the static case
(Ts = 0), increasing the roughness amplitude x leads to formation
of small, fragmented islands at concentrations of favourable
lattice sites. In the maximally dynamic case (Ts = N), islands are
destabilised, causing them to move, transform, and dissociate
freely. In a critical range of x values, from roughly 1 to 1.5, this
leads to formation of fewer, larger islands with a significant
fraction of carbon mobilised in monomers or small clusters.
Example surfaces at different roughness parameters are shown
in Fig. 2. Quantitative analysis is based on mean island size S�

and ISDs. With dynamic roughness, many small islands and mono-
mers appear, making ISDs difficult to visualize. Hence we count only
islands above a threshold size of S = 10 for these surfaces.

Fig. 2 shows the effect of varying x on S�. Dynamic cases show
peaks in island size beyond x = 1.0, the effective C–C bond
energy, and peaking at x = 1.2 for Ts = N. A snapshot is shown
for Ts = N at x = 1.2, and large islands are clearly visible. At
higher values of x, even large islands are no longer stable, and
the surface becomes dominated by smaller fragmented islands,
as shown for Ts = N in a snapshot at x = 1.5.

Even small values of x see significant reduction in island
size for the static case, with any regular island structure
disintegrating. There is no significant difference in behaviour
above or below x = 1.0, the islands just get smaller and more
localised to favourable surface regions.

Typical evolution of S�during growth and annealing is shown
in Fig. 3. The smooth and static cases both show a continuous
increase in island size during growth, and minimal changes
during annealing, as a stable structure is reached. The dynamic
case has growth up to larger island sizes, but during the
annealing phase islands continue to grow. When the annealing
phase is extended, islands continue to shift and reform on the
dynamic substrate, steadily increasing island size.

Nucleation theory26 predicts that island size distributions
(ISDs) from samples grown in a process of non-reversible
aggregation will follow a scaling distribution of the form:

NS ¼
y
�S
2
f S

�
�S

� �
; (4)

where y is the fractional surface coverage. Furthermore, the
distribution f (S/S�) has been estimated analytically,27 for differ-
ent values of the critical nucleus size, i*.

Fig. 1 Diagram of permitted diffusion moves, and their effect on island
formation. Panel (a) shows three possible moves, to first, second and third
nearest neighbours (1NN, 2NN, 3NN respectively) within local hexagons, in
(i), (ii) and (iii) respectively. Panel (b) shows a representative snapshot of
growth with only 1NN moves, and panel (c) a snapshot with 1NN, 2NN and
3NN moves. Note that with only 1NN moves carbon islands are fragmented,
but regular in shape when all three moves are included.

Table 1 Kinetic and thermodynamic simulation parameters

Parameter Value

N Grid size 36 864
F Deposition ratio 10�5

tA Anneal time 50 000 sweeps
T Temperature 0.01
ECC C–C bond energy �1.0
ECH C–H bond energy �0.1
EHH H–H bond energy 0.0
mC, mH Chemical potentials 5, 3
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The critical island size is one less than the smallest number
of atoms required to form a stable island, which in simulations
without roughness is i* = 1; islands containing two or more
atoms are stable. On a dynamic rough surface, the aggregation
process is no longer irreversible as islands cleave, move and
reform frequently, and thus this theory will not necessarily
hold. Applying this scaling law to ISDs taken from smooth,

static, maximally dynamic after growth and maximally dynamic
after annealing cases gives the distributions shown in Fig. 4.

ISDs from simulations on a smooth surface are well repre-
sented by an analytical form of the scaling function associated
with i* = 1. The situation for dynamic substrate roughness is
more complicated. ISDs from dynamically rough substrates do
not collapse onto a single curve immediately after growth
termination. However, the post-growth annealing process does
result in universal scaling of the ISDs with a different form to
that of the smooth substrate or i* = 1 analytical form. The
scaled ISDs are actually broader than the i* = 1 form but still
peaked.

To investigate the evolution of surface roughness during
growth, the total carbon–substrate interaction energies for
dynamic and static roughness are plotted in Fig. 5. In the static
case, carbon islands form above favourable regions of the
lattice, and as such the total carbon–substrate interaction
energy is low. In the dynamic case, however, the energy of sites
underneath carbon atoms is relatively high, suggesting that the
substrate lattice does not reorder itself underneath carbon
islands. There is a change in gradient at around x = 1.0 in both
the static and the dynamic cases, corresponds to the beginning
of peaks in S� shown in Fig. 2.

4 Discussion

Our simple MC scheme, including 2NN and 3NN moves shown
in Fig. 1 behaves entirely as expected in the absence of rough-
ness. Graphene islands observed in simulations tend to a
regular hexagonal or circular shape, although when two islands

Fig. 2 Varying strength of surface roughness parameter x and mobility
parameter Ts against the average island size for islands greater than 10 in
size. Data are averaged over 10 trajectories each of which contains
typically 30–100 islands. Standard error in the resulting mean of S� is
smaller than the symbol size at each point. Four snapshots from simula-
tions, taken after growth to a fixed coverage and annealing, are shown, for
x = 1.2, Ts = N (A) x = 1.2, Ts = 0 (D), x = 1.5, Ts = N (B) and x = 1.5, Ts = 0 (C).
The colour scale represents the roughness energy, lighter shades repre-
senting positive values. Snapshot sizes represent approximately 15% of the
simulation area. All simulations used parameters described in Table 1.

Fig. 3 Time evolution of average island size for islands greater than 10
atoms in size. Three lines are shown, for no, static, and dynamic roughness.
All simulations had roughness strength x = 1.2, and used parameter values in
Table 1. A vertical line separates the regimes of growth and annealing.
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meet during growth they are often unable to reform into
optimal shapes leading to extended anisotropic morphologies.
Nonetheless, there is a clear preference for zigzag termination
and corners of 1201. Graphene islands on copper have been
observed with compact (hexagonal), four-lobed and dendritic
shapes, depending on the substrate symmetry and growth
conditions.2

The ISDs (Fig. 4(a) and (e)) produced obey the expected
dynamic scaling relation, with ISDs at different coverages
collapsing onto a single scaled curve. This demonstrates the
same processes of irreversible growth occur across different
length scales. The ISDs are well described by a scaling function

derived from nucleation theory and observed in a wide variety
of surface growth systems.26,28,36

The case of static roughness leads to a drastic reduction in
growth, at even low x. Islands formed remain small and
random in nature, the preference for moving onto a favourable
substrate site rather than forming C–C bonds effectively eliminating
large island formation. The ISDs (Fig. 4(b) and (f)) do not collapse
onto a single curve under a scaling relation, and do not match the
theoretical curve. This suggests that static roughness has introduced
a fixed length scale onto the surface, namely the mean distance
between energetically favourable sites, loosely defined by the shape
of the energy distribution.

The total carbon–substrate energy decreases linearly with x,
suggesting that increasing roughness simply makes the sites
which carbon atoms select more favourable, rather than affecting
the underlying mechanism of growth. The change in gradient at
x = 1.0, the effective C–C bond energy, suggests an increased
preference for substrate sites over C–C bonds, but does not produce
a noticeable difference in resulting island morphologies.

The case of dynamic roughness, by contrast, leads to an
enhancement of island size during the annealing stage of
simulation. Islands grow to a larger size than on a smooth
surface, even after only the growth stage, and continue to grow
during annealing. The constantly shifting surface roughness
prevents kinetic trapping, allowing regular islands to reform,
cleave, and move across the surface.

ISDs after growth but before annealing (Fig. 4(c) and (g))
have substantial amounts of carbon atoms as small islands
coexisting with large islands. At low total coverage y there is a
large contribution to the ISD from such small islands which

Fig. 4 Scaling relations of ISDs taken from simulations grown up to coverages of y = 0.1, 0.2, 0.3 of a smooth surface after annealing (a) and (e), static
roughness surface after annealing (b) and (f), maximally dynamic roughness surface after growth (c) and (g), and a maximally dynamic (Ts = N) roughness
surface after annealing (d) and (h). The top pictures (a–d) show unscaled ISDs, and the bottom pictures (e–g) scaled ISDs according to relation described
in the text. The red line corresponds to the theoretical form of the i* = 1 curve. All roughness simulations used x = 1.2, and other parameters described in
Table 1.

Fig. 5 Varying strength of surface roughness, x, for static and dynamic
roughness, against the average substrate energy under a carbon atom. All
simulations used parameters described in Table 1.
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reduces in weight as y increases, destroying ISD scaling. In
semiconductor heteroepitaxy, similar deviations from ideal scaling
behaviour have been interpreted as due to scale-dependent inter-
actions imposed on a system by surface reconstruction,29 elastic
strain36 or both.37 By contrast, in the present case the origin of the
loss of scaling is purely dynamic because the dynamic roughness
has a disproportionate effect on the smaller islands.

ISDs after annealing (Fig. 4(d) and (h)) see much of the
mobile carbon being agglomerated into islands, with more
defined peaks and heavier tails. Here the ISDs do collapse onto
a single curve. Once islands reach a certain size they become
resistant to the cleaving effects of dynamic roughness and so
scale-free behaviour is recovered. However, the scaled ISDs do
not follow the conventional i* = 1 distribution, with a slightly
broader and flatter shape. This is not surprising given that
dynamic roughness enhances both island cleaving and island
growth, leading to a broader distribution. Since increasing the
value of i* typically sharpens the peak of the scaled ISD and
i* = 0 ISDs are typically monotonically decreasing,26,28,36 this
altered scaling form suggests that the effects due to a combination
of dynamic roughness and annealing could not be captured in any
standard irreversible aggregation picture.

These conclusions are not greatly affected by the choice
to measure ISDs neglecting the smallest islands (S o 10) for
the dynamic roughness case. This choice simply allows us to
display the peak of larger islands more easily and the value of
the cutoff simple changes the coverage y at which deviations
from scaling become apparent. When comparing to the static
roughness case, the central qualitative point is that there is no
broad tail of large islands for static roughness.

Increasing x for dynamic substrates sees a peak in mean
island size (Fig. 2). At higher values of x, the substrates prevents
even large islands having stability on the surface, whilst lower
values of x are unable to motivate islands to move or morph in
any way. In the case of maximal disorder, the total carbon–
substrate energy is approximately 0 until x = 1.0, at which point
it shows a small linear decrease with x. This suggests a minor
coupling between the substrate and the carbon islands, but not
large scale reordering. Indeed, examining snapshots of the
substrate after annealing shows no inclination to reform under-
neath carbon islands. This demonstrates the effect described is
motivated by thermal energy and substrate disorder, rather
than some sort of feedback and reordering.

Simple diffusion and deposition models can be mapped to
Ising-like spin lattice models. In the case of static roughness,
this mapping is to a random field Ising model (RFIM), in which
growth has been previously studied.38,39 Experimental results
concerning growth on surfaces with static defects have been
explained in the framework of the RFIM.40,41 We believe the
introduction of experimentally motivated nearest neighbour
field swaps is unique to our model and hence of potential
interest to fundamental growth studies.

In the case of graphene specifically, our analysis of growth
on dynamically disordered substrates has focussed on the
extreme case of unlimited surface mobility. It is clear from
Fig. 2 that substantial enhancement of island size can be

achieved with lower mobility. If however one interprets Ts literally,
i.e. as the temperature of the copper substrate, it is clear that
achieving enhanced growth requires unphysical high temperatures
and low heat transfer between copper and graphene. In addition,
our model cannot capture the structural feedback effect observed
experimentally for graphene CVD growth on Cu(100), namely nano-
faceting to (210) + (100) morphology.3 Further, detailed atomistic/
electronic studies are required to establish the extent of substrate
mobility at experimental growth temperatures, and the effect this
has on destabilisation of high energy aggregates. We note that most
existing theoretical studies at higher levels of detail have focussed
on perfect copper facets42–45 or (for Ni substrates) well defined ideal
surface steps.46

We are presently investigating spatial correlation of the
surface roughness to examine effects of faceting. This will also
allow us to address short range correlations, for example by one
Cu site affecting multiple neighbouring C atoms. Some other
experimentally observed aspects of graphene growth are not
replicated in our simple lattice model. For example, islands
formed with dynamic roughness contain vacancies, such as the
ones in the larger islands in Fig. 2. These are mostly formed for
single, or small clusters of unfavourable sites. They propagate
through the islands throughout the simulation, being swiftly
incorporated or removed through the jagged edges. There has
been much investigation into the behaviour of defects in
monolayer graphene,47,48 including their formation and possible
healing. This can never truly be interpreted in a lattice model
where grains cannot be oriented differently and it is impossible
to consider rings of anything other than 6 carbon atoms.

5 Conclusion

In this paper we have presented an abstract lattice MC model
for surface monolayer growth. Motivated by the fact that the
copper substrate used in CVD is close to its melting point, far
from a smooth and regular surface, we have introduced a
random roughness energy to each site on the lattice. These
sites were then fixed (static roughness), or allowed to exchange
energies locally (dynamic roughness) with varying degrees of
mobility.

The static roughness inhibits island formation, leading to a
fragmented surface. Dynamic roughness, at optimal roughness
strength x, increases the mobility of graphene islands, substantially
enhancing the observed grain size. As has been established in a
number of studies, and cogently summarised in a recent review,49

optimal conditions for self-assembly occur when interaction
energies between components are delicately balanced by
thermal noise. In this regime, aggregates can be restructured
by bond-breaking and reformation, preventing the formation of
kinetically trapped high energy structures. In our model,
dynamic substrate roughness plays the role of thermal noise,
allowing structures which would otherwise form irreversibly, to
anneal. This mechanism is entirely consistent with the ‘‘defect
healing’’ mechanism induced by Cu surface mobility reported
in the more detailed simulations of Li et al.14 We believe that
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our ability to capture this effect in a simple lattice-gas model
suggests the phenomenon may be quite general, to the under-
standing of which could have dramatic effects on nanomaterial
production. The next steps for this exploration could include
looking at a rough substrate in greater detail, perhaps by including
correlation in the substrate energies, or more complex interaction
energy calculations. An off-lattice model could also be explored,
which would allow investigation into local epitaxial effects through
a more realistic substrate interaction.
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