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Proton coupled electron transfer from the excited
state of a ruthenium(i) pyridylimidazole complexy

Andrea Pannwitz and Oliver S. Wenger*

Proton coupled electron transfer (PCET) from the excited state of [Ru(bpy).pyimHI** (bpy = 2,2'-
bipyridine; pyimH = 2-(2’-pyridylimidazole) to N-methyl-4,4'-bipyridinium (monogquat, MQ*) was
studied. While this complex has been investigated previously, our study is the first to show that the formal
bond dissociation free energy (BDFE) of the imidazole-N—H bond decreases from (91 + 1) kcal mol™?t in
the electronic ground state to (43 + 5) kcal mol™ in the lowest-energetic SMLCT excited state. This
makes the [Ru(bpy)-pyimHI?* complex a very strong (formal) hydrogen atom donor even when compared
to metal hydride complexes, and this is interesting for light-driven (formal) hydrogen atom transfer (HAT)
reactions with a variety of different substrates. Mechanistically, formal HAT between 3MLCT excited
[Ru(bpy)-pyimH]?* and monoquat in buffered 1:1 (v:v) CHsCN/H,O was found to occur via a sequence
of reaction steps involving electron transfer from Ru(i) to MQ* coupled to release of the N—H proton to
buffer base, followed by protonation of reduced MQ™ by buffer acid. Our study is relevant in the larger

www.rsc.org/pccp

1. Introduction

Hydrogen atom transfer (HAT) is important in enzymes and in
synthetic organic chemistry, for example for hydrogenations of
unsaturated compounds such as ketones and imines. It would
be attractive to use visible light to perform HAT reactions under
mild reaction conditions, and therefore we explored the (formal)
HAT chemistry of photoexcited [Ru(bpy),pyimH]** (bpy = 2,2'-
bipyridine; pyimH = 2-(2'-pyridyl)imidazole). In pure HAT the
transferred electron and proton originate from the same donor
orbital, whereas in unidirectional proton coupled electron
transfer (PCET) the transfer of a net hydrogen atom occurs
from different donor orbitals."™ This is in fact the case for
excited [Ru(bpy),pyimH]** because the metal center acts as an
electron donor, whereas the proton is released from the pyimH
ligand. While early PCET studies have focused largely on reac-
tions between molecules in their electronic ground states,®™*
photoinduced PCET is now receiving increasing attention."'*">®
Formal HAT between a transition metal complex in its *MLCT
excited-state and various reaction partners either across a salt
bridge,'**°* or via hydrogen bonding interactions have been
explored.”***® Even hydride transfer from the excited state of
an iridium complex was reported recently.”® In order to predict
the reactivity of an excited state, thermodynamic quantities such
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contexts of photoredox catalysis and light-to-chemical energy conversion.

as its redox potential and acidity constant must be known.>”?®

For HAT reactions, the determination of bond dissociation free
energies (BDFEs) is useful, while for PCETs the calculation of
formal BDFEs has proven meaningful.®® This is possible for
reactions in the ground state as well as for reactions with excited
species. Based on this concept, photochemical conversions of
ketones to ketyls could be rationalized.>"*"”

The [Ru(bpy),pyimH]** complex (Fig. 1) has long been
known,® in particular Haga and coworkers explored a variety
of ruthenium and osmium complexes with pyimH and related
(deprotonatable) ligands.?>*’ Later, Gray and coworkers explored
the acid-base and redox chemistry of [Ru(bpy),pyimH]*" and
related complexes in the ground and the lowest *MLCT excited
state.”**® However, the formal BDFE of the peripheral N-H bond
of [Ru(bpy),pyimH]*" and related complexes has never been
determined, and the excited-state PCET chemistry remained
unexplored, except in the case of an Ir(m) complex with a

Fig. 1 The investigated process in this work: transfer of one electron and one
proton from [Ru(bpy)pyimHI?* to monoquat (MQ*) upon photoexcitation,
corresponding to net transfer of a hydrogen atom.
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2,2/-biimidazole ligand." In structurally related complexes such
as [Ru(acac),pyimH]** (acac = acetylacetonato), formal BDFEs
were estimated for the electronic ground state, and values
around 62 kcal mol ' were found.’”?” We anticipated that
[Ru(bpy),pyimH]*" might exhibit an unusually low N-H BDFE
in its long-lived *MLCT excited state, making it potentially an
equally potent (formal) hydrogen atom donor as previously
investigated metal hydride complexes in their electronic ground
states.**®

In the following we present the thermochemical characteriza-
tion of ground and *MLCT excited states of [Ru(bpy),pyimH]** in
buffered 1:1 (v:v) CH3CN/H,O. In this solvent mixture, well-
defined pH values can easily be obtained by a variety of buffers
and the solubility of [Ru(bpy),pyimH]>" as well as that of a
variety of substrates is good. We find an N-H BDFE of only
(43 + 5) keal mol ™" in the emissive *MLCT excited state based
on thermodynamic cycles and on the photoinduced PCET
chemistry with monoquat (MQ"). The acceptor was chosen
due to its ability to act as a combined electron-proton acceptor,
the favourable spectroscopic properties of its radical form and the
importance of pyridyl radicals for the reduction of CO,.>**' The
PCET reaction mechanism between photoexcited [Ru(bpy),pyimH[**
and MQ" was explored in detail.

2 Results and discussion
Spectroscopy and thermodynamics of the ground state

pK. of [Ru(bpy),pyimH]**. For determination of the pK,
value of the electronic ground state, absorption spectra were
recorded at different pH values between pH 3.7 and pH 10.2
(ESI,t Fig. S1a) using suitable buffers. By plotting the absor-
bance at the MLCT absorption maxima at 460 nm (protonated
form) and 491 nm (deprotonated form) and sigmoidal fitting,
pK, = 8.1 £ 0.1 was found for 1:1 (v:v) CH;CN/H,O (ESL Fig. S1b),
in agreement with a prior study that reported pK, = 7.9 £ 0.1 in H,O
containing 5% methanol.*

pK, of [Ru(bpy),pyimH]**. Oxidative cyclic voltammetry
sweeps probing metal oxidation were performed in the pH range
between pH 1 and pH 11. Characteristic voltammograms for
three pH regions of interest are shown in Fig. 2a. In the acidic
pH range where [Ru(bpy),pyimH]** remains protonated after
oxidation of Ru" to Ru'™, the voltammograms show one rever-
sible oxidation wave at EB>" = (1.00 4 0.05) V vs. SCE with peak
separations between 67 and 80 mV. This behaviour is observed
up to pH = 3.6 £+ 0.1, corresponding to the acidity constant of
[Ru(bpy).pyimH]*" (pK3). At higher pH values oxidation is
irreversible at a sweep rate of 100 mV s ' (Fig. 2a and Fig. S5
in the ESIt) due to deprotonation of the pyimH ligand of the

Table 1 Acidity constants of [Ru(bpy),pyimHI®* in 1:1 (v:v) CHsCN/H,O
in the electronic ground state (pK.), in the long-lived *MLCT excited state
(PK5*) and in the one-electron oxidized form (pKgY)

PKa 8.1+0.1
pK.* 5.6 + 0.3
K™ 3.6 + 0.1
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Fig. 2 (a) Voltammograms of [Ru(bpy),pyimHI?* in 1:1 (v:v) CHsCN/H,O
with 0.05 M buffer at different pH values, (b) Pourbaix diagram of
[Ru(bpy)zpyimH]Z*. The slope between pH 3.6 and pH 8.1 is —(60 + 4) mV
per pH. A comprehensive set of voltammograms is shown in Fig. S5 of the ESI.+

Table 2 Ground and excited state redox potentials (Eoy, *Eoy), MLCT
energy (Eg_o), emission maxima at 25 °C (Anax) and luminescence lifetimes
at 25 °C under aerated and deaerated conditions of [Ru(bpy).pyimHI2* in
1:1 (v:v) CH3CN/H,O with 0.05 M buffer

[Ru(bpy),pyimH]** [Ru(bpy).pyim]"

Eox [V vs. SCE] 1.00 + 0.05 0.73 + 0.05
*Eox [V V5. SCE] —1.1+ 0.1 —-1.2+0.1

Eo o [eV] 2.1 + 0.1%° 1.9 + 0.1°
Jmmax [NM] 25 °C 625 + 5 675+ 5

7 [ns] aerated 110 £ 10 50 £ 5

7 [ns] deaerated 210 + 20 70 £ 7

29,42 b

“ Taken from references. Determined from emission in ethanol/

methanol 4:1 (v:v) at 77 K.

oxidized complex. Oxidation potentials of the deprotonated
complex were estimated by determining the relevant inflection
points of the oxidation waves. Plotting the oxidation potentials
in volt vs. pH gives the data points for the Pourbaix diagram in
Fig. 2b. In the range between pKS* = 3.6 and pK, = 8.1 the Ru*"™
oxidation wave shifts cathodically with a slope of —(60 + 4) mV
per pH unit, as expected for a 1-electron-1-proton-process.
Oxidation of the deprotonated complex, [Ru(bpy),pyim]’, occurs
at 3P = (0.73 £ 0.05) V vs. SCE (Table 2). Thus, the total cathodic
shift between oxidation potentials of [Ru(bpy),pyimH]** and
[Ru(bpy),pyim]" is 270 mV, which is smaller than the previously
reported shift of 380 mV in neat acetonitrile.*

Excited state properties

Excited state pK,* of [Ru(bpy),pyimH]**. Luminescence
spectra of [Ru(bpy),pyimH]** were measured between pH 3
and pH 10 in 1:1 (v:v) CH3CN/H,O containing 0.05 M buffer
to control the pH (Fig. 3a). All spectra were recorded at identical
complex concentration and their intensity was normalized to
the intensity of the most acidic sample; excitation occurred into
the isosbestic point at 474 nm (Fig. S1a, ESIT). The decrease in
intensity is due to different luminescence quantum yields of
the protonated and deprotonated complex and due to depro-
tonation in the excited state. Emission decays were measured at
630 nm to determine the lifetimes of the protonated (:**") and
deprotonated *MLCT state (t%°P) in aerated and deaerated
solution (Table 2). For these measurements the complex
was excited at 532 nm with laser pulses of ca. 10 ns duration.

Phys. Chem. Chem. Phys., 2016, 18, 11374-11382 | 11375
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Fig. 3 (a) Luminescence of 40 pM [Ru(bpy),pyimHI?* in aerated 1:1 (v:v)

CH3CN/H,0O with 0.05 M buffer at different pH values following excitation
into the isosbestic point at 474 nm. (b) Relative luminescence intensity at
625 nm vs. pH.

The acidity constant in the long-lived *MLCT-state (pK,*) was
then determined from the inflection point of the steady-state
emission titration curve (pH; = 5.2 + 0.2) in Fig. 3b and the
excited-state lifetimes of protonated (zP™‘) and deprotonated
complex (t9P).

pK,* = pH; + log[tP™"/79°P] 1)

With eqn (1) one obtains pK,* = 5.6 + 0.3.>” Based on the
emission maxima of [Ru(bpy),(pyimH)]** and [Ru(bpy),(pyim)]" at
25 °C, the Forster equation yields pK,* = 5.3 £ 0.6 (ESL1 page S6).
This value is in good agreement with that determined from the
luminescence titration, and also with the previously reported pK,*
in water with 5% methanol.”® The increase of acidity in the excited
state compared to the ground state indicates that the MLCT state
is localized on the bpy spectator ligands, as noted earlier.*®

Transient absorption spectra were measured using pulsed
laser excitation at 532 nm. Under acidic conditions (Fig. 4a),
[Ru(bpy)s]**-like transient spectra were observed, exhibiting a
bleach around 450 nm and increased intensity around 370 nm.*?
At basic pH the MLCT band is red-shifted (ESL{ Fig. S1), and
therefore the MLCT-bleach in transient absorption is red-shifted
as well (Fig. 4b). Transients that were recorded in the pH range
between pH 5.0 and 8.1 exhibit a prominent feature at 500 nm
(Fig. 4c) which can be explained by deprotonation in the excited
state and the accumulation of deprotonated complex in the
ground state. This interpretation is confirmed by a subtraction
of the ground-state UV-vis spectra of the protonated and
deprotonated complex (Fig. 4d) which also exhibits the promi-
nent positive feature at 500 nm. The temporal evolution of this
signal at pH 6.4 in presence of 0.05 M acetic acid/sodium
acetate buffer and ca. 107> M complex concentration is shown
below. In the absence of any reaction partner the formation of
[Ru(bpy),pyim]", the deprotonated complex in its ground state,
occurs with a time constant of 7 = (60 £ 10) ns. Re-protonation
then occurs with a time constant of T = (106 + 10) ns as
discussed later. The kinetics of these deprotonation and pro-
tonation events are dictated by the buffer concentration. At
PH 6.3 the quenching constant & is (8.3 + 0.5) x 10° Lmol 's™!
based on a Stern-Volmer luminescence quenching experiment
(ESL Fig. S7).

At any given pH and buffer concentration, the amount of
accumulated [Ru(bpy),pyim]" in the ground state correlates
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Fig. 4 (a—c) Transient absorption spectra of 20 uM [Ru(bpy)zpyimH]2+ in

1:1 (v:v) CH3CN/H,O with 0.05 M buffer at different pH values. Excitation
occurred at 532 nm with laser pulses of ca. 10 ns duration, the spectra
were recorded without time delay over a period of 200 ns. (d) Difference of
ground state UV-vis spectra of protonated and deprotonated complex.

with the acid-base equilibration in the *MLCT excited state,
and this reflects directly in the intensity of the transient band at
500 nm. A plot of the change in optical density at 500 nm vs. pH
yields an inflection point at pH 5.6 + 0.2 (ESL, T Fig. S4), in line
with the pK,* value determined by luminescence titration and
the Forster equation.

Thus, at sufficiently high pH, [Ru(bpy),pyimH]*" exhibits
ordinary photoacid behavior similar to hydroxyarenes such as
naphthols and hydroxypyrenetrisulfonate (“pyranine”).**

Excited state redox chemistry of [Ru(bpy),pyimH]**. The
excited state oxidation potentials (*E,y) were estimated based
on the ground state redox potentials (E,,) and the *MLCT energy
(Eo_o) using eqn (2).*?

2+

*on = on - EO—O (2)

Ey, was determined from low-temperature luminescence
spectroscopy (Fig. S2, ESIT). For [Ru(bpy),pyimH]** we deter-
mined EjTY° = (2.1 £ 0.1) eV*>** and for [Ru(bpy),pyim]" we
found ESP = (1.9 £ 0.1) eV. Based on these E,_, values (see also
Table 2), excited state redox potentials of *EP™" = —(1.1 + 0.1) V
vs. SCE and *E%°P = —(1.2 4 0.1) V vs. SCE were estimated for the
protonated and deprotonated complex, respectively. Expectedly,
oxidation is far easier in the ®MLCT excited state than in the
electronic ground state.

BDFEs and “cube” scheme

A graphical summary of all relevant thermodynamic parameters
for [Ru(bpy),pyimH]** is provided in Scheme 1. This so-called

This journal is © the Owner Societies 2016
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“cube” scheme is a three dimensional illustration displaying
ground state redox potentials (blue) and acidity constants (red)
on the bottom and excited state potentials (blue) and pkK, values
(red) on the top. *MLCT excitation energies are represented by
vertical black arrows. N-H bond dissociation free energies
(BDFEs) can be estimated using eqn (3) and the experimentally
determined acidity constants and oxidation potentials.>*>*°

BDFE (N-H) = 1.37 pK, + 23.06 E° + 57.6 kcal mol "
(3)

In eqn (3), E° must be entered in units of V vs. NHE; the last
summand is a solvent-characteristic parameter describing solvation
of hydrogen atoms. The resulting BDFEs for [Ru(bpy),pyimH]**
in the electronic ground and excited states are BDFE =
(91 + 1) keal mol™' and *BDFE = (43 =+ 5) kcal mol™" (green
arrows in Scheme 1). The ground-state BDFE is comparable to
primary and secondary amines>*”**® but somewhat higher than
related ruthenium pyridylimidazole complexes which were char-
acterized in acetonitrile.”*” Upon photoexcitation, the BDFE drops
by 48 keal mol ", which is essentially equal to the energy of the
absorbed visible photon. Interestingly, the resulting excited-
state BDFE is comparable to metal hydride catalysts for hydro-
genation reactions for which M-H BDFEs ranging from 50 to
55 keal mol ™ for M = vanadium, 58 kcal mol ™" for M = chromium,
and 68 kcal mol ™" for M = tungsten have been reported.**® In
principle this drop in BDFE is expected to occur for other related
metal complexes in the course of photoexcitation, but prior studies
have not explicitly reported on this effect. Presumably this is due to
the fact that in many cases the necessary redox potentials and
acidity constants were not always determined in the same solvent,
which complicates the application of eqn (3). Estimations based
on prior work yields for the first N-H BDFE of [Ru(bpy),(2,2'-
biimidazole)]** a decrease from 86 to 40 kcal mol~" between the
electronic ground state and the long-lived *MLCT state.*>*°

In order to test whether the N-H BDFE is really that low,
we set out to react photoexcited [Ru(bpy),pyimH]*" in PCET

. . . pKa* | N
[RU(bpy)zpylme? [Ru(bpy),pyim]

E, =/ BDFE-=
1.00 V |91 kcal mol”

‘ 3+ pKaox & 2+
[Ru(bpy),pyimH] T’ [Ru(bpy),pyim]

/
E, =073V

Scheme 1 Thermodynamic “cube” scheme for [Ru(bpy).pyimHIZ* in
1:1 (v:v) CH3CN/H,O based on the data in Tables 1 and 2. Horizontal/red:
pK, values, orthogonal in black: triplet energy Eq_o, pointing towards the
reader in blue: oxidation potentials in V vs. SCE, diagonal in green: BDFEs.
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chemistry with a suitable formal H atom acceptor. We identified
N-methyl-4,4"-bipyridinium (monoquat, MQ') as a promising
candidate. Meyer and coworkers already proposed the use of
MQ" for detecting PCET photoproducts because its one-electron
reduced and protonated congener (MQH"®") exhibits absorption
features that can be identified unambiguously.*°

Before performing actual photochemical experiments between
[Ru(bpy),pyimH]** and MQ", the thermodynamic properties of
MQ" in 1:1 (v:v) CH;CN/H,O were determined. The results from
acid-base titration and electrochemical experiments are in the
ESIt (Fig. S8 and S9). Here we merely report the final results in a
thermodynamic “square” scheme (Scheme 2).

The key finding is that the HMQ"®" radical has an N-H BDFE
of (53 £ 1) kcal mol™'. Consequently, photoexcitation of
[Ru(bpy),pyimH]** in presence of MQ" is expected to lead to
formal HAT, resulting in [Ru(bpy),pyim]" and HMQ*". Based on
an N-H *BDFE of (43 + 5) kcal mol ' for the photoexcited
complex (Scheme 1), the driving-force for this reaction should
be —(10 + 6) keal mol ', which corresponds to —(0.4 & 0.3) eV.
In the following we report on the photochemistry between
[Ru(bpy),pyimH]** and MQ" as a function of pH.

From simple photoinduced ET to formal HAT

In the electronic ground state, electron transfer (ET) and proton
transfer reactions (PT) between [Ru(bpy),pyimH]** and MQ"
are strongly endergonic (AGgr = +(2.1 £ 0.1) eV, AGpr =
+(0.30 £+ 0.02) eV) and therefore no ground-state chemistry
occurs. Regarding excited-state chemistry, there are in fact
three different pH domains which are discussed individually
in the following 3 sub-sections.

Acidic pH - photoinduced electron transfer. In the acidic
range, both the complex and the acceptor are protonated in the
ground and excited state. Under these conditions, the expected
reaction is photoinduced electron transfer (eqn (4)).

*[Ru(bpy),pyimH]** + HMQ*" — [Ru(bpy),pyimH]*" + HMQ""
AGgr = —(0.5 £ 0.2) eV (4)

The transient absorption spectrum recorded at pH = 2 (Fig. 5a)
confirms this expectation. Directly after the laser pulse one
observes a bleach around 450 nm which is compatible with

Phys. Chem. Chem. Phys., 2016, 18, 11374-11382 | 11377
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Fig. 5 Transient absorption spectra of [Ru(bpy).pyimHI®™ in 1:1 (v:v)
CH3CN/H,0 recorded in presence of 60 mM MQ* following excitation
at 532 nm with laser pulses of ca. 10 ns duration. Detection occurred by
integration over 200 ns. (a) 30 uM [Ru(bpy).pyimHI?* at pH 2 with 0.05 M
buffer, data recorded with a delay time (to) of 5 s, (b) 30 uM [Ru(bpy)zpyimHI**
at pH 13, data recorded with a delay time (tp) of 5 ps, (c) 50 uM
[Ru(bpy)opyimHI?* at pH 6.3 with 0.05 M acetate buffer, data recorded
with a delay time (to) of 1 ps. (d) 50 uM [Ru(bpy)-pyimHI]?* in unbuffered in
1:1 (v:v) CH3sCN/H,O at pH 7.3 recorded without delay time (orange
trace) and with a time delay of 5 us (brown trace).

metal oxidation, and the signatures of the HMQ®" cation radical
appear at 387 nm and 610 nm."® The latter closely resemble the
well-known radical of methyl viologen (MV>").>' The photoinduced
ET reaction from eqn (4) is associated with AGgr = —(0.5 & 0.2) eV.
A Stern-Volmer experiment under acidic conditions reveals a
quenching constant of k; = (6.8 £ 0.1) x 10° Lmol ' s~ " (ESL}
Fig. S14), which is comparable to what was found for the reaction of
*[Ru(bpy);]*" with MV*" in water (kq = 5.9 x 10° L mol ' s™1).°*%
The thermal reverse ET from HMQ"" to [Ru(bpy),pyimH[** in the
electronic ground state then occurs on a time scale of approximately
100 ps, as determined by monitoring the HMQ*" signal at 610 nm
(ESL{ Fig. S10).

Basic pH - ET. In the basic range, the complex and the
acceptor are both deprotonated in the ground and excited state,
and consequently they are expected to undergo photoinduced
electron transfer according to eqn (5).

*[Ru(bpy).pyim]" + MQ" — [Ru(bpy),pyim]*" + MQ"*
AGgr = —(0.14 £ 0.15) eV )

In transient absorption spectroscopy, the neutral monoquat
radical (MQ®) with characteristic absorptions at 365 nm and
545 nm is observed.’® The expected MLCT bleach of the ruthenium
complex overlaps with a positive contribution of MQ® hence
the flat region in the spectrum between 390 and 480 nm.

11378 | Phys. Chem. Chem. Phys., 2016, 18, 11374-11382

View Article Online

Paper

The Stern-Volmer luminescence quenching experiment yields
a quenching constant of kq = (20.7 + 0.3) x 10° L mol ™' s~*
(ESL Fig. S15), which is close to the diffusion limit. The
thermal reverse ET from MQ® to [Ru(bpy),pyim]* takes place
on a time scale of 10 ps (ESI,T Fig. S11).

Middle pH range - formal HAT. In the middle pH range the
most interesting photochemistry is expected. At pH 6.3 the
complex is protonated in its ground state but becomes deproto-
nated upon excitation to the *MLCT state as well as upon
oxidation of Ru" to Ru™ (Scheme 1). On the other hand, MQ*
is not protonated, but it is expected to be protonated upon one-
electron reduction (Scheme 2). According to the formal N-H
BDFEs determined above for photoexcited [Ru(bpy),pyimH]**
(43 £ 5) keal mol ", Scheme 1) and for HMQ** ((53 = 1) keal mol %,
Scheme 2) the formal hydrogen atom transfer reaction in
eqn (6) should be associated with a reaction free energy of
—(10 + 6) keal mol™".

*[Ru"(bpy),pyimH]*" + MQ" — [Ru"(bpy),pyim]*" + HMQ""
AGyar = —(0.44 + 0.16) eV (6)

In transient absorption spectroscopy the two photoproducts
from eqn (6) are indeed observed (Fig. 5¢). When recording
transient absorption spectra with a time delay (¢,) of 1 ps there
is clear evidence for HMQ"®" (signals at 387 and 610 nm) and for
[Ru™(bpy),pyim]** (bleach around 450 nm), as confirmed by
spectro-electrochemical (SEC) studies (black trace in Fig. 5c).
However, mechanistically direct HAT between *[Ru"(bpy),pyimH[**
and MQ" in presence of aqueous buffer is highly improbable,
particularly in view of the positive charges on both reactants. More-
over, the lowest-energetic MLCT excitation in [Ru™(bpy),pyimH[*
involves promotion of an electron into a bpy-localized orbital
rather than a pyimH orbital (see above).*® Consequently, formal
HAT between photoexcited [Ru"(bpy),pyimH]*" and MQ" most
likely involves a sequence of electron and proton transfer steps as
illustrated in Scheme 3: following excitation of [Ru"(bpy),pyimH]*",
photoinduced electron transfer to MQ" is coupled to release of
the pyimH N-H proton to buffer base (acetate anion (AcO™), *PT,
in Scheme 3). This PCET process can occur either in stepwise or
concerted fashion, and it results in [Ru™(bpy),pyim]**, MQ®, and
HOAc (PCET arrow in Scheme 3). Subsequent proton transfer
(PT, step in Scheme 3) between buffer acid (HOAc) and MQ®
then leads to the photoproducts detected in Fig. 5c. In fact, these
two reaction steps can be temporally resolved (see below).

The reaction free energies for all conceivable reaction pathways
are summarized in Scheme 4. The driving-forces in Scheme 4
emerge directly from the thermodynamic parameters of the two
reaction partners in Schemes 1 and 2. The overall formal HAT
process is dissected into photoexcitation (black arrows), electron
transfer from the metal complex to monoquat (blue arrows),
proton transfer from the metal complex to buffer base (PT;, red
arrows), and proton transfer from buffer acid to monoquat
(PT,, red arrows) as discussed above on the basis of Scheme 3.

From the starting point at the top left corner of Scheme 4, con-
certed proton-electron transfer (CPET) to form [Ru™(bpy),pyim]*,
MQ°*, and protonated buffer base (HOAc) is a plausible initial
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Scheme 3 Possible pathways for reaction of *[Ru(bpy),pyimHI?* with MQ* in acetate-buffered solution.
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Scheme 4 Extended “cube”-scheme illustrating all reaction pathways for
formal HAT between *[Ru(bpy),pyimHI?" and MQ™ in acetate-buffered
solution (based on a combination of Schemes 1 and 2). Excited state
chemistry is shown in the upper level, ET processes are pointing towards
the reader, PT; (complex to buffer base) is shown in horizontal direction
and PT, (buffer acid to monoquat) is shown in the two lower levels. Driving
forces for the individual reaction steps are based on experimentally
determined redox potentials and acidity constants.
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reaction pathway since AGpcer = —(0.11 £ 0.16) eV for this process
(green arrow). However, a sequence of electron and proton
transfer events cannot be excluded on thermodynamic grounds
and would be equally compatible with our experimental data.
Classical Stern-Volmer luminescence quenching experi-
ments could not be performed for determination of the kinetics
of the initial PCET process (green arrow in Scheme 3) because
the luminescence of [Ru(bpy),pyimH]*" is strongly quenched in
presence of buffer molecules (kq = (8.3 + 0.5) x 10° Lmol s !
as described earlier). Therefore, we performed experiments at
5 mM buffer concentration for which we used a different
spectroscopic observable to monitor the kinetics of the relevant
PCET process: when measuring the transient absorption spec-
trum immediately after laser excitation, an additional band at
500 nm becomes observable. Based on the data in Fig. 4c and d,
this band can be attributed unambiguously to [Ru"(bpy),pyim]*,
i.e., to the deprotonated Ru™ complex in the electronic ground
state. This species accumulates in a side-reaction to PCET as
illustrated in the lower line, right side of Scheme 3; a subset of
all excited complexes undergoes PCET chemistry to the photo-
products shown in the top right corner of Scheme 3 whereas
another subsets merely acts as a photoacid (lower line, right
side). Thus, the intensity of the transient absorption signal at
500 nm is a measure for the amount of ruthenium complexes
that have been photoexcited but that have not undergone PCET
chemistry. The temporal evolution of the transient signal at
500 nm shows classical A - B — C reaction kinetics (Fig. 6a),
with species A corresponding to *[Ru"(bpy),pyimH]**, species B
being [Ru"(bpy),pyim]*, and species C corresponding to the
protonated ground state as shown in Scheme 3. In absence of
MQ" the signal at 500 nm rises with t*~® = (105 £ 10) ns and
decays with ®*~° = (1.0 £ 0.1) ps. With increasing MQ"
concentration t*7® decreased, t®~° remained constant and
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Fig. 6 (a) Change in optical density at 500 nm as a function of time after
532 nm excitation of 40 pM [Ru(bpy),pyimHI>* in 1:1 (v:v) CH3CN/H,O
containing 5 mM acetate buffer and increasing concentrations of MQ™*.
(b) Pseudo Stern—Volmer plot based on the kinetics for step A —» B with
constant B — C lifetime, see text for details.

the maximum intensity of the signal decreased. A plot of
76 B/t* 7P vs. [MQ'"] is shown in Fig. 6b. A linear regression fit
yields a pseudo-Stern-Volmer constant (Ksy') of (22 & 2) L mol ™"
and a quenching constant (ky') of (2.1 + 0.4) x 10° L mol ' s™".
This PCET-quenching constant is on the same order of magni-
tude as the *PT;-quenching constant and therefore both pro-
cesses are competitive.

In buffered solution at pH 6.3 the final PCET photoproducts
(i.e. [Ru™(bpy),pyim]*" and HMQ"®") are formed within the first
microsecond at buffer concentrations between 5 and 50 mM
(Fig. 5¢). When monitoring the transient absorption signals at
387 nm and 610 nm (Fig. 7b and c) it becomes evident that the
formation of HMQ®" occurs more slowly than deactivation of
the *MLCT excited state of the [Ru"(bpy),pyimH]** complex
(Fig. 7a). Based on the emission decay at 630 nm, the *MLCT

1
a
Y (@) emission 630 nm
g -
o
c
0
204 (b)
a | 387 nm
(@) i
<
S
10+
5 -
(c)
D -
S o+
S
1 610 nm
-5 I T T T T T
0 500 1000 1500
time / ns
Fig. 7 (a) Decay of the emission signal at 630 nm and temporal evolution of

the transient absorption signal at 387 nm (b) and at 610 nm (c) in the reaction
of 40 uM [Ru(bpy),pyimHI?* with 15 mM MQ* in 1:1 (v:v) CHsCN/H,O at
pH 6.3 with 5 mM acetate buffer.
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Table 3 Stern—Volmer constants (Ksy) and bimolecular luminescence
quenching constants (kg) for *[Ru(bpy)opyimHI?* in presence of MQ™ in
deaerated 1:1 (v:v) CHsCN/H,O at different pH values in absence and
presence of buffer

Conditions Ksy [L mol™'] kg [10° L mol ' s™'] Process
Buffered pH 2 143 + 13 6.8 £ 0.1 ET
Unbuffered pH 13 124 + 12 20.7 £ 0.3 ET
Buffered pH 6.3 34+2 5.7 £ 0.3 PCET
Unbuffered H,O pH 7.3 70 £ 5 3.4+ 0.5 PCET
Unbuffered D,O pD 7.3 58 £ 6 2.5+ 0.8 PCET

lifetime under these conditions is (70 £ 7) ns. Biexponential fits
to the transients at 387 nm and 610 nm yield time constants of
(70 £ 7) ns and (250 + 25) ns with different signs of amplitude,
corresponding to the *MLCT lifetime and the time constant
for formation of HMQ®', respectively. Thus, photoexcited
[Ru(bpy),pyimH]*" disappears more rapidly than HMQ*'
forms, and this can be explained by rapid PCET (green arrow
in Scheme 3) followed by slow PT, (red arrow in Scheme 3). By
increasing the buffer concentration the kinetics of these pro-
cesses is accelerated as described in the ESIt (Fig. S12).

In absence of buffer the reaction kinetics are different. The
absence of buffer base leaves MQ" and water molecules as
potential proton acceptors. The luminescence quenching experi-
ment performed with acetate buffer (Fig. S7, ESIT) clearly shows
that buffer base is a far better proton acceptor than water vis-a-
vis photoexcited [Ru"(bpy),pyimH]*". Transient absorption spec-
tra recorded in 1:1 (v:v) CH;CN/H,O in absence of buffer are
shown in Fig. 5d. The spectrum recorded without time delay
(orange trace in Fig. 5d) is compatible with the formation of
neutral MQ® radical as a primary photoproduct, exhibiting a
characteristic broad absorption centered on 545 nm. After
5 us the population of MQ® has decreased and HMQ®" can be
detected (brown trace in Fig. 5d). Thus, the overall photo-
chemistry is the same as in presence of buffer (PCET followed
by PT,), but the kinetics are much different. The time constant
for protonation of MQ® is (2.5 £ 0.3) us based on the temporal
evolution of the transient signal at 610 nm (ESIL Fig. S13a)
which is a factor of 10 slower than in the presence of 5 mM
acetate buffer. Stern—Volmer luminescence quenching studies
yielded kq = (3.4 £ 0.5) x 10° L mol~ " s~ for the initial excited-
state quenching process. When going from CH;CN/H,O to
CH;3;CN/D,0, the protonation of MQ® (PT),) is slowed down by
a factor of 2.6, and the initial excited state quenching process
becomes a factor of (1.4 £ 0.6) slower (Table 3). In principle, an
H/D kinetic isotope effect of 1.4 would be compatible with
concerted electron-proton transfer (CPET), but definitive
assignment of the PCET step in Scheme 3 (green arrow) either
to concerted or consecutive electron and proton transfer steps
is currently not possible.

3 Summary and conclusion

The thermodynamic properties of [Ru(bpy),pyimH]*" in its
electronic ground state and in the long-lived *MLCT excited

state in 1:1 (v:v) CH3CN/H,O were explored in detail. In the
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ground state the formal BDFE of the N-H bond is in the range
of primary and secondary amines ((91 + 1) kcal mol *),>*78
but upon excitation with a visible photon the BDFE drops by
roughly 50 kcal mol™* to only (43 4 5) kcal mol . Thus,
photoexcitation leads to a formal N-H BDFE in the range of
metal hydride complexes which are used as hydrogenation
catalysts in their electronic ground states.**® Transient absorption
spectroscopy demonstrates that photoexcited [Ru(bpy),pyimH]*"
and (N-methyl-4,4'-bipyridinium, MQ') undergo a formal HAT
reaction, thereby confirming the finding of a very low formal
N-H BDFE in the ruthenium complex; in HMQ®" the N-H BDFE
is (53 & 1) kcal mol~". Mechanistically, formal HAT between
these two reactants is found to proceed via a sequence of
PCET and proton transfer reaction steps involving buffer or
solvent molecules. More generally, our study demonstrates that
aromatic imines can be reduced from the excited state of

[Ru(bpy),pyimH]*".
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