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Pair-eigenstates and mutual alignment of coupled
molecular rotors in a magnetic field

Ketan Sharma* and Bretislav Friedrich*

We examine the rotational states of a pair of polar 2S molecules subject to a uniform magnetic field.

The electric dipole–dipole interaction between the molecules creates entangled pair-eigenstates of

two types. In one type, the Zeeman interaction between the inherently paramagnetic molecules and the

magnetic field destroys the entanglement of the pair-eigenstates, whereas in the other type it does not.

The pair-eigenstates exhibit numerous intersections, which become avoided for pair-eigenstates

comprised of individual states that meet the selection rules DJi = 0, � 1, DNi = 2n (n = 0, �1, �2,. . .),

and DMi = 0, � 1 imposed by the electric dipole–dipole operator. Here Ji, Ni and Mi are the total, rotational

and projection angular momentum quantum numbers of molecules i = 1, 2 in the absence of the electric

dipole–dipole interaction. We evaluate the mutual alignment of the pair-eigenstates and find it to be

independent of the magnetic field, except for states that undergo avoided crossings, in which case the

alignment of the interacting states is interchanged at the magnetic field corresponding to the crossing

point. We present an analytic model which provides ready estimates of the pairwise alignment cosine

that characterises the mutual alignment of the pair of coupled rotors.

I Introduction

External electric, magnetic and optical fields can be used to
manipulate not only the rotational1–32 and translational33–48

motion of individual molecules but also to modify and engineer
intermolecular potentials.49–51 This is of relevance to few- and
many-body physics where the ability to manipulate inter-
molecular potentials can be harnessed to, for instance, engineer
new phases,52,53 implement Hubbard-type Hamiltonians with
controllable parameters,54 simulate spin models,55 or realise
the dissipative bond.56,57 In our recent work,50,51 we presented
a method for manipulating the interaction potential between a
pair of polar 1S molecules with far-off-resonant light. That method
is based on the triple-combination of the electric dipole–dipole,
anisotropic polarisability, and the retarded induced dipole–dipole
interactions and offers a wide tunability range of the inter-
molecular potentials that it generates.

Herein, we examine how the electric dipole–dipole inter-
action potential between two polar 2S molecules – which are
inherently paramagnetic – creates entangled pair-eigenstates
and how these are affected by the Zeeman interaction between
the molecules and a superimposed magnetic field. The electric
dipole–dipole intermolecular potential couples Zeeman levels that
fulfil selection rules imposed by the electric dipole–dipole operator.
This coupling alters the Zeeman levels of the pair-eigenstates in

general and modifies the mutual alignment of the two mole-
cular rotors in particular. We are reminded of the coupling
of the Zeeman levels of a single polar paramagnetic molecule
by a superimposed electric field,8,9 whose interaction with the
body-fixed electric dipole of the polar molecule plays the role
of the electric dipole–dipole interaction (although under
different selection rules). However, the pair-eigenstates exhibit
a behaviour quite different from that of single-molecule eigen-
states. For instance, we find that the field-free pair-eigenstates
are the maximally entangled Bell states.58 The application of a
magnetic field is akin to effecting a Bell measurement that
results in destroying the pair’s entanglement. We made use of
these features to propose a new prototype design for a universal
quantum computer based on an array of trapped 2S molecules.59

Previous proposals relied on the Stark states of trapped polar
linear60–62 and symmetric top63 molecules as qubits.

This paper is organised as follows. In Section II, we present
the basic theory of the interaction of a pair of polar 2S molecules
with a magnetic field, starting with a single such molecule in
Section II A and laying out the full-fledged theory for the two-
molecule system in Section II B. In Section III, we present and
discuss our results on the two-molecule system in the absence
(Section III A) and presence of a weak (Section III B) and strong
(Section III C) electric dipole–dipole coupling as a function of the
magnetic field strength. In Section III D we present and discuss
our results on the mutual alignment of the two molecules and in
Section III E we introduce a model for evaluating the mutual
alignment of two coupled molecular rotors. Section IV provides a
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summary of our results. Appendices 5 and 6 show derivations of
the matrix elements of the electric dipole–dipole operator and
the pairwise alignment cosine in the cross-product basis set
of the two molecules.

II Theory
A The Hamiltonian of a polar 2R molecule in a magnetic field

We first consider an individual polar 2S molecule in a uniform
magnetic (Zeeman) field. Its Hamiltonian (apart from nuclear
spin) is given by the sum of the rotational and Zeeman
terms.8,32,64–66

H = BN2 + gN�S + BZmSZ (1)

where B is the rotational constant, N the rotational angular
momentum operator, S the electronic spin angular momentum
operator, g the spin-rotation coupling constant and SZ the
space-fixed Z component of the molecule’s electronic spin.
The dimensionless magnetic interaction parameter is given by

Zm �
mmH
B

(2)

where mm = gSmB is the electronic magnetic dipole moment of
the 2S molecule, gS D 2.0023 the electronic gyromagnetic ratio,
mB the Bohr magneton and H the magnetic field strength.

Fig. 1 shows the body- and space-fixed frames of reference
(x, y, z) and (X, Y, Z), respectively, along with the Euler angles
(f, y, w) that describe their mutual rotation. The angular momenta
N (rotational), J (total) and S (electron spin) are also shown, along
the projections M and O of the total angular momentum J on the
space fixed Z-axis and molecule fixed z-axis, respectively. Note
that N = J � S.

While for a 2S state the electronic spin angular momentum
S = 1

2, the orbital electronic angular momentum is identically
zero and so is the spin–orbit coupling. A field-free 2S state thus

exhibits a Hund’s case (b) coupling between the rotational and
electronic angular momenta,64 with the projections of the total
and spin electronic angular momenta on the molecular axis
(an axis of cylindrical symmetry) O = S = 1

2, cf. Fig. 1.
The Hund’s case (b) basis functions are equally weighted

linear combinations of Hund’s case (a) basis functions, each a
product of a symmetric top wave function,

J;O;Mj i ¼ ð�1ÞM�O
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2J þ 1Þ

8p2

r
DJ
�M;�Oðf; y; wÞ (3)

and a spin function,66

S;Sj i ¼ aSþSbS�Sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ SÞ!ðS � SÞ!

p (4)

with J = N � S the total (rotation and electron spin) angular
momentum quantum number, M and O the projections of the
total angular momentum on, respectively, the space-fixed Z axis
and the body-fixed z axis, DJ

M,O(f, y, w) the Wigner matrix, with
f, y, w the Euler angles, and a, b the spin functions. Thus for a
field-free 2S state, there are two types of Hund’s case (b) basis
functions

c� N � 1

2
;M

� �
¼ 1ffiffiffi

2
p

� S;
1

2

����
�

J;O;Mj i � S;�1
2

����
�

J;�O;Mj i
� �

� jN; J;Mi
(5)

pertaining to J = N � 1
2, with parity (�1)N. The corresponding

eigenenergies are

Eþ N þ 1

2
;M

� �
¼ BNðN þ 1Þ þ g

2
N (6)

E� N � 1

2
;M

� �
¼ BNðN þ 1Þ � g

2
ðN þ 1Þ (7)

We note that both J and N but not O are good quantum
numbers for a field-free 2S molecule.

The SZ operator couples Hund’s case (b) basis functions with
same M but with Ns that are either the same or differ by �2 and
hence have the same parity. The selection rule on N moreover
ensures that the Hamiltonian matrix in the Hund’s case (b) basis
for the Zeeman interaction of a 2S molecule factors into blocks
that are no greater than 2 � 2, rendering the corresponding
Zeeman energy at most quadratic in H.

The Zeeman states |Ñ, J̃, M; Zmi of a 2S molecule adiabati-
cally correlate with the field-free rotor states |N, J, Mi such that
|Ñ, J̃, M; Zm - 0i- |N, J, Mi, where Ñ and J̃ are adiabatic labels
rather than quantum numbers. The projection quantum number
M and the parity (�1)Ñ remain good quantum number even in
the presence of the Zeeman field. The effects of the magnetic
field on 2S molecules have been discussed in greater detail, e.g.,
in ref. 8 and 32.

Fig. 1 Euler angles (f, y, w) describing the rotation of the molecular
coordinates (x, y, z) fixed to a diatomic molecule (depicted as a bar-bell)
with respect to the space-fixed coordinates (X, Y, Z). The green axis is the
line of nodes, perpendicular to both z and Z. Also shown are the rotational,
N, electron spin, S, and total, J, angular momenta as well as the projections
M and O of J on the z and Z axes, respectively.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

2 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

9:
11

:0
5 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c6cp00390g


This journal is© the Owner Societies 2016 Phys. Chem. Chem. Phys., 2016, 18, 13467--13477 | 13469

B The Hamiltonian of a pair of polar 2R molecules in a
magnetic field

We now consider a pair of polar 2S molecules in the presence of
a uniform magnetic field. The Hamiltonian of such a compo-
site, two-molecule system is the sum of the single-molecule
Hamiltonians, Hi, and the electric and magnetic dipole–dipole
coupling terms. Upon neglecting the much weaker magnetic
dipole–dipole interaction, the Hamiltonian takes the form

H ¼
X2
i¼1

Hi þ Vd�d; (8)

where i = 1, 2 and Vd–d is the electric dipole–dipole interaction
operator.

The two molecule system is shown in Fig. 2, along with the
space- and body-fixed reference frames (X, Y, Z) and (x, y, z).
While the Z axis is defined by the direction of the magnetic field
vector, the z-axis coincides with the intermolecular axis. The
Euler angles (f, y, w) parametrize the rotation matrix which
transforms between the laboratory (space-fixed) and intermolecular
(body-fixed) frames.67 The rotations between the body-fixed frames
of molecules 1 and 2 and the laboratory frame are described by
Euler angles (f1, y1, w1) and (f2, y2, w2).

The electric dipole–dipole interaction potential is given by

Vd�d ¼
l1 � l2 � 3 l1 � nð Þ l2 � nð Þ

4pe0r1;23
(9)

with l1 and l2 the electric dipole moments of the two molecules
and r1,2 the relative position vector of the centres of mass of
the two molecules whose direction is given by the unit vector

n � r1;2

r1;2
, and e0 is the permittivity of the vacuum. As usual,

r1,2 � |r1,2| and mi � |li| (with i = 1, 2). Moreover, in our case,
m1 = m2 � m.

Eqn (9) can be recast in terms of the Wigner matrices
Dl

m0(f, y, w):

Vd�d ¼ �
ffiffiffi
6
p

X
X
nl

Cð1; 1; 2; n; l; n þ lÞD1
�n0 f1; y1; w1ð Þ

� D1
�l0 f2; y2; w2ð ÞD2

nþl0 f; y; wð Þ (10)

where C( J1, J2, J3; M1, M2, M3) are the Clebsch–Gordan coeff-
cients, J1 and J2 the angular momentum quantum numbers of
molecules 1 and 2, M1 and M2 the projections of the angular
momenta of molecules 1 and 2 on the space fixed axis Z, J3 and
M3 their respective sums, (y1, f1) and (y2, f2) the rotational
coordinates of molecules 1 and 2, (y, f) the spherical coordi-
nates of their relative position vector r1,2, and

X � m1m2
4pe0r1;23

(11)

is a parameter that characterises the strength of the electric

dipole–dipole interaction. The dimensionless parameter X � X
B

measures the strength of the electric dipole–dipole interaction
in terms of the rotational constant.

The matrix elements of the Hamiltonian were calculated
analytically in the cross product Hund’s case (a) basis set,

| J1, O1, M1, S1, S1; J2, O2, M2, S2, S2i
= | J1O1M1i |S1S1i# | J2O2M2i |S2S2i (12)

Fig. 2 Definition of Euler angles (f, y, w) describing the rotation of
the intermolecular co-ordinate (x, y, z) with respect to the space-fixed
coordinates (X, Y, Z) for two diatomic molecules depicted as bar-bells. The
intermolecular frame of reference has its z-axis aligned along the inter-
nuclear axis, r1,2. The green dashed coordinates are the space fixed
coordinates (X, Y, Z) translated to each molecule. The Euler angles for each
molecule introduced in Fig. 1 are from here on represented using subscripts
1 and 2 for each molecule.

Fig. 3 Matrix representation of Hamiltonian of eqn (8) in the cross
product basis set |J1, O1, M1, S1, S1; J2, O2, M2, S2, S2i of two Hund’s
case (b) molecules, truncated such that Ji with i = 1, 2 ranges from 1

2 to
7
2

for molecules 1 and 2 (shown in blue). Hence Mi ranges from �Ji to

Ji while
P
i

¼ �1
2
. Same applies to primed quantities. Note that for instance

J1 = J2 = 1
2 = J1

0 = J2
0 give rise to a 16 � 16 sub-matrix (shown in green). The

size of the blocks increases with J1 and J2, since Mi =�Ji,�Ji + 1,. . .Ji (i = 1, 2).
Note that due to the coupling with the external magnetic field and the
intermolecular interaction, the Hamiltonian matrix is not block diagonal.
The dots stand for blocks of the matrix. See text.
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of the two molecules and the eigen properties of the composite
two-molecule system obtained by a numerical diagonalization
of a truncated Hamiltonian matrix, whose structure is shown
in Fig. 3.

Note that the projection quantum numbers Oi and Si (with
i = 1, 2) of the electronic angular momenta on the body-fixed
axis of each 2S molecule coincide, i.e., Oi = Si. The number of
pairs of states determines the size of the basis set and is given

by 2SJmax
Jmin
ð2J þ 1Þ

h i2
. For Jmin = 1

2 and Jmax ¼ 7
2
, this means that

the truncated Hamiltonian matrix is of a 1600 rank. We note
that while there is no apparent difference in the sparsity of the
Hamiltonian matrices in Hunds case (a) and (b) basis sets,
the computation of the Hund’s case (a) matrix elements is
about four-times faster than that of the Hunds case (b) matrix
elements.

The matrix elements in the cross product of Hund’s case (a)
basis of the two molecules have been obtained in closed form,
see Appendix A:

J1
0
O1
0
M1

0
S1
0
S1
0
J2
0
O2
0
M2

0
S2
0
S2
0
Vddj jJ1O1M1S1S1J2O2M2S2S2

D E

¼ �
ffiffiffiffiffi
30
p

XB 2J1
0 þ 1

h i1
2
2J1 þ 1½ �

1
2 2J2

0 þ 1
h i1

2
2J2 þ 1½ �

1
2

�
J1
0

1 J1

O1
0

0 O1

0
@

1
A J2

0
1 J2

O2
0

0 O2

0
@

1
AdS10S1dS20S2dS1

0S1
dS2

0S2

�
X
nl

1 1 2

n l �n � l

 !
D2
nþl0 f; y; wð Þ

�
J1
0

1 J1

M1
0 �n M1

0
@

1
A J2

0
1 J2

M2
0 �l M2

0
@

1
A

(13)

Eqn (13) implies that the electric dipole–dipole interaction
couples states with DM1 = 0, �1, DJ1 = 0, �1, DM2 = 0, �1
and DJ2 = 0, �1 of molecules 1 and 2. Thus, even in the absence
of external fields, M is not a good quantum number in the
presence of the electric dipole–dipole interaction. In Section III
B we will introduce a labelling of states that circumvents this
difficulty.

III Results and discussion

The diagonalization of the 1600 � 1600 Hamiltonian matrix was
carried out using the Armadillo C++ linear algebra library.68 The
states were adiabatically tracked as a function of the magnetic
field interaction parameter Zm by monitoring the inner product
between the eigenvector of a given state at the initial value of
Zm and all possible eigenvectors for the new value of Zm. The
calculations presented here were carried out for a generic 2S
molecule with the value of g taken to be 0.193, which corresponds
to the NaO (A2S) molecule. Its molecular parameters along with
those of additional choice molecules with a 2S ground state are
summarised in Table 1.

A Pair-eigenstates in the absence of the electric dipole–dipole
coupling, N = 0

In the absence of the electric dipole–dipole interaction, i.e.,
for X = 0, the pair-eigenstates of the two-molecule system can
be decomposed into products of eigenstates of the individual
molecules,

| J̃1, Ñ1, M̃1; J̃2, Ñ2, M̃2; Zmi = | J̃1, Ñ1, M̃1; Zmi | J̃2, Ñ2, M̃2; Zmi
(14)

This implies that the two Hamiltonians H1 and H2, cf. eqn (1)
and (8), can be diagonalised separately in order to obtain the
eigenfunctions | J̃1, Ñ1, M̃1; Zmi and | J̃2, Ñ2, M̃2; Zmi and the
corresponding eigenenergies E1 and E2. The eigenenergy of
the two-molecule system is then calculated to be

E = E1 + E2 (15)

Fig. 4 shows the eigenenergies (in units of the rotational
constant B) of the two-molecule system for X = 0. Each set of
eigenstates with the same J̃1, Ñ1, J̃2 and Ñ2 is plotted in the same
colour. The projection quantum numbers M1 and M2 of the
individual molecules are good quantum numbers in the absence
of the electric dipole–dipole interaction.

B Pair-eigenstates in the presence of a small dipole–dipole
coupling, N { 1

The pair-eigenstates formed as a result of the electric dipole–
dipole interaction can no longer be factored into products of
individual molecular eigenstates, as was the case above in eqn (14),
and, moreover, even M1 and M2 cease to be good quantum
numbers. Fig. 5–7 show correlation diagrams between the
individual molecular eigenstates in the absence of the magnetic
field (X = 0, Zm = 0) and the pair-eigenstates created by the
electric dipole–dipole interaction (X a 0) without (Zm = 0) and
with (Zm a 0) the magnetic field for the three lowest sets of
pair-eigenstates.

In the absence of the magnetic field and the electric dipole–
dipole interaction, the pair-eigenstates are degenerate in M1

and M2 for any given set of J1, N1, J2 and N2. Since M1 = �J1,
�J1 + 1,. . .J1 � 1, J1 and M2 = �J2, �J2 + 1,. . .J2 � 1, J2, each such

Table 1 Rotational constants, B, spin-rotation constants, g, electric dipole
moments, m, and values of the dimensionless interaction parameter Zm at a
magnetic field of 1 Tesla for NaO(A2S) and for choice molecules with a 2S
ground state. Also shown are the values of the dimensionless electric
dipole–dipole interaction parameter X, see eqn (11). Compilation based on
ref. 8, 32 and 69 and our own calculations

B [cm�1] g [cm�1] m [D] Zm@1 T X (r1,2 = 500 nm)

NaO 0.462 0.193 7.88a,b 2.02 5.42 � 10�6

CaH 4.28 0.045 2.94 0.22 8.14 � 10�8

CaF 0.34 0.0013 3.34 2.75 1.32 � 10�6

MgH 5.83 0.020 1.27 0.16 1.12 � 10�8

RbO 0.24 0.019 8.5 3.9 1.21 � 10�5

BeH 10.32 0.005 0.1069 0.09 4.46 � 10�11

CN 1.99 0.0073 1.45 0.47 4.2 � 10�8

CaCl 0.15 0.0014 4.47 6.23 5.37 � 10�6

a Calculated using Gaussian 09. b B3LYP type calculation using TZP-
DKH basis.70,71
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set is comprised of (2J1 + 1)(2J2 + 1) degenerate states. The electric
dipole–dipole interaction lifts the M-degeneracy as the pair-
eigenstates are formed. In the absence of the magnetic field,
the pair-eigenstates are equally-weighted linear combinations of

the degenerate states of individual molecule with given �M1

and �M2. As indicated in the correlation diagrams of Fig. 5–7,
these linear combination states are formed irrespective of how
small the value of X is. Every �|M1| and �|M2| set of degenerate
states leads to the formation of four new pair-eigenstates.

Table 2 shows the four possible states formed along with
their respective labels. We label the states A if the total angular

Fig. 4 Dependence of the eigenenergies E of the system of two polar
paramagnetic 2S molecules on the magnetic field strength parameter Zm in
the absence of the electric dipole–dipole interaction (X = 0). The eigen-
energies are measured in terms of the rotational constant B.

Fig. 5 Correlation diagram involving the J̃1 = 1
2, Ñ1 = 0, J̃2 = 1

2, Ñ2 = 0,
pair-eigenstates. The eigenstates, labelled in accordance with Table 2, are
degenerate in the absence of the electric dipole–dipole interaction (their
multiplicity is indicated by the number of bars) but their degeneracy is lifted

when X a 0. The A
1
2

1
2

+ and A
1
2

1
2� states adiabatically transform into M1 = M2 =

�1
2 and M1 = M2 = 1

2 states, respectively, when the magnetic field is applied.

Note that the B states maintain their entanglement throughout.

Fig. 6 Correlation diagram involving the J̃1 = 1
2, Ñ1 = 0, 1, J̃2 = 1

2, Ñ2 = 1,
0 pair-eigenstates. The eigenstates, labelled in accordance with Table 2,
are eight fold degenerate in the absence of electric dipole–dipole inter-
action but only doubly degenerate when X a 0 (their multiplicity is
indicated by the number of bars). This double degeneracy arises because

the indistinguishability of two molecules. A
1
2

1
2

+ and A
1
2

1
2� states adiabatically

transform into M1 = M2 = �1
2 and M1 = M2 = 1

2 states, respectively, when the

magnetic field is applied. Note that the B states maintain their entangle-
ment throughout.

Fig. 7 Correlation diagram involving the J̃1 = 1
2, Ñ1 = 1, J̃2 = 1

2, Ñ2 = 1
pair-eigenstates. The eigenstates, labelled in accordance with Table 2,
are degenerate in the absence of the electric dipole–dipole interaction
(their multiplicity is indicated by the number of bars) but their degeneracy

is lifted when X a 0. A
1
2

1
2

+ and A
1
2

1
2� states adiabatically transform into

M1 = M2 = 1
2 and M1 = M2 = �1

2 eigenstates, respectively, when the magnetic

field is applied. Note that the B states maintain their entanglement throughout.
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momenta of the two molecules are parallel, i.e., the state is a
linear combination of (+|M1|, +M2) and (�|M1|, �|M2|). The
states are labelled B if the total angular momenta of the two
molecules are antiparallel. Note that the values of |M1| and |M2|
are shown as superscripts whereas the subscripts + and� refer to
whether the linear combination is symmetric or antisymmetric.

As shown in Fig. 5–7, in a magnetic field that lifts the �M
degeneracy, the A states decouple into +|M1|, +|M2| and �|M1|,
�|M2| states whereas the B states do not (for as long as M1 = M2).
This is because in the B states the two molecules have opposite
projections of the angular momentum and the combinations
c(+|M|, �|M|) and c(�|M|, +|M|) are indistinguishable. This pre-
serves the entanglement (the Bell-state character) of the pair-
eigenstates even in the presence of a uniform magnetic field.
However, the B states decouple in a non-uniform magnetic field.59

This is shown quantitatively in Fig. 8 where the concurrence – a
measure of entanglement72 – has been plotted for the A and B
states as a function of the superimposed magnetic field.

C Pair-eigenstates in the presence of large dipole–dipole
coupling, N o 1

In order to make the effect of the electric dipole–dipole inter-
action on the structure of the pair-eigenenergy levels more
apparent, we increased the value of the coupling interaction
parameter X to an unrealistically high value of 0.1, see Fig. 9.
Each set of pair-eigenstates with the same J̃1, Ñ1, J̃2 and Ñ2

are shown in the same colour. Since M1 and M2 are mixed, see
Section III B, the eigenstates are labeled according to the system
defined in Table 2.

We see that avoided crossings (highlighted by the black
boxes) are formed for pair-eigenstates comprised of individual
states that meet the selection rules DJi = 0, � 1, DNi = 2n
(n = 0, � 1, � 2,. . .) and DMi = 0, � 1. These selection rules
follow from the properties of the electric dipole–dipole operator,
cf. eqn (13).

Fig. 10 shows the first avoided crossing, highlighted by box
(a) in Fig. 9, for X = 10�3 (upper panel) and X = 10�5 (lower
panel), illustrating the effect of increasing the value of X. The
smaller the value of X, the greater the zoom required in order to
visualise the avoided crossing.

D Mutual alignment of the coupled rotors

The orientation and alignment of the two-molecule system is
characterised, respectively, by the expectation values of the
pairwise alignment cosine cos y1 cos y2 and pairwise orientation
cosine cos2 y1 cos2 y2 operators, see also.50,51 The requisite
matrix elements for calculating the pairwise cosines are listed
in Appendix B.

Fig. 11 shows the expectation values of the pairwise orienta-
tion and alignment cosines of the J̃1 = 1

2, Ñ1 = 1, J̃2 = 1
2, Ñ2 = 0,

B
1
2

1
2

+ state (blue curve in Fig. 9) with the ~J1 ¼ 3
2;

~N1 ¼ 1;

~J2 ¼ 1
2
; ~N2 ¼ 0; A

3
2
1
2� state (green curve in Fig. 9) at the avoided

crossing for X = 10�5 (lower panel) and X = 10�3 (upper panel)
at Zm E 0.41775. Note that these states are not oriented but

Table 2 Pair-eigenstates – and their labels – comprised of two states of
2S molecules in the presence of the electric dipole–dipole interaction.
Note that these labels remain in place irrespective of whether the mag-
netic field is present

Label State

A
M1j j M2j j
þ

C(+|M1|, +|M2|) + C(�|M1|, �|M2|)

A M1j j M2j j
�

C(+|M1|, +|M2|) � C(�|M1|, �|M2|)

B
M1j j M2j j
þ

C(+|M1|, �|M2|) + C(�|M1|, +|M2|)

B M1j j M2j j�
C(+|M1|, �|M2|) � C(�|M1|, +|M2|)

Fig. 8 Concurrence of type A and B pair-eigenstates, cf. Table 2, as a
function of magnetic field. Note that A

M1M2
� states become disentangled

when the magnetic field is turned on, while the B
M1M2
� states do not. The

concurrence was calculated by the method described in ref. 59.

Fig. 9 Dependence of the eigenenergies E of the system of two polar
paramagnetic 2S molecules on the magnetic field strength parameter
Zm in the presence of the electric dipole–dipole interaction (X = 10�1).
The eigenenergies are measured in terms of the rotational constant B. The
avoided crossings formed due to electric dipole–dipole interaction are
highlighted by the black boxes. cf. Fig. 4.
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there is a sudden change in alignment of the two molecules at
the avoided crossing.

As noted in our earlier work,8,9 a small electric field can orient
polar paramagnetic molecules in the presence of a magnetic field by
virtue of the electric dipole coupling of the Zeeman levels. A similar
effect is expected to arise for two polar paramagnetic molecules in a
magnetic field due to coupling of their Zeeman levels by the electric

dipole–dipole interaction, resulting in their mutual orientation.
However, as shown in Fig. 11 (dashed line), the mutual orientation
comes to naught. As detailed in Section III B, this is because the pair-
eigenstates are equally weighted linear combination of states with
opposing angular momentum projections on the space fixed Z
axis. In other words, the linear combinations entail indistin-
guishable pair-eigenstates of types |mki and |kmi.

However, the molecules are mutually aligned by the electric
dipole–dipole coupling, see Fig. 11.

Fig. 12 shows the corresponding individual orientation and
alignment cosines of J̃1 = 1

2, Ñ1 = 1, J̃2 = 1
2, Ñ2 = 0, B

1
2

1
2+ state (blue

curve in Fig. 9) with the ~J1 ¼ 3
2
; ~N1 ¼ 1; ~J2 ¼ 1

2
; ~N2 ¼ 0; A

3
2
1
2�

state (green curve in Fig. 9). The colour coding is the same as in
Fig. 9 and 11. We see that the coupling near the avoided
crossing changes the alignment of one of the two molecules,
which leads to a change in the mutual alignment shown in
Fig. 11. For the state J̃1 = 1

2, Ñ1 = 1, J̃2 = 1
2, Ñ2 = 0, B

1
2

1
2+ (blue curve),

the alignment of molecule 1 remains constant but the align-
ment of molecule 2 decreases at the avoided crossing while

for the state ~J1 ¼ 3
2
; ~N1 ¼ 1; ~J2 ¼ 1

2
; ~N2 ¼ 0; A

3
2
1
2� the alignment

of molecule 1 increases but the alignment of molecule 2
remains constant at the avoided crossing. The relationship
between the individual alignment cosines of molecules 1 and
2 and the mutual alignment cosine (for given crossing states)
illustrated in Fig. 11 and 12 is rendered by the two-state model
below.

E Analytic model of pairwise alignment

For X { Zm, the eigenproperties of two interacting eigenstates
which cross in the purely magnetic case but form an avoided
crossing in the presence of the electric dipole–dipole

Fig. 10 Zoomed-in plot of the first avoided crossing highlighted by box
(a) in Fig. 9 for X = 10�3 (upper panel) and for X = 10�5 (lower panel). The
position of the avoided crossing is marked by the value of the magnetic

interaction parameter Zm*. Blue curve: J̃1 = 1
2, Ñ1 = 1, J̃2 = 1

2, Ñ2 = 0, B
1
2

1
2

+ ;

green curve: ~J1 ¼ 3
2
; ~N1 ¼ 1; ~J2 ¼ 1

2
; ~N2 ¼ 0; A

3
2
1
2� .

Fig. 11 Pairwise alignment and orientation cosines of two polar 2S
molecules near the avoided crossing shown by a box (a) in Fig. 9 as a
function of the magnetic field strength parameter Zm for electric dipole–
dipole interaction X = 10�3 (upper panel) and X = 10�5 (lower panel).

Blue curve: J̃1 = 1
2, Ñ1 = 1, J̃2 = 1

2, Ñ2 = 0, B
1
2

1
2

+ ; green curve:

~J1 ¼ 3
2
; ~N1 ¼ 1; ~J2 ¼ 1

2
; ~N2 ¼ 0; A

3
2
1
2� .

Fig. 12 Individual alignment and orientation cosines of polar 2S mole-
cules 1 and 2 near the avoided crossing shown by a box (a) in Fig. 9 as a
function of the magnetic field strength parameter Zm for electric dipole–

dipole interaction X = 10�5. Blue curve: J̃1 = 1
2, Ñ1 = 1, J̃2 = 1

2, Ñ2 = 0, B
1
2

1
2

+ ;

green curve: ~J1 ¼ 3
2
; ~N1 ¼ 1; ~J2 ¼ 1

2
; ~N2 ¼ 0; A

3
2
1
2� .
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interaction can be calculated using a two-state model. This
model makes use of the two Zeeman eigenfunctions in the
absence of electric dipole–dipole coupling as the (unperturbed)
basis functions. Thus

H1 þH2ð Þcð0Þa ¼ Eð0Þa cð0Þa

H1 þH2ð Þcð0Þb ¼ E
ð0Þ
b cð0Þb

(16)

where H1 and H2 are given by eqn (1) and c(0)
a � ca(X = 0)

and c(0)
b � cb(X = 0), and the subscripts a and b pertain to the

two states considered. In the absence of electric dipole–dipole
interaction, these eigenfunctions are just a direct product of the
eigenfunctions of individual molecules i = 1, 2,

cð0Þa ¼ fð0Þ1a f
ð0Þ
2a

cð0Þb ¼ fð0Þ1b f
ð0Þ
2b

(17)

where fi are the eigenfunctions of Hamiltonian (1) of mole-
cules i = 1, 2. The eigenenergies of the pair-eigenstates a and b
in the presence of the electric dipole–dipole coupling are then
given by

Ea ¼ Eð0Þa � 2DEð0ÞX
1
3 1� sec að Þ

Eb ¼ E
ð0Þ
b þ 2DEð0ÞX

1
3 1� sec að Þ

(18)

and the corresponding eigenvectors are given by

ca

cb

� �
¼ cos a sin a
� sin a cos a

� �
cð0Þa

cð0Þb

" #
(19)

with a the mixing angle

a ¼ 1

2
tan�1

2Hab

DEð0Þ

� �
(20)

where DE(0) � E(0)
b � E(0)

a , Hab is the electric dipole–dipole
coupling matrix element between the two unperturbed states,

Hab = hc(0)
a |Vdd|c(0)

b i (21)

and 01 r a r 901. Eqn (18) shows that the change in energy
due to the electric dipole–dipole interaction is proportional
to X

1
3. Since X is inversely proportional to the cube of the

distance between the molecules, cf. eqn (11), we see that at
large intermolecular separations the eigenenergies of the
two molecule system due to electric dipole–dipole interaction
vary as r1,2

�1.
Within the two-state model, the pairwise alignment cosine is

given by

ca;b cos2 y1 cos2 y2
�� ��ca;b

	 

¼ cos2 a fð0Þ1a;b cos2 y1

�� ��fð0Þ1a;b

D E
fð0Þ2a;b cos2 y2

�� ��fð0Þ2a;b

D E

þ sin2 a fð0Þ1b;a cos2 y1
�� ��fð0Þ1b;a

D E
fð0Þ2b;a cos2 y2

�� ��fð0Þ2b;a

D E

� sinð2aÞ fð0Þ1a;b cos2 y1
�� ��fð0Þ1b;a

D E
fð0Þ2a;b cos2 y2

�� ��fð0Þ2b;a

D E
(22)

Eqn (22) implies that for Zm o Zm* (with Zm* the magnetic field
strength parameter corresponding to position of the avoided
crossing), where a = 01, the pairwise alignment is a product of
the alignment of states a of molecules 1 and 2 and beyond the
interaction region, where a = 901, the pairwise alignment is a
product of the alignment of states b of molecules 1 and 2. The
pairwise alignment in the interaction (avoided crossing) region
is a combination of the alignment of states a and b plus an
additional term which comes about due to the interaction. The
interaction term reaches its maximum value at a = 451.

We note that the maximum value of the pairwise alignment
cosine is independent of the strength of the electric dipole–dipole
coupling as long as X is nonzero. The pairwise alignment calcu-
lated from this model is quite accurate, within �5% of the exact
result for X o 10�3. Hence the model is quite useful, since
typically X E 10�5 for polar paramagnetic molecules at a distance
of 500 nm apart (for instance when trapped in an optical lattice).

IV Conclusion

Our study of a composite system comprised of two polar 2S
molecules subject to a uniform magnetic field revealed that the
electric dipole–dipole interaction that dominates the inter-
molecular potential between the two molecules mixes the mole-
cules’ M states and in the process creates the maximally entangled
Bell states. These are of two types, A and B. While the entangle-
ment of type A states is destroyed by applying a magnetic field
(which is tantamount to performing a Bell measurement on the
system), the type B states maintain their entanglement even in the
presence of a uniform magnetic field. Only a non-uniform mag-
netic field would destroy their entanglement as well. These
features may find application in developing platforms for quan-
tum computing with arrays of trapped molecules.59

Furthermore, we found that the intersecting Zeeman levels
of the pair-eigenstates undergo avoided crossings if they obey a
set of selection rules imposed by the electric dipole–dipole
operator: DJi = 0, �1, DNi = 2n (n = 0, �1, �2,. . .), and DMi = 0,
�1, with Ji, Ni and Mi the total, rotational and projection
angular momentum quantum numbers of molecules i = 1,
2 in the absence of the electric dipole–dipole interaction.

The two coupled rotors considered readily align each other
in the absence of the magnetic field. Their mutual alignment
depends on which rotational states of the two molecules are
combined. A magnetic field modifies the mutual alignment in
the vicinity of field strengths corresponding to the avoided cross-
ings. An analytic model renders accurate values of the mutual
alignment cosine for a wide range of dipole–dipole interaction
and magnetic field strengths. We note that the mutual alignment
of the coupled rotors is a fundamental feature of their pair-
eigenstates. The induced directionality of the states may play a
role in the analysis of their spectroscopic behaviour as well as in
modelling effective intermolecular interaction potentials. The
mutual alignment of molecules trapped in optical lattices will
also have to be taken into account in applications that make use
of such systems for quantum simulation.
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In our forthcoming work we plan to explore the effects of
superimposed electric and non-resonant optical fields on the
intermolecular energy hypersurface, with special focus on the
role of conical intersections of the Stark and Zeeman energy
surfaces. We expect that this may suggest new ways of design-
ing control fields for efficient and state-specific preparation of
pair-eigenstates.32

Appendix A: matrix elements of the
electric dipole–dipole operator in the
cross product basis set of the two
molecules

In the Hund’s case (a) basis set of the two molecules, cf.
eqn (12)

| J1O1M1S1S1; J2O2M2S2S2i = | J1O1M1S1S1i# | J2O2M2S2S2i,
(A1)

a general matrix element of Vd–d becomes, cf. eqn (9),

J1
0
O1
0
M1

0
S1
0
S1
0
;J2

0
O2
0
M2

0
S2
0
S2
0
Vd�dj j

D
� J1O1M1S1S1; J2O2M2S2S2i

¼ �
ffiffiffiffiffi
30
p

X
X
nl

1 1 2

n l �n � l

 !
D2
nþl0 f; y; wð ÞA1ðnÞA2ðlÞ

� dS10S1dS20S2dS1
0S1

dS2
0S2

(A2)

where

A1(n) = h J1
0O1

0M1
0|D1
�n0(f1, y1, w1)| J1O1M1i (A3)

A2(l) = h J2
0O2

0M2
0|D1
�l0(f2, y2, w2)| J2O2M2i (A4)

Above and below we make use of the Wigner 3-J symbols
instead of the Clebsh–Gordon coefficients,

C j1; j2; j3;m1;m2;m3ð Þ ¼ ð�1Þ j1�j2þm3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2j3 þ 1

p j1 j2 j3
m1 m2 �m3

� �
(A5)

as well as of the identities

DJ
MO(o)† = (�1)M�ODJ

�M�O(o), (A6)

JOMh j ¼ 2J þ 1

8p2

� �1
2
DJ

MOðoÞ; (A7)

and

JOMj i ¼ ð�1ÞM�O 2J þ 1

8p2

� �1
2
DJ
�M�OðoÞ (A8)

where we abbreviated (f, y, w) as (o).

From eqn (A3), (A7) and (A8) we then obtain:

A1ðnÞ ¼ J1
0
O1
0
M1

0
D1
�n0 o1ð Þ

�� ��J1O1M1

D E

¼ 2J1
0 þ 1

8p2

� �1
2 2J1 þ 1

8p2

� �1
2

�
ð
do1D

J1
0

M1
0O1
0 o1ð ÞD1

�n0 o1ð ÞDJ1
M1O1

o1ð Þ

(A9)

and

A2ðlÞ ¼ J2
0
O2
0
M2

0
D1
�l0 o2ð Þ

�� ��J2O2M2

D E

¼ 2J2
0 þ 1

8p2

� �1
2 2J2 þ 1

8p2

� �1
2

�
ð
do2D

J1
0

M2
0O2
0 o2ð ÞD1

�l0 o2ð ÞDJ2
M2O2

o2ð Þ

(A10)

By making use of the ‘‘triple product theorem,’’ð
doDJ3

M3O3
oð ÞDJ2

M2O2
oð ÞDJ1

M1O1
oð Þ ¼

8p2
J1 J2 J3

M1 M2 M3

 !
J1 J2 J3

O1 O2 O3

 !
;

(A11)

eqn (A9) and (A10) reduce to

A1ðnÞ

¼ 2J1
0 þ 1

� �1
2
2J1 þ 1ð Þ

1
2

J1
0

1 J1

M1
0 �n �M1

0
@

1
A J1

0
1 J1

O1
0

0 �O1

0
@

1
A

(A12)

and

A2ðlÞ

¼ 2J2
0 þ 1

� �1
2
2J2 þ 1ð Þ

1
2

J2
0

1 J2

M2
0 �l �M2

0
@

1
A J2

0
1 J2

O2
0

0 �O2

0
@

1
A

(A13)

and so the complete electric dipole–dipole matrix element becomes:

J1
0
O1
0
M1

0
S1
0
S1
0
; J2

0
O2
0
M2

0
S2
0
S2
0

D ���Vdd J1O1M1S1S1; J2O2M2S2S2

E���
¼ �

ffiffiffiffiffi
30
p

�X 2J1
0 þ 1

h i1
2
2J1 þ 1½ �

1
2 2J2

0 þ 1
h i1

2
2J2 þ 1½ �

1
2

�
J1
0

1 J1

O1
0

0 O1

0
@

1
A J2

0
1 J2

O2
0

0 O2

0
@

1
AdS10S1dS20S2dS1

0S1
dS2

0S2

�
X
nl

1 1 2

n l �n � l

 !
D2
nþl0 f; y; wð Þ

�
J 01 1 J1

M0
1 �n M1

 !
J2
0

1 J2

M2
0 �l M2

0
@

1
A

(A14)
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The various mathematical identities used in this derivation are
taken from ref. 67.

Appendix B: matrix elements of the
pairwise alignment cosine in the cross
product basis set of the two molecules

The matrix element of the pairwise orientation cosine in the
cross product Hund’s case (a) basis set of the two molecules is
given by

J1
0
O1
0
M1

0
S1
0
S1
0
J2
0
O2
0
M2

0
S2
0
S2
0
cos y1 cos y2j j

D

� J1O1M1S1S1J2O2M2S2S2

E

¼ J1
0
O1
0
M1

0
cos y1j jJ1O1M1

D E
J2
0
O2
0
M2

0
cos y2j jJ2O2M2

D E
� dS10S1dS20S2dS1

0S1
dS2

0S2

(B1)

and the matrix element of the pairwise alignment cosine in the
cross product Hund’s case (a) basis set of the two molecules is

J1
0
O1
0
M1

0
S1
0
S1
0
J2
0
O2
0
M2

0
S2
0
S2
0
cos2 y1 cos2 y2
�� ��D

� J1O1M1S1S1J2O2M2S2S2

E

¼ J1
0
O1
0
M1

0
cos2 y1
�� ��J1O1M1

D E
J2
0
O2
0
M2

0
cos2 y2
�� ��J2O2M2

D E
� dS10S1dS20S2dS1

0S1
dS2

0S2

(B2)

The matrix elements of SZ, cos y and cos2 y in the symmetric top
basis set are listed in ref. 32.
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