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Recent reports on the necessity of using externally orthogonal orbitals in subsystem density-functional
theory (SDFT) [Annu. Rep. Comput. Chem., 8, 2012, 53; J. Phys. Chem. A, 118, 2014, 9182] are
re-investigated. We show that in the basis-set limit, supermolecular Kohn—Sham-DFT (KS-DFT) densities

can exactly be represented as a sum of subsystem densities, even if the subsystem orbitals are not
externally orthogonal. This is illustrated using both an analytical example and in basis-set free numerical
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calculations for an atomic test case. We further show that even with finite basis sets, SDFT calculations
using accurate reconstructed potentials can closely approach the supermolecular KS-DFT density, and
that the deviations between SDFT and KS-DFT decrease as the basis-set limit is approached. Our results

demonstrate that formally, there is no need to enforce external orthogonality in SDFT, even though this
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1 Introduction

Quantum-chemical subsystem and embedding methods (for
recent reviews, see, e.g., ref. 1-4) allow for an efficient treatment
of complex chemical systems. For approaches based on density-
functional theory (DFT), one can distinguish two different
strategies that allow for a formally exact subsystem treatment.
Such formally exact approaches are particularly relevant because
they can serve as a starting point for multiscale methods combining
wavefunction-based quantum-chemical methods with DFT
(wavefunction-in-DFT embedding methods).>™°

Firstly, subsystem density-functional theory (SDFT)'"'* and
frozen-density embedding (FDE)"™ are based on a partitioning
of the total electron density p(r) into (possibly overlapping)
subsystem electron densities. The embedding potential obtained
by reformulating Kohn-Sham-DFT (KS-DFT) in terms of these
subsystem electron densities contains a contribution of the
nonadditive kinetic energy, which can either be approximated"**
or treated exactly by reconstructing the embedding potential
leading to a certain target density.">™® It is widely believed that
with such an exact treatment of the nonadditive kinetic energy,
SDFT and FDE will exactly reproduce the total electron density
from supermolecular KS-DFT calculations.>**°
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might be a useful strategy when developing projection-based DFT embedding schemes.

Secondly, the partitioning can also be achieved by assigning
the KS-like orbitals to different subsystems. To this end, non-
local projection techniques are used to ensure orthogonality of
the subsystem orbitals, so that the non-additive kinetic energy
vanishes.?® Hence, no approximate functionals for this energy
component need to be introduced and the use of potential
reconstruction techniques is not required. It can be demonstrated
that such projection-based embedding calculations are exactly
equivalent to supermolecular KS-DFT calculations.>”

The question of orthogonality between the different subsystem
orbitals (“external orthogonality”) is recently causing some
apparent confusion in the literature. Hoffmann and co-workers
have questioned that SDFT is formally exact.”"** Instead, they
argue that an exact treatment of the nonadditive kinetic energy
alone does not suffice to make SDFT equivalent to KS-DFT, but
that it is mandatory to enforce the external orthogonality of the
subsystem orbitals. Also Chulhai and Jensen have picked up the
argument, based on the work by Hoffmann and co-workers, that
non-additive kinetic-energy potentials as used in SDFT and FDE
may lead to incorrect results even for the exact kinetic-energy
functional.”® If these arguments were correct, the two apparent
conclusions are: (i) if external orthogonality is not enforced, even
the exact non-additive kinetic-energy potential will give incorrect
results, and (ii) if external orthogonality is enforced, this potential
is exactly zero and SDFT becomes equivalent to projection-based
embedding schemes. Hence, there would be no reason whatsoever
to attempt constructing approximate non-additive kinetic energy
potentials or to develop numerical schemes for the reconstruction
of accurate embedding potentials.

In this work, we re-investigate the question whether or not
external orthogonality is mandatory for an exact SDFT treatment.
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First, in Section 2 we reconsider the analysis given in ref. 21 and
22 to formally address this question. In a second step, we study
this question on the basis an analytical example in Section 3 and
on the basis of numerical results obtained with reconstructed
potentials, which are derived from exact relations for the non-
additive kinetic-energy potential, in Section 4. We conclude from
our results in Section 5.

2 Theory

In (supermolecular) KS-DFT, the ground-state electron density
is obtained as,

Ntot

Pral) =3 K%, (1)

where ny is the total number of electrons and where the
occupied supermolecular KS-orbitals {$;°} are obtained from

the self-consistent solution of the KS equations,
4 ks KS KS
=5+ Veir P](1) | §;7(r) = eh (1), (2)

with the KS potential vig[p](r) containing the usual contributions
of the nuclear potential, the electronic Coulomb potential, and
the exchange-correlation potential. Note that the solution of the
KS equations yields a complete set of (occupied and virtual)
orbitals {¢p*}p-1,0c = {Pi Simam, U {Pa tan+1,00, Which spans
the one-electron Hilbert space.

In the following, we will consider the special case of SDFT
for two subsystems (A and B), which already introduces all the
basic questions that may arise in the more general case of
arbitrarily many subsystems. The goal of SDFT is then to find
electron densities for these two subsystems p, and pg which
add up to the correct total electron density p,

Prot(r) = pa(®) + pa(r). (3)

Each of the subsystem densities is expressed through its own
set of KS-like orbitals, {(/)ﬁi } and {(/)i }, as

PREED I TXCI IR I TACI ST

=pA(r) =pp(r)

where n, and ng are the numbers of electrons in subsystems A
and B, respectively. The orbitals within one set are internally
orthogonal, but generally, orbitals of different subsystems in
SDFT calculations are non-orthogonal, i.e., the subsystem orbi-
tals are not externally orthogonal. In FDE, a frozen density pg(r)
is chosen for subsystem B and the orbitals of subsystem A are
then obtained from the solution of the KS-like equations,

AT A o a6 60 = () (9)
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with the effective embedding potential for subsystem A,
. SEMY[p,, p
A o p8l(0) = B, (0) -+ vcoulpa) + P Pel
» Spa(r)
ST™ ,
4 s [pA pB} (6)

dpa(r)

where vh.(r) is the nuclear potential of subsystem B,

!
vc(,ul[pB](r):JMd%’ is the Coulomb potential of the

r—r
frozen electron density pg, E2299 [pa,05] = Exc[ptot] — Excd[pal —
E.[pg] is the nonadditive exchange-correlation energy and
12299 95, 08] = Te[prot] — Ts[pa] — Ts[ps] is the nonadditive kinetic
energy.

FDE is generally understood to be exact — in the sense that
the sum of the subsystem densities, pa(r) + pg(r) is equal to
the total electron density po(r) from a supermolecular KS-DFT
calculation [¢f eqn (3)] - if the following conditions are
fulfilled:

(1) The contribution of the nonadditive kinetic energy
79249, pp] to the embedding potential is treated exactly, for
instance by using analytical potential reconstruction techniques.****
Numerical schemes for the reconstruction of the embedding
potential®™® might introduce errors due to the inaccuracies of
optimized effective potential algorithms, in particular if finite
basis sets are used.*

(2) The exchange-correlation energy is treated consistently
in all calculations by using the same approximate functional in
the supermolecular calculation, the subsystem calculations,
and when evaluating the embedding potential.

(3) The KS(-like) equations for the supermolecule [eqn (2)]
and for subsystem A [eqn (5)] are solved exactly, i.e., without
introducing a finite basis set for the orbitals. To which extent
this condition can be relaxed will be discussed in the following.

(4) All appearing densities, most importantly pa(r) = por —
pg(r), are noninteracting vg-representable. In particular, the
frozen density pp(r) must be chosen such that pg(r) < peorlr)
holds at every point in space. This condition can be relaxed in
SDFT, where the densities of both subsystems are updated
iteratively in freeze-and-thaw cycles.”” For a detailed discussion,
see ref. 2 and 19. Here, we will assume that this condition is
fulfilled and not elaborate further on this rather intricate point.

In ref. 21 and 22, Hoffmann and co-workers argue that SDFT
and FDE can only be exact if the additional condition that the

KS-like orbitals of subsystem A and B, {(/)’i} and {([)Z}, are

1
externally orthogonal, is fulfilled. They base their argument on
the assertion that for SDFT to be exact, the supermolecular KS
orbitals {¢;°} must be contained in the subspace spanned by

the subsystem orbitals {(j)ﬁ} U {qbi}. That is, they assume

that it must be possible to expand the supermolecular KS
orbitals in the basis of the subsystem orbitals.

However, all that is required for SDFT to be exact is that the
supermolecular density can be obtained, but not necessarily
the supermolecular KS orbitals. Thus, the question is rather
whether it is possible that the two different expansions of

This journal is © the Owner Societies 2016
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eqn (1) and of eqn (4) result in exactly the same total electron
density, ie.,

S IUACTES HECIES e
ia=1 ig=1 (7)

Prot (T

= pa(r) + py(r).
Hence, for a given set of supermolecular KS orbitals {$}°} we
need to answer the question under which conditions this
equation can be fulfilled by any two sets {q&i } and {(/)Z} of
internally orthogonal subsystem orbitals. For FDE, the frozen

density pg(r) and the set of orbitals {d)i} are given and the

question becomes whether there is a set {qbf: } so that this

equation can be fulfilled. As we require that for FDE the
complementary pa(r) is noninteracting vgrepresentable,
this is equivalent to the SDFT case. In the following, we use

AB _JaA B :
{077} = {</>,.A} 71”AU{(/>,-B }m:l,ng for the combined set

of subsystem orbitals.

Following the analysis in ref. 21 and 22, we proceed by
creating an explicitly orthonormalized combined set of sub-
system orbitals for subsystems A and B, {¢?""}, with

o = ($72) 6. ®)
=
where S; = (7| ¢/") is the overlap matrix of the combined set

of subsystem orbitals. Note that so far there is no reason to
assume that these orthonormalized subsystem orbitals {$™"}
span the same subspace as the supermolecular KS orbitals {¢}"}.

The sum of the subsystem densities [right-hand side of

eqn (7)] can now be expressed as,**

ZM)AB

We now express the orthonormalized subsystem orbitals

PN St (9)

ij=1

pA(r) + pp(r

{¢?B}i=1,nm in terms of the occupied and virtual supermolecular
KS orbitals {¢,°},-1, ., which form a complete basis of the one-
electron Hilbert space,

Drth

Z Up[(l)KS

(10)

Note that at this point there is no reason to assume that only
the occupied supermolecular KS orbitals are sufficient for
expanding the subsystem orthonormalized subsystem orbitals.
Expressing eqn (9) in the basis of the supermolecular KS
orbitals, we arrive at

pa(r) + pg(r ZO Z Upl SIJqu ( )
i,j=1p,q=1
(11)
Z 1)Sp g (1)
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Ttot
with S,, = > U,S;U,;. For SDFT to be exact, this has to be
i,j=1

equal to the left-hand side of eqn (7), that is,
Ntot

Z 5U¢KS

= pa(r) + pp(r).

Z SpgdRS (1) RS (r)

ptot
(12)

At this point, one might be tempted to conclude that this can
only be the case if and only if the occupied-occupied block of S
is the identity matrix (i.e., S; = 0 for i,j = 1,. . ,n.) and all other
blocks of S are zero. This is only possible if § =1, i.e., if and only
if the subsystem orbitals are externally orthogonal. This step is
at the heart of the arguments of Hoffmann and coworkers in
ref. 21 and 22.

However, this conclusion can only be drawn if the set of
orbital products {¢,°¢s}y -1, is linearly independent. It is
well known that for a complete basis set of the one-electron
Hilbert space, the corresponding product basis set is linearly
dependent. For a proof, we refer to the clear presentation by
Gorling et al. in Appendix A of ref. 28.

Specifically, since the supermolecular KS orbitals {$,°},-1, .
form a complete basis, the set of orbital products {¢, ¢y }p,g-1,
must be linearly dependent. Therefore, there is a non-trivial
solution of the equation

0= S XS (meSm),

P.q=1

(13)

which in turn makes it possible that eqn (7) and (12) can be
solved for § # I, i.e., for the case of subsystem orbitals that are
not externally orthogonal. Thus, we conclude that the arguments
for enforcing external orthogonality in SDFT given in ref. 21 and
22 do not hold in the basis-set limit. Even for incomplete basis
sets, (near) linear dependencies in the orbital products may still
occur.”®

3 An analytical example

It can be demonstrated that SDFT is able to exactly reproduce
the supermolecular density with subsystem orbitals that are not
externally orthogonal for a simple analytical model, which has
been previously introduced by Savin and Wesolowski.>* To this
end, we consider a closed-shell four-electron system, in which
the supermolecular electron density is given by,

= 2|1 + 2[$3°00)]"

that is, there are two doubly occupied orbitals. As was already
shown in ref. 24, the embedding potential can be calculated
analytically in this case if the supermolecular KS potential
is known. Moreover, it has been demonstrated that the super-
molecular KS density can be exactly represented as a sum of
subsystem densities obtained with this analytical embedding
potential.

Prot(r) (14)
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As an extreme case, we consider a decomposition of the total
densities into equal subsystem densities,

6550+ 655 ()]

(15)

pa(r) = pg(r) = PA/B(") = %ptot(r) =

Each subsystem density then has to be composed from a single,
doubly-occupied orbital,

pa(®) = 2|¢1@)|* and  pg(r) = 2[$i(D)]%,

)= e

These two (identical) orbitals for subsystems A and B are not
externally orthogonal, but have maximal overlap (¢7]$7) = 1. At
the same time, the sum of the subsystem densities p,(r) + px(r)
is by construction exactly equal to the supermolecular density
Prot(t). Note that both the supermolecule and the two subsys-
tems have been treated as closed-shell systems.

The potential in the KS-like equations for the subsystems
A and B that leads to the required subsystem densities is
analytically given by,>>*

(16)

with

or) = 90w = 6% 0@ (7)

vair AlPAl () + vk s ppl(r) = veip s los] (r) + viits (0B, AL (F)

2
1 )VPA/B (r) ’
8 pasp(r)?

_AgP()

VB (r)

_ 1Apy/p(r)
4 pass (r)

+ u.
(18)

It is further obvious that the subsystem orbitals are not contained
in the subspace spanned by only the occupied supermolecular
orbitals. Instead, they can be expanded in the occupied and virtual
supermolecular KS orbitals as

¢1 (r) Z Upld)KS (19)
with the expansion coefficients
oo = (61
1
J [0 5] 6550 S (s (20)

which are in general nonzero for all p. Note, however, that it is
nevertheless possible to construct a finite basis set that will result
in the exact orbitals and densities in both the supermolecular and
in the subsystem calculations, for instance by using the basis set
{5,055,¢4"%} or by orthogonalizing this set.

4 Numerical examples
4.1 Basis-set limit

To investigate an example with more than two orbitals, we turn
to the argon atom as a test case, because for atoms the KS
equations can easily be solved numerically on a grid, which
provides results close to the basis-set limit.

21004 | Phys. Chem. Chem. Phys., 2016, 18, 21001-21009
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As total density pioy(r), we choose the one obtained in a
KS-DFT calculation performed with the ADF program package®*°
using the BP86 exchange-correlation functional**?* and a QZ4P
Slater-type orbital basis set.>®

We partition this total density into two closed-shell subsystem
densities by defining

par) = 0.95(2} KS r)|2+2}¢ N+ Z Z(szpm ) )

m=—1

+0.05-180<2|¢ [+ Z 2‘<¢>3pm ‘ )

m=—1
(21)

where {1} are the occupied supersystem KS orbitals [see Fig. 1c
and d for plots of the radial functions r¢;(r)], and

pa(r) = proi(r) —

By construction, these subsystem densities are both non-
negative at any point in space and each integrates to an integer
number of electrons (1, = 10 and ng = 8). The radial densities
r2pii(r), r*pa(r), and r*pg(r) are shown in Fig. 1a.

To verify that these two subsystem densities can each be
represented in terms of subsystem orbitals, we performed a
reconstruction of the KS potentials vs[p,] and vy[pg] that yield
the target densities pa(r) and pg(r), respectively, in a fully
numerical solution of the KS equations on a logarithmic radial
grid of 400 points. The modified van Leeuwen-Baerends algo-
rithm®* used for the potential reconstruction as well as the
computational details of the numerical solution of the KS
equations are described in ref. 26 and 35.

It turns out to be possible to reconstruct the subsystem
densities almost exactly. A comparison of the reference and the
reconstructed subsystem densities as well as their difference on
a logarithmic scale are shown in Fig. 1b. The integrated density
difference, defined as

abs __
Aerr - J

is smaller than 10~ ° electrons in both cases. For both subsystems,
the lowest-energy orbitals are occupied, ie., the reconstructed
densities correspond to the ground-state solution.

The subsystem orbitals for subsystems A and B are shown
in Fig. 1c and d, respectively, alongside the corresponding
supersystem KS orbitals. For subsystem A, the density as
defined by eqn (21) is mainly composed of the five lowest
supersystem KS orbitals ¢5s, and ¢5s, ¢ Kg (three degenerate
orbitals), with a small admixture of the remaining orbitals.
Consequently, the subsystem orbitals are very similar to
the supersystem ones, with the deviations being caused by
the admixture of small 3s- and 3p-orbital contributions in the
subsystem density. On the other hand, the density of subsystem
B is composed of the four orbitals ¢55 and ¢55 (three degenerate
orbitals), with a small admixture of the remaining orbitals. In
the subsystem calculation, this density needs to be reproduced by
the ground-state orbitals ¢% and ¢2Bp. Hence, in contrast to the

PA(T). (22)

A/B () — pip(r)|dr, (23)

This journal is © the Owner Societies 2016
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(a) Total density and subsystem densities for an Argon atom, (b) comparison of the target subsystem densities and the subsystem densities

obtained in a numerical potential reconstruction, (c) and (d) comparison of the subsystem orbitals with the corresponding supersystem KS orbitals.

corresponding supersystem KS orbitals, the radial parts of the
subsystem orbitals are nodeless and large differences occur in the
region from r = 0.0 bohr to r = 0.7 bohr.

The fact that for both subsystem A and subsystem B the
lowest s- and p-orbitals are each nodeless leads to a significant
overlap between the subsystem orbitals, as can be seen from

Table 1 Overlap matrix S of the subsystem orbitals obtained for the Ar
atom test case

A B
o o Lo o
#1.0000 0.0000 0.0000 | 0.3923 0.0000
A @3 0.0000 1.0000 0.0000 | 0.6503 0.0000
(;sg‘p 0.0000 0.0000 1.0000 | 0.0000 0.3805
50.3923 0.6503 0.0000 | 1.0000 0.0000
B
¢23p 0.0000 0.0000 0.3805 | 0.0000 1.0000

This journal is © the Owner Societies 2016

the overlap matrix § of the subsystem orbitals shown in Table 1.
Thus, the subsystem orbitals are not externally orthogonal.
Nevertheless, the sum of the subsystem densities reproduces
the total density exactly. Of course, the s- and p-orbitals of the
different subsystems are still mutually orthogonal because of
the atomic symmetry of the specific test case considered here.

In summary, our results show that if the KS-like equations
for the subsystems are solved numerically on a grid to avoid
errors introduced by a finite basis set, a total density can be
reproduced exactly as a sum of subsystem densities, even if the
subsystem orbitals are not externally orthogonal. This confirms
that SDFT is indeed exact if all the conditions listed in Section 2
are fulfilled, without the need to enforce external orthogonality.

4.2 Finite basis sets

Finally, we also want to investigate the case in which both the
supermolecular KS-DFT calculation and the subsystem calcula-
tions are performed using a finite basis set for expanding the
supermolecular and the subsystem orbitals. This is the scenario
in which SDFT is usually applied in practical calculations. With
finite basis sets, the linear dependence of the orbital products
is not guaranteed. With small basis sets, the orbital product
can in general be expected to be linearly independent.”® As
discussed in Section 2, in this case the arguments of ref. 21 and
22 hold and it will not be possible to express the supermolecular
density as a sum of two subsystem densities unless the subsystem

Phys. Chem. Chem. Phys., 2016, 18, 21001-21009 | 21005
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o

Fig. 2 Molecular structure of the NHs- - -NHz complex used as a test case.

orbitals are externally orthogonal. However, as the basis set gets
larger, (near) linear dependencies of the orbital products will
appear.

We consider one of the test cases investigated in ref. 22, an
NHj;- - -NH; complex (see Fig. 2), which can be partitioned into
two NH; subsystems. All calculations have been performed using
the ADF program package**° and its FDE implementation,*® in
combination with the PyADF scripting framework.?” In all of the
subsystem calculations a supermolecular integration grid was
used to ensure the transferability of the results. All subsystem
calculations use the full supermolecular basis set [FDE(s)], ie.,
ghost basis functions on the atoms of the frozen subsystem are
included. The PW91 exchange-correlation functional*®*° has
been used in all calculations.

First, a supermolecular KS-DFT calculation using a finite
Slater-type orbital basis set has been performed to obtain a
supermolecular reference density pig(r). Subsequently, SDFT
using accurate reconstructed embedding potentials were per-
formed to investigate to which extent it is possible to reproduce
the supermolecular density as a sum of two subsystem densities
when using the same finite basis set in the subsystem calculations.

These accurate SDFT calculations have been done as follows:
in the initial iteration, the densities p{(r) and p§’(r) calculated
for the isolated subsystems A and B, respectively, are used as
initial guess for the subsystem densities. In the n-th iteration,
the kinetic-energy component of the embedding potentials for
subsystem A and B are then reconstructed as®**

STsnadd [pX*l)’ pg’*l)

} _ [pX’_”] — v [pff_” +p§3"_1)] (24)

n—1
spi " (r)
and
6Tsnadd [pxlfl)’pg'*l)]
(n—1) (n—1) (n—1)
P = Vs|PB —Vs|pp T Pp , (25)
5/)531 >(l') [ ] [ }

respectively. Here, v,[p""%] is the local potential that yields the

density p™"°(r) as its ground state density. This local potential
is reconstructed using the algorithm of Wu and Yang®” as
described in ref. 16. Since in the context of this study, we are
only interested in the resulting densities and not in obtaining
high-quality potentials, no further regularization®®** is applied
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to the reconstructed potentials. With these accurate kinetic-
energy components of the embedding potential, the KS-like
equations for subsystems A and B [eqn (5)] are solved to obtain
updated subsystem densities p{’(r) and pi(r), respectively.
This procedure is repeated until the subsystem densities
are converged. Typically, 10-20 of these iterations have been
performed.

Such a freeze-and-thaw procedure ensures that both sub-
system densities are noninteracting vs-representable and thus
alleviates the shortcomings of the approach used in ref. 16 (see
also ref. 44 and 45), where a frozen density constructed from
localized orbitals was used. Since both subsystem densities are
optimized, it should result in a pair of subsystem densities p(r)
and pg(r) that minimizes the total energy functional E[p, + pg].

The accuracy of the sum of the resulting subsystem densities
pa(r) + pg(r) compared to the supermolecular density pa(r) can
be measured as,

A$=Mﬁ®*m®*%®Wh (26)

The resulting density errors are summarized in Table 2. In
addition, the difference densities Ap(r) = pioyr) — pa(t) — ps(¥)
in a cut plane containing the N-H---N atoms are shown in
Fig. 3.

We find that in the SDFT calculations with reconstructed
potentials (SDFT/RecPot, Fig. 3c), the sum of the subsystem
densities is not identical to the supermolecular density, but
approaches it closely. This is the case already with the small
DZP Slater-type orbital basis set>® and when using the ATZP
Slater-type orbital basis set.>**° In fact, the integrated density
error of 0.0046 electrons and 0.0047 electrons with DZP and
ATZP, respectively, is one order of magnitude smaller that in an
SDFT calculation in which the the nonadditive kinetic energy
was approximated using the PW91k*® kinetic-energy functional
(SDFT/PW91k, Fig. 3b) and almost two orders of magnitude
smaller than for the sum of the densities from KS-DFT calcula-
tions for the isolated subsystems (SumFrag, Fig. 3a). When
repeating the calculations with a larger ET-pVQZ Slater-type
orbital basis set,*” the discrepancy is further reduced (Fig. 3d).
This suggest that when approaching the basis-set limit, it
becomes possible to reproduce the supermolecular density as
a sum of subsystem densities.

Table 2 Density errors 425 (in electrons) as defined in eqn (26) for

subsystem calculations on a NHs---NHz complex compared to a super-
molecular KS-DFT calculation. "SumFrag” refers to the sum of the isolated
subsystem calculations, “SDFT/PW91k" to a freeze-and-thaw SDFT calcu-
lation using the approximate PW91k kinetic-energy functional, and “SDFT/
PotRec” to a freeze-and-thaw SDFT calculation using accurate recon-
structed embedding potentials, as described in the text. Results are shown
for both the small DZP basis set, the medium-sized ATZP basis set and the
large ET-pVQZ basis sets

DZpP ATZP ET-pvQZ
SumFrag 0.1134 0.1208 0.1203
SDFT/PW91k 0.0344 0.0356 0.0358
SDFT/RecPot 0.0046 0.0047 0.0025
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Fig. 3 Density differences Ap(r) between the sum of subsystem densities and the supermolecular KS-DFT density in a cut plane containing the N-H---N
atoms. (a) SumFrag with ATZP basis set, (b) SDFT/PW91k with ATZP basis set, (c) SDFT/RecPot with ATZP basis set, and (d) SDFT/RecPot with ET-pVQZ

basis set.

Table 3 Elements of the overlap matrix Softhe subsystem orbitals obtained in the SDFT/RecPot calculation with the ET-pVQZ basis set for NHz- - -NHs.

Yellow cells are numerically non-zero

A B
5y ¢35 ¢4 ¢ ¢4 o7 I o7
£ 1.0000 0.0000 0.0000 0.0000 0.0000{ 0.0000 0.0003 0.0000 —0.0021 —0.0005
#3 0.0000 1.0000 0.0000 0.0000 0.0000| 0.0002 0.0083 0.0000 —0.0291 —0.0030
A ¢4 0.0000 0.0000 1.0000 0.0000 0.0000{ 0.0000 0.0000 0.0048 0.0001 —0.0001
$3 0.0000 0.0000 0.0000 1.0000 0.0000{—0.0009 —0.0120 0.0000 0.0226 —0.0128
#2 0.0000 0.0000 0.0000 0.0000 1.0000(—0.0075 —0.0712 0.0000 0.0795 0.0147
#¥ 0.0000 0.0002 0.0000 —0.0009 —0.0075| 1.0000 0.0000 0.0000 0.0000 0.0000
#F¥ 0.0003 0.0083 0.0000 —0.0120 —0.0712| 0.0000 1.0000 0.0000 0.0000 0.0000
B ¢ 0.0000 0.0000 0.0048 0.0000 0.0000| 0.0000 0.0000 1.0000 0.0000 0.0000
¥ —0.0021 —0.0291 0.0001 0.0226 0.0795| 0.0000 0.0000 0.0000 1.0000 0.0000
P —0.0005 —0.0030 —0.0001 —0.0128 0.0147| 0.0000 0.0000 0.0000 0.0000 1.0000
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In order to evaluate the external orthogonality of the subsystem
orbitals, the overlap matrix S of the subsystem orbitals from the
SDFT/RecPot calculation with the ET-pVQZ basis set is shown in
Table 3. Indeed, the overlap of the subsystem orbitals is non-zero,
i.e., the subsystem orbitals that can closely reproduce the super-
molecular density are not externally orthogonal.

In summary, with finite basis sets, it is in general not
possible to exactly reproduce the supermolecular KS-DFT
density as a sum of two subsystem densities. However, as the
size of the basis set is increased and the basis-set limit is
approached, the discrepancies decrease and with basis sets of
reasonable size it is possible to reproduce the supermolecular
density rather accurately. While most of the remaining difference
in the densities is most likely due to the use of a finite basis set,
a part could also be caused by inaccuracies of the numerical
potential reconstruction algorithm, such as the use of a finite
basis set for the potential in the Wu-Yang method.

It should also be noted that with finite basis sets, both the
supermolecular KS-DFT and the SDFT calculation are affected
by a basis set error. Even though both calculations minimize
the total energy functional E[p..], the space of the possible
densities is different since different expansions of the density
are used. We would argue that it is not a priori possible to decide
which expansion will result in the more accurate total density. If
we assume that the supermolecular KS-DFT/ET-pVQZ calculation
gives results close to the basis-set limit, both the supermolecular
KS-DFT and the SDFT/RecPot calculation in the smaller ATZP
basis set exhibit a similar basis set error: the integrated density
error A2 when comparing the supermolecular KS-DFT/ATZP
calculation to the one in the larger ET-pVQZ basis set is 0.1315
electrons, whereas when comparing the sum of the SDFT/RecPot
subsystem densities in the ATZP basis set to the supermolecular
KS-DFT/ET-pVQZ density the integrated difference density 425 is
0.1322 electrons. However, a more systematic investigation of the
basis set errors will be necessary to decide whether in a finite basis
set, supermolecular KS-DFT or SDFT calculations yield results
closer to the basis-set limit.

5 Conclusion

Our results demonstrate that recent claims*'>* that SDFT can only
be exact if the external orthogonality of the subsystem orbitals is
enforced are not justified. In fact, our analysis reveals that such
claims are based on the assumption that the products of linearly
independent orbitals are themselves linearly independent. This
assumption is not true in the basis-set limit, and might also not
hold for many finite basis sets used in practical calculations
because (near) linear dependencies of orbital products appear.
We have illustrated our analysis by demonstrating for the
analytically solvable case of a two-orbital system that the sum
of subsystem densities arising from mutually non-orthogonal
subsystem orbitals can exactly reproduce a supermolecular
KS-DFT density. The same has been shown, within numerical
accuracy, for a many-orbital atom when solving the KS-like
equations for the subsystems in the basis-set limit. For calculations
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in a finite basis set, we could show that a supermolecular density
can be approached closely by the sum of subsystem densities, with
the differences decreasing as the basis-set limit is approached.

However, for finite basis sets in which the products of basis
functions are indeed linearly independent, the arguments given
in ref. 21 and 22 do hold and external orthogonality is needed
to reproduce the supermolecular density exactly. Thus, the
minimization of the total energy functional E[p.] is performed
with respect to different spaces of possible densities in SDFT
and in KS-DFT. However, it is not clear which one will result in
the density that yields a lower total energy (and is thus closer to
the basis-set limit) if the nonadditive kinetic energy is evaluated
exactly. This question is complicated by the fact that in SDFT,
the subsystem densities of externally orthogonal subsystem
orbitals cannot be expected to be vsrepresentable.'®** Therefore,
the supermolecular KS-DFT ground state density will not be
accessible in SDFT, whereas the SDFT ground-state density might
not be accessible in KS-DFT.

Alternatively, one can, of course, use subsystem approaches
that are not based on a partitioning of the total density, but on
a partitioning of the KS orbital space.>® With such approaches,
supermolecular KS-DFT and subsystem calculations will result
in exactly the same density, even with finite basis sets. This can
be achieved by enforcing the external orthogonality of the
subsystem orbitals by using projection operators. It must be
noted that in this case the nonadditive kinetic energy vanishes,
and its contribution to the embedding potential is replaced by
the projection operator enforcing the external orthogonality.
Using both a projection operator and an (approximate) non-
additive kinetic-energy contribution in the embedding potential
will introduce additional errors because of double counting.**
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