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Non-adiabatic excited state molecular dynamics
of phenylene ethynylene dendrimer using a
multiconfigurational Ehrenfest approach

Sebastian Fernandez-Alberti,a Dmitry V. Makhov,*b Sergei Tretiakc and
Dmitrii V. Shalashilinb

Photoinduced dynamics of electronic and vibrational unidirectional energy transfer between meta-linked

building blocks in a phenylene ethynylene dendrimer is simulated using a multiconfigurational Ehrenfest

in time-dependent diabatic basis (MCE-TDDB) method, a new variant of the MCE approach developed

by us for dynamics involving multiple electronic states with numerous abrupt crossings. Excited-state

energies, gradients and non-adiabatic coupling terms needed for dynamics simulation are calculated

on-the-fly using the Collective Electron Oscillator (CEO) approach. A comparative analysis of our results

obtained using MCE-TDDB, the conventional Ehrenfest method and the surface-hopping approach with

and without decoherence corrections is presented.

I. Introduction

Dendrimers are highly branched conjugated macromolecules
that possess well-defined regular structures1 with numerous
peripheral groups, branched repeat units, and a core. Each
of these components acts as an individual chromophore
unit absorbing light in different characteristic ranges of the
spectrum.2 Their unique geometric and energetic properties3

have made them the subject of a wide variety of technological1,4

and academic studies.5 Dendrimers have many useful properties,
such as well-controlled synthesis,6 exceptional light-harvesting
capabilities over a broad region of the solar spectrum, and very
efficient energy funneling7 from the peripheral groups to the
core. The efficient and controllable unidirectional energy trans-
fer is associated with the p-conjugation of the regular arrays of
coupled chromophore units in the dendritic macromolecule.5b

The time evolution of electronic excitation in organic
conjugated materials, such as dendrimers, is determined by
non-adiabatic dynamics involving multiple coupled electronic
excited states. Following photoexcitation, the multiple photo-
induced pathways to electronic and vibrational relaxation involve
energy and/or charge transfer, internal conversion, and transition
density localization/delocalization. Different theoretical approaches
can deal with such photophysical processes.

A number of models, such as Pariser–Parr–Pople,8 Frenkel
exciton,9 and Frenkel–Holstein,10 have been used to describe
quasi one-dimensional conjugated systems. The real-time
Density Matrix Renormalization Group (DMRG)11 technique is
a powerful numerical method for studying these model systems.
In particular, PPE dendritic models can be described using
Frenkel exciton Hamiltonians12 with Coulombic coupling
between excitations localized on the linear units.13

In atomistic molecular dynamics simulations, surface
hopping has been proved to be an efficient method to accurately
deal with non-adiabatic processes in a large variety of systems.
Nevertheless, it presents certain shortcomings. First, electronic
decoherence effects are not accounted for in the standard
surface hopping algorithm resulting in a number of computa-
tional inconsistencies that have been addressed by implement-
ing a large variety of alternative decoherence corrections.14

The inadequate treatment of decoherence can, in many cases,
influence the accuracy of the simulated results. Moreover, there
is no clear and direct strategy to improve surface hopping
methods in order to introduce nuclear quantum effects such
as delocalization, interferences and tunneling.

Among the most accurate fully quantum methods is time-
dependent Hartree (MCTDH),15 which has been recently applied
to simulate exciton dynamics in extended conjugated polymers.16

However, this approach, in its original version, requires the
parameterization of potential energy surfaces. A useful alternative
is represented by a variety of methods relying on trajectory-
guided Gaussian basis functions (TBF). The main advantage
of these methods is that they can deal with direct or ab initio
molecular dynamics17 where excited state energies, gradients,
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and non-adiabatic coupling terms are evaluated on the fly,
simultaneously with the nuclear propagation. In a variational
multi-configuration Gaussian (vMCG)18 approach, the trajec-
tories for all TBFs are calculated together from the variational
principle. vMCG is similar in spirit to MCTDH and it is among
the most elegant methods of direct dynamics. However,
because of its complexity, on the fly vMCG so far has been
implemented only for a small number of basis Gaussians.

Another group of methods17d,19 applies TBFs moving along
classical trajectories. Despite that these methods are still
fully quantum because these trajectories are employed only
for propagating the basis, while the evolution of their ampli-
tudes and, thus, of the total wave-function is determined by the
time-dependent Schrödinger equation. The trajectories here are
calculated independently allowing for a large and well-sampled
basis. The methods involving branching, such as multiple
spawning17d,19a or multiple cloning19g algorithms can hardly
be used for dendrimers because the large number of electronic
states and intersections between them would lead to the
uncontrolled growth of the number of trajectories. But, on
the other hand, the same makes dendrimers and other large
conjugated molecules a nearly ideal object for Ehrenfest based
approaches,19b–f,20 where nuclear motion is defined by the
average field, and amplitudes for all electronic states are
propagated together with nuclear coordinates. In such systems,
a wave packet undergoes frequent transition between many
coupled electronic states, and as a result its motions can be
frequently well described by the Ehrenfest trajectory even on
long time scales.

In recent years we have been developing a group of methods
based on multicofigurational Ehrenfest ansatz for the total
wave function.19d–g The central idea is to use Gaussian wave-
packets guided by Ehrenfest average of the electronic states.
Several variations of this idea have been presented. Our original
version of ab initio MCE was using adiabatic electronic
states generated by the electronic structure. Here we suggest
a modification of the approach, which now has new features:
each Gaussian trajectory carries its own electronic basis, which
is adiabatic only in the center of the Gaussian. This is similar to
the approach described in the appendix in ref. 19g, except that
now we accurately take into account the overlaps between
electronic states belonging to different trajectories, instead of
assuming them to be Kronecker’s delta as in ref. 19g. This
modification makes the method applicable to large conjugated
molecules where electronic states can change significantly on
the length-scale of the Gaussian width. In particular, the wave
function can change instantly at trivial unavoided crossings
between two electronic states localized at remote parts of a
large molecule.21 To distinguish the new approach from the
previous work we term it as multiconfigurational Ehrenfest in
time-dependent diabatic basis (MCE-TDDB). We would like to
emphasize that ‘‘time-dependent diabatic basis’’ used here
should not be confused with ‘‘diabatic basis’’ commonly used
in many studies: the trajectories here are still calculated in
adiabatic basis, and the new representation affects only matrix
elements between different TBFs.

We use the proposed MCE-TDDB method to simulate
the excited state dynamics of the system composed of two-
and three-ring linear polyphenylene ethynylene (PPE) chromo-
phore units linked through meta-substitution as shown in
Fig. 1(a). These chromophore units correspond to the building
blocks of more complex phenylethynylperylene-terminated
dendrimers, such as the nanostar.5b,22 The meta-branching
localizes the electronic excited states within each linear frag-
ment, and the non-adiabatic coupling between linear frag-
ments are responsible for quantum transitions resulting in
the two-ring - three ring unidirectional electronic energy flow.
Thus, this system is a good model for analyzing intramolecular
electronic and vibrational energy transfer between chromo-
phore units subsequent to the photoexcitation of dendrimer
macromolecules.

We run the MCE-TDDB calculations in the basis of a swarm
of interacting coherent state trains,19g,23 which is the most
advanced basis for a given number of calculated trajectories.
The excited state energies,13b,24 gradients25 and non-adiabatic
coupling terms25a,26 needed to run the dynamics are calcu-
lated on the fly using the Collective Electron Oscillator (CEO)
method.5a,27 The results are compared with those given by
the canonical Ehrenfest approach (EHR) and by the NA-ESMD
(non-adiabatic excited-state molecular dynamics)25a,28 method.
The latter technique utilizes surface hopping guided by Tully’s
fewest-switches (FSSH) algorithm29 and was specifically devel-
oped to describe photoinduced dynamics in large organic
conjugated molecules. In particular, the NA-ESMD framework
has been extensively applied before to study the intramolecular
energy transfer in PPE dendrimers.30

The paper is organized as follows. In Sections II and III
we describe the MCE-TDDB method and computational details
of simulations performed on our model system. In Section IV
we present and discuss our results. Conclusions are given
in Section V.

Fig. 1 (a) Model dendritic molecule studied in this work. It involves
two- and three-ring linear poly(phenylene ethynylene) units linked by
meta-substitution. (b) Simulated absorption spectrum (solid line) showing
the contributions of different excited states.
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II. Theory
1. Working equations

Similar to the standard MCE approach, we represent the wave-
function on a trajectory-guided basis |cn(t)i:

CðtÞj i ¼
X
n

cnðtÞ cnðtÞj i: (1)

Here, basis functions |cn(t)i are composed of nuclear and
electronic parts:

cnðtÞj i ¼ wnðtÞj i
X
I

a
ðnÞ
I ðtÞ f

ðnÞ
I

��� E !
; (2)

where the electronic part is a superposition of several electronic
eigenstates |f(n)

I i, and the nuclear part |wn(t)i is a Gaussian
wave-packet moving along an Ehrenfest trajectory:

wnðR; tÞ ¼
2a
p

� �Ndof=4

� exp �a R� �RnðtÞð Þ2 þ i

�h
�PnðtÞ R� �RnðtÞð Þ þ i

�h
gnðtÞ

� �
:

(3)

Parameter a determines the width of the Gaussians, %Rn(t) and
%Pn(t) are the coordinate and momentum vectors of the n-th
basis function center, and gn is a phase.

The basis |f(n)
I ifor the electronic part of wave-function

can be specified in different ways. In the ab initio multiple
spawning method and in the original version of the ab initio
MCE approach, the electronic part is represented in the basis of
adiabatic eigenstates:

|f(n)
I i = |fI(r;R)i. (4)

However for large p-conjugated molecules, such as our model
system, the trajectories pass through a number of very sharp
intersections and trivial unavoided crossings.21 As a result,
the adiabatic representation (4) is not optimal here because
|fI(r;R)i can vary significantly at different points R on the
length scale of a single nuclear Gaussian basis function. Thus,
instead of using adiabatic eigenstates, in the MCE-TDDB approach
the electronic part of each basis function is represented in its
own diabatic basis composed of eigenstates for the center of
this particular Gaussian

|f(n)
I i = |fI(r; %Rn(t))i. (5)

In this representation, non-adiabatic coupling originates from
the time-dependence of the electronic basis |f(n)

I i, while for
adiabatic basis it is due to the parametric dependence of |f(n)

I i
on R. It was shown in ref. 19g that both these representations
lead to the same set of finale equations when the electronic wave
function does not depend too strongly on nuclear coordinates.
In this case the adiabatic electronic wave function (4) also
needs to be calculated only at the center of the nuclear basis
Gaussian, so in practice there is no difference between the two
versions (4) and (5) if electronic wave function is smooth and
changes slowly.

However, this is not a case for the system under consideration,
and a more rigorous approach must be developed. We will use
electronic wave functions (5) and will take into account that the
overlaps between the electronic eigenstates belonging to different
Gaussians hf(n)

I |f(m)
J i can be very far from Kronecker’s dIJ, even

when these Gaussians are sufficiently close to each other and
nuclear parts have a significant overlap.

The electronic overlaps hf(n)
I |f(m)

J i can be either calculated
directly or propagated together with the basis. The latter
approach is more convenient in this case, and the following
equation for the time-dependence of the overlap integrals
is used:

d

dt
fðmÞI

��� fðnÞJ

D E
¼ R

�
m rfðmÞI

��� fðnÞJ

D E
þ R
�
n fðmÞI

��� rfðnÞJ

D E

�R
�
m

X
K

rfðmÞI

��� fðmÞK

D E
fðmÞK

��� fðnÞJ

D E

þ R
�
n

X
K

fðmÞI

��� fðnÞK

D E
fðnÞK

��� rfðnÞJ

D E

¼ R
�
m

X
K

fðmÞK

��� fðnÞJ

D E
dKI ðRmÞ

þ R
�
n

X
K

fðmÞI

��� fðnÞK

D E
dKJ Rn

� �
(6)

Because summation in eqn (6) is limited to only a few lowest
electronic states for which non-adiabatic coupling matrix
elements dIJ are calculated, this method may slightly over-
estimate the electronic overlaps. Nevertheless, the accuracy of
this approach is compatible with the accuracy of other approxi-
mations made in this work. On the other hand, eqn (6) cannot
reproduce the state swaps for trivial unavoided crossings21

because the area of high coupling is extremely localized in this
case, much smaller than any reasonable computational step. In
order to take trivial unavoided crossings into account, at every
time step, we analyze the electronic overlaps calculated directly
between electronic wave-functions at times t and t � Dt, and
swap the states when such crossing takes place.

As before, the motion of the centers of Gaussians is determined
by the usual set of Hamilton’s equations

R
�
n ¼ M�1�Pn

P
�
n ¼ �Fn

(7)

while phase gn evolves as

dgn
dt
¼

�Pn R
�
n

2
: (8)

The force %Fn here is an Ehrenfest force that includes both usual
gradient terms and additional terms related to non-adiabatic
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derivative coupling:

�Fn ¼
X
I

a
ðnÞ
I

� ��
a
ðnÞ
I rRVI

�Rnð Þ

þ
X
I ;J

a
ðnÞ
I

� ��
a
ðnÞ
J dIL �Rnð Þ VI

�Rnð Þ � VJ
�Rnð Þð Þ;

(9)

where VI( %Rn) is the Ith potential energy surface and dIJ( %Rn) =
hfI|rR|fJi is the non-adiabatic coupling matrix element
(NACME).

Also similar to our previous studies,19f,g the evolution of the
Ehrenfest amplitudes a(n)

I is determined by the equation

_a
ðnÞ
I ¼ �

i

�h
VI

�Rnð ÞaðnÞI �
X
J

R
�
n � dIJ �Rnð ÞaðnÞJ : (10)

Similar to eqn (6) for electronic overlaps, eqn (10) cannot
reproduce the amplitude swaps for trivial unavoided crossings,21

and the amplitudes a(n)
I are swapped directly when such crossing

is identified. Eqn (7)–(10) form a complete set of expressions
determining the evolution of the time-dependent basis |cn(t)i.

The above eqn (7)–(10) describe the evolution of the basis
functions (2). Let us now consider the evolution of the whole
wave-function (1) in the above-defined basis (2). Substituting
eqn (1) into the time-dependent Schrodinger equation and
taking into account non-orthogonality of the basis, we get

X
n

cmðtÞ jcnðtÞh i _cnðtÞ¼�
i

�h

X
n

Hmn� i�h cmðtÞh j d
dt

cnðtÞj i
� �

cnðtÞ;

(11)

where

Hmn ¼
X
J;I

a
ðmÞ
J

� ��
a
ðnÞ
I wmf

ðnÞ
J

D ��� T̂ þ V̂
� �

wnf
ðnÞ
I

��� E
: (12)

Note that overlaps in eqn (11) include both nuclear part and
electronic parts:

cmðtÞ j cnðtÞh i ¼ wm j wnh i
X
I ;J

a
ðmÞ
I

� ��
a
ðnÞ
J fðmÞI

��� fðnÞJ

D E
: (13)

Because the electronic part of the wave-function does not
depend on R, the expression for the kinetic energy matrix
elements is straightforward:

wmf
ðmÞ
I

D ���T̂ wnf
ðnÞ
J

��� E
¼ wmh j �

�h2

2
rRM

�1rR wnj i fðmÞI

��� fðnÞJ

D E
:

(14)

For the potential energy matrix elements we have to use an
approximation. First, we write

wmf
ðmÞ
I

D ���V̂ðRÞ wnfðnÞJ

��� E

�
X
K

wmh j fðmÞI

��� jðRÞK

D E
VKðRÞ fðRÞK

��� fðnÞJ

D E
wnj i;

(15)

where |f(R)
K i are electronic eigenfunctions in the point R. Then,

using first-order bra-ket averaged Taylor expansion proposed in

ref. 19g, we approximate integral (15) as

wmf
ðmÞ
I

D ���V̂ðRÞ wnfðnÞJ

��� E

� 1

2
wmh j
X
K

fðmÞI

��� fðmÞK

D E
VK Rmð Þ fðmÞK

��� fðnÞJ

D En

þ R� Rmð ÞrR fðmÞI

��� fðRÞK

D E
VK ðRÞ fðRÞK

��� fðnÞJ

D E���
R¼Rm

þ fðmÞI

��� fðnÞK

D E
VK Rnð Þ fðnÞK

��� fðnÞJ

D E

þ R� Rnð ÞrR fðmÞI

��� fðRÞK

D E
VK ðRÞ fðRÞK

��� fðnÞJ

D E���
R¼Rn

	
wnj i

� 1

2
fðmÞI

��� fðnÞJ

D E
wm j wnh i VI Rmð Þ þ VJ Rnð Þ½ �f

þ wmh j R� Rmð Þ � rRVI Rmð Þ þ R� Rnð Þ � rRVJ Rnð Þ� wnj ig½
(16)

The term hcm(t)|d/dt|cn(t)i in eqn (11), which originates
from the time dependence of the basis, can be written as

cm

���� dcn

dt


 �
¼ wm

���� dwndt


 �X
I ;J

fðmÞI

��� fðnÞJ

D E
a
ðmÞ
I

� ��
a
ðnÞ
J

þ wm j wnh i
X
I ;J

fðmÞI

��� fðnÞJ

D E
a
ðmÞ
I

� ��
_a
ðnÞ
J

þ wm j wnh i
X
I ;J

fðmÞI

����� df
ðnÞ
J

dt

* +
a
ðmÞ
I

� ��
a
ðnÞ
J

(17)

where

wm

���� dwndt


 �
¼ R

�
n wmh j

d

d�Rn

wnj i þ P
�
n wmh j

d

d�Pn

wnj i
� �

þ i

�h
_gn wm j wnh i;

(18)

and

fðmÞI

����� df
ðnÞ
J

dt

* +
¼ R
�
n fðmÞI

d

d�Rn

����
����fðnÞJ


 �
: (19)

Similar to the case for the potential energy matrix elements
above, we write

fðmÞI

d

d�Rn

����
����fðnÞJ


 �
�
X
K

fðmÞI

��� fðnÞK

D E
fðnÞK

d

d�Rn

����
����fðnÞJ


 �

¼
X
K

fðmÞI

��� fðnÞK

D E
dKJ �Rnð Þ:

(20)

Finally, we substitute eqn (10), (19) and (20) into (17). It is easy
to see that the terms of eqn (20) cancel out the off-diagonal
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terms of eqn (10). Thus, we obtain

cm

���� dcn

dt


 �
¼ wm

���� dwndt


 �X
I ;J

fðmÞI

��� fðnÞJ

D E
a
ðmÞ
I

� ��
a
ðnÞ
J

� i

�h
wm j wnh i

X
I ;J

fðmÞI

��� fðnÞJ

D E
a
ðmÞ
I

� ��
a
ðnÞ
J VJ

�Rnð Þ

(21)

Eqn (6), (11)–(14), (16), (18) and (21) form a complete set for
calculating time evolution of the amplitudes cn(t). This set of
equations is similar to those used in ref. 19f; the difference is in
overlaps and their time derivatives which include here not only
nuclear but also electronic parts. The integrals for the Gaussian
functions entering eqn (14) and (18) can be calculated analytically
and are readily available, e.g., in ref. 19g.

2. Population analysis

Population analysis is not trivial for the MCE-TDDB calcula-
tions when electronic states change very quickly because
the order of electronic states can be different for different
basis functions. Let us introduce the adiabatic population
operator

P̂K(R) = |f(R)
K ihf(R)

K |, (22)

where, as before, |f(R)
K i are electronic eigenfunctions in the point

R. Then, the electronic state populations can be expressed as

PK ¼ C P̂K

�� ��C� 

¼
X
m;n

cm
�cn
X
I ;J

a
ðmÞ
I

� ��
a
ðnÞ
J wmh j f

ðmÞ
I

��� fðRÞK

D E
fðRÞK

��� fðnÞJ

D E
wnj i:

(23)

Using the same approximation as for the potential energy
matrix elements, we write

wmh j fðmÞI

��� fðRÞK

D E
fðRÞK

��� fðnÞJ

D E
wnj i

� 1

2
wmh j f

ðmÞ
I

��� fðmÞK

D E
fðmÞK

��� fðnÞJ

D E
wnj i

n

þ wmh j f
ðmÞ
I

��� fðnÞK

D E
fðnÞK

��� fðnÞJ

D E
wnj i
o

¼ 1

2
wm j wnh i fðmÞK

��� fðnÞJ

D E
dIK þ fðmÞI

��� fðnÞK

D E
dJK

n o
(24)

Substituting (24) into (23), we get

PK ¼
1

2

X
m;n

cm
�cn wm j wnh i

�
X
I ;J

a
ðmÞ
I

� ��
a
ðnÞ
J fðmÞK

��� fðnÞJ

D E
dIK þ fðmÞI

��� fðnÞK

D E
dJK

n o
;

(25)

or, simplifying,

PK ¼ Re
X
m;n

cm
�cn wm j wnh i a

ðmÞ
K

� ��X
I

a
ðnÞ
I fðmÞK

��� fðnÞI

D E( )
:

(26)

A similar approach can be applied for calculations of
any other electronic properties, such as electronic transition
density matrices reflecting spatial extent of the respective
many-body electronic wave-functions. If the quantity is described
by a quantum operator N̂, then

N̂
� 


¼
X
m;n

cm
�cn
X
I ;J

a
ðmÞ
I

� ��
a
ðnÞ
J wmh j fðmÞI

D ���N̂ fðnÞJ

��� E
wnj i

�
X
m;n

cm
�cn

X
I ;J;K ;L

a
ðmÞ
I

� ��
a
ðnÞ
J wmh j f

ðmÞ
I

��� fðRÞK

D E

� fðRÞK

D ���N̂ fðRÞL

��� E
fðRÞL

��� fðnÞJ

D E
wnj i:

(27)

Using the same approximation as in (24)–(26) and assuming
that N̂ is real and depends only on the electronic degrees of
freedom, we obtain

N̂
� 


¼ Re
X
m;n

cm
�cn wm j wnh i

X
I ;J;K

a
ðmÞ
I

� ��
a
ðnÞ
J fðmÞK

��� fðnÞJ

D E
N
ðmÞ
IK

( )
;

(28)

where

N(m)
IK = hf(m)

I |N̂|f(m)
K i (29)

are matrix elements of N̂ between eigenstates for the center of
mth Gaussian and, thus, are readily available from the electronic
structure data for the trajectories.

3. Basis improvement – coherent state trains

The finite size of the basis set is the most serious limitation of
the MCE and related methods, such as MS, vMCG, etc. In order
to increase the size of the basis, we apply coherent state train
basis sets (TBS),19g,23 where several Gaussian basis functions
are moving along the same Ehrenfest trajectory but with a time-
shift Dt. The most expensive part of ab initio molecular
dynamics is the electronic structure calculations (energies,
gradients, and NACMEs), and the computational cost can be
greatly economized by using TBS because all basis functions
in the train follow the same trajectory and, thus, repeatedly
use the same electronic structure data. This trick allows us to
increase the size of the basis by an order of magnitude
practically without any additional computational cost. Fig. 2
summarizes the basis sampling ideas which were used in the
current work.

4. NA-ESMD framework

In this work we compare the results of our approach with those
of the NA-ESMD25a,28 method. The NA-ESMD framework is based
on the fewest switches surface hopping (FSSH) algorithm,29

which utilizes the same mixed electronic states as in the
Ehrenfest basis functions (2), and where amplitudes a(n)

I are
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also propagated according to the same eqn (10). The difference
is that the nuclear motion in the FSSH approach is guided not
by the average force but by the gradient of one ‘‘current’’
potential energy surface at any given time. The hops from
one ‘‘current’’ state to another are based on the non-adiabatic
coupling strengths and a stochastic switching routine. The
probability of a switch at a particular time-step is related to
the transition flux between the ‘‘current’’ and other electronic
states (see eqn (10)):

gIJ ¼ Dt
�Re R

�
�dIJaI�aJ

� �
aI�aI

: (30)

An additional numerical procedure is used in the NA-ESMD
algorithm to deal with trivial unavoided crossings,21 as described
in Section II-1.

The FSSH algorithm implemented in NA-ESMD simulations
is designed to ensure the internal consistency between the
so-called classical populations and the quantum populations.
The classical populations are defined as a fraction of trajectories
evolving on each potential energy surface:

PCl
I (t) = NI(t)/Ntraj, (31)

where NI(t) is the number of trajectories with ‘‘current’’ state I
at any given time, and Ntraj is the total number of trajectories in
the ensemble. The quantum populations are given by the share
of each state in the mixed configuration averaged over the
ensemble of trajectories:

PQ
I (t) = h|aI(t)|

2iNtraj
, (32)

where aI(t) is the quantum amplitude of the Ith electronic
state. However, in many cases a significant difference can be
observed between PCl

I (t) and PQ
I (t).14a–c This disagreement is

mainly caused by classically forbidden transitions (when nuclear
kinetic energy is insufficient to conserve the total energy during
the hops) and by the divergence of independent trajectories
following passage through a region of strong coupling. Despite
the fact that PCl

I (t) is the most frequently choice for electronic
population analysis in surface hopping methods, in the present
work we also analyze PQ

I (t) since they are more directly related
to the electronic populations calculated using MCE-TDDB
and EHR methods.

Empirical corrections can be introduced to account for
electronic decoherence.14 Following extensive numerical tests,14a

we adopt the instantaneous decoherence (ID) approach, performed
by resetting the quantum amplitude of the current state to
unity after every attempted hop (regardless of whether hops are
allowed or forbidden), thus removing the coherence of the
quantum coefficients. This approach is based on the assump-
tion that wavepackets traveling on different surfaces should
immediately separate in the phase space and evolve indepen-
dently. It has been previously shown14a that ID improves FSSH
internal consistency between classical and quantum systems
while at the same time provides results that do not depend on
external parameters and maintains physical relevance.

III. Computational details

We have simulated the photoexcitation and intramolecular
energy transfer between m-branched PPE units on the model
molecule depicted in Fig. 1(a). Excited state energies, gradients
and non-adiabatic couplings are calculated on the fly using the
CEO approach.5a,27 For all simulations presented here, we use
the Austin Model 1 (AM1)31 semiempirical level in combination
with the configuration interaction singles (CIS) formalism to
describe correlated excited states. This approach has worked
well in our previous studies of similar systems.30

The accuracy of excited-state energies in the AM1/CIS
approximation has been benchmarked for a large variety of
conjugated molecules,32 such as PPV33 and polyfluorenes.34

In the particular case of our model PPE dendritic molecule
(shown at the Fig. 1(a)), vertical excitation energies for the
two lowest excited states calculated at the AM1/CIS level for an
AM1-optimized structure have been compared with the results
obtained using TDDFT (B3LYP/6-31G* model) as well as with
the experimental results,30,35 and a reasonable agreement has
been achieved. More details about the benchmark calculations
by SCS-AD(2), TDHF, TDDFT methods can be found in ref. 36,
where the mechanism of intramolecular energy transfer
suggested by NA-ESMD simulations at the AM1/CIS level30

has been confirmed.
The evaluation of the accuracy of NACME calculations is a

more difficult task for any electronic structure method, because
direct experimental measurements of NACME are absent.
NACME can only be evaluated indirectly from electron–phonon
coupling elements and Frank–Condon overlaps. Such an
evaluation suggests reasonable accuracy of NACME calculated
by AM1/CIS for excited state potential energy surfaces in

Fig. 2 The basis sampling. (A) – a single Ehrenfest configuration; (B) – a
swarm of trajectories; (C) a swarm of coherent state trains. The principle
basis function is shown in orange.
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conjugated hydrocarbons.33 Moreover, semi-quantitative direct
comparisons of non-radiative relaxation rates calculated using
our NA-ESMD approach and experimental time-resolved tran-
sient spectroscopy data37 supports the conclusions of ref. 33.
Also, both AM1/CIS calculations38 and TDDFT36 show that the major
contribution to d12( %Rn) comes from the ethynylene stretches, which
represent the reactive coordinates of the energy transfer process.

Six singlet electronic states (S1–S6) and their corresponding
non-adiabatic couplings have been included in the simulations.
The excited-state trajectories of 150 fs duration are propagated at
constant energy in order to obtain a reasonable statistics. Time
steps of 0.5 fs and 0.02 fs have been used in the ground and
excited state dynamics, respectively. The Verlet finite difference
algorithm39 is used to integrate the nuclear equations of motion,
while the electronic coefficients are propagated using the Runge–
Kutta–Verner fifth- and sixth-order method based on the code
designed by Hull, Enright, and Jackson.40

In order to generate the initial conditions for excited-state
dynamics, 1 ns of ground state molecular dynamics at 300 K
was first performed using a Langevin friction coefficient g of
2.0 ps�1. Snapshots of nuclei positions and momenta (confor-
mational phase space) have been collected and used as initial
conditions for subsequent photoexcitation dynamics modeling.
The excited-state trajectories have been started from these
initial configurations by instantaneously promoting the system
to the state I selected according to a Frank–Condon window:

gI(R) = fI exp[�T2(Olaser � OI(R))2], (33)

where Olaser is the frequency of the laser pulse, OI(R) and fI are the
transition energy and normalized oscillator strength of the Ith
excited state. The pulse is centered at 348 nm (the maximum of
the absorption spectrum for the state S2) and assumed to have a
Gaussian shape f (t) p exp(�t2/2T2) with T = 42.5 fs corresponding
to a FWHM (Full Width at Half Maximum) of 100 fs.

In order to make the comparison consistent, the same set of
initial positions, momenta and excited-state populations have
been used both for principle trajectories in Ehrenfest dynamics
and for NA-ESMD surface hopping. Equations of motions were
integrated with the same time step, and at the same level of
electronic structure theory.

We performed the MCE-TDDB simulations for 100 trajectory
swarms. Each swarm consists of 10 trajectories: the principle
one and 9 satellites. This procedure is similar to the one used
previously in model calculation,19d where first the initial wave
packet created in the excited state after absorbing a photon was
split into ‘‘bits’’ and then each ‘‘bit’’ was propagated separately
on using a swarm of Ehrenfest configurations.

The initial conditions for the principle trajectories were
generated as described above. The initial conditions for the
satellites were taken23 very close to those for the principle
trajectory with a random shifts DR and DP generated according
to the Gaussian distribution

FðDR;DPÞ / exp �b a DRj j2 þ 1

4�h2a

� �
DPj j2

� �� �
; (34)

where b = 1000 is a compression parameter. At this value of b,
the initial overlap between the principle and satellite trajec-
tories in the swarm is about 0.93. Although this overlaps decays
as dynamics run, Fig. 3 shows that this decay is sufficiently slow
for our model system: at 150 fs time, the average overlap is
still about 0.2, ensuring that quantum coupling between the
trajectories in the swarm is present throughout our simulation
time. The values of parameter a, which determines the width of
the basis functions eqn (3), were taken according to the average
tested parameters determined for hydrogen and carbon atoms
by Martinez et al.41

For each trajectory in a swarm, we use a coherent state train
basis of 11 basis functions. Thus each ‘‘bit’’ was propagated on
the basis of 10 � 11 = 110 TBFs in total. A half of additional
TBFs in the train are placed before and a half – after the main
TBF with a time-shift of 0.6 fs, which provide the overlap of
B0.7 between the nearest basis functions in the train. In order
to avoid the necessity of backward propagation, the train basis
was applied only after 3 fs of dynamics, when there was enough
trajectory length to accommodate the tail half of the train; for
first 3 fs, calculations were run in the basis of just 10 TBFs.

All the trajectories were calculated independently. Subse-
quently, the amplitudes cn(t) for all configurations in the
basis were propagated using eqn (11) in a ‘‘post-processing’’
procedure.19g This makes the numerical procedure particularly
efficient because a very large number of trajectories can be
calculated in parallel. Although the total CPU time can reach
years, most of it is spent on calculating trajectories using our
ab initio on the fly procedure described by eqn (7)–(10) above.
Quantum equations for the amplitudes use approximations
(16) and (20), which allow to calculate coupling matrix elements
in eqn (11) on the basis of the information already available
from the calculation of the Ehrenfest trajectories. This ‘‘post-
processing’’ technique is the central advantage of the group of
methods based on our MCE methodology developed by us. The
sampling techniques used in this work were tested on model
systems, and it was demonstrated that the MCE can reproduce
accurately fully quantum benchmark calculations.42 Thus,
MCE-TDDB and related methods19f,g represent a very efficient
ab initio direct dynamics methodology.

Fig. 3 The decay of the absolute value of the average overlap between
the principle and satellite trajectories in a swarm for MCE-TDDB
calculations.
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The results of ab initio MCE-TDDB calculations were com-
pared with those given by the standard Ehrenfest (EHR) and the
NA-ESMD surface hopping methods. The EHR results were
obtained from the same trajectories as in the MCE-TDDB, but
only the principle trajectory in each swarm was taken into
account, and the populations and transition densities for these
principle trajectories were simply averaged over the ensemble.
The NA-ESMD surface hopping calculations28,29b,c were performed
for a set of 100 excited-state trajectories with the same initial
conditions as for principle trajectories in MCE-TDDB calculations.
Simulations were also performed using the instantaneous
decoherence corrections. More details about these kinds of
simulations can be found elsewhere.14a

IV. Results

We have simulated the ultrafast intramolecular energy transfer
that takes place after photoexcitation in the model branched
dendritic molecule depicted in Fig. 1(a). This figure also shows
the simulated absorption spectrum, in which the two largest
contributions with the maxima at 378 nm (3.28 eV) and 348 nm
(3.56 eV) come from S1 and S2 states corresponding to the
excitation localized on two- and three-rings units respectively.
There is no direct measurement of the absorption spectrum for
this particular molecule. However, our calculated energies for
S1 and S2 are in reasonable agreement with the values of 3.52 eV
and 4.0 eV observed35 in a larger molecule, the so-called
nanostar, for the corresponding electronic states, which are
also localized at the same two- and three-ring units.

The initial excited states are populated using a Frank–Condon
window defined by a Gaussian shaped laser centered at 348 nm,
which corresponds to the maximum of the contribution of the S2

state. Fig. 4 presents the average populations of the lowest four
electronic states as a function of time calculated using the NA-
ESMD (a, b), MCE-TDDB (c), EHR (d) methods. For NA-ESMD,
both classical PCl

I (t) and quantum PQ
I (t) populations are presented.

One can see that there is a significant difference between these
two populations, which indicates that the so-called internal
consistency requirement is violated here.

The dependencies for MCE-TDDB and EHR are very close to
each other, except that MCE-TDDB, which relies on swarms and
trains basis sets, produces slightly smother curves. On the one
hand, this may be an indication that the Ehrenfest approach
works really well for large complex systems with a singular
photoproduct, such as PPE dendrimers. On the other hand,
we know from our previous experience with model systems
that using swarm/train basis in combination with trajectory
branching (e.g., via cloning procedure19g) can further improve
the convergence of the results and provide even quantitative
agreement with multidimensional benchmark calculations.
Cloning could introduce additional decoherence allowing basis
functions for different electronic states to run away from each
other. Such approaches, however, are very expensive for on the
fly use, especially in the case of large molecules with many
coupled electronic states, as a rapidly growing number of

trajectories would require a huge amount of electronic struc-
ture calculations. We do not expect branching to change the
result dramatically, but working on implementing even larger
basis sets to prove that. Presented here MCE-TDDB technique
provides a promising starting point for future developments of
methods incorporating fully-quantum vibronic dynamics.

All population dependencies presented in Fig. 4 are similar
qualitatively. In particular, one can see a noticeable oscillatory
interchange of electronic populations between S1 and S2 states
during the first 20 fs of dynamics after photoexcitation. The
amplitude of the interchange between these states is revealed
to be larger for Ehrenfest approaches with respect to surface
hopping simulations. In all cases the ultrafast non-radiative
decay of the electronic population on S2 takes place, and by the
time of 150 fs the S1 population becomes significantly higher
compared to its initial value. One can see that at the end of
our excited-state dynamics, the S1 population given by the
MCE-TDDB and EHR methods lies in between the classical
and quantum populations PCl

I and PQ
I given by the NA-ESMD.

In order to gain insight into the origin of the main differences
between surface hopping and Ehrenfest approaches, we have
performed the NA-ESMD simulations using decoherence correc-
tions. The importance of incorporating decoherence schemes in
the NA-ESMD simulations applied to large extended conjugated
molecules have been previously demonstrated.14a Decoherence
has a large effect on the accuracy of the simulated dynamics
both in terms of time scales for nonradiative relaxation
and in promoting internal consistency of the FSSH algorithm.

Fig. 4 Average populations of the different electronic states as a function
of time obtained from (a) NA-ESMD (classical populations), (b) NA-ESMD
(quantum populations), (c) EHR, and (d) MCE-TDDB simulations.
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Fig. 5 shows the time-dependence of the average quantum
populations of different electronic states for these NA-ESMD
simulations using decoherence corrections. We observe that
the oscillatory interchange of electronic populations between S1

and S2 (see Fig. 4) is damped in these simulations. This is
expected because periodic collapses of the electronic wave-
function to a single state eliminate the interference between
these two states. After that, the population of the S1 state
increases faster compared to quantum populations given by
other approaches.

On the one hand, decoherence is not accounted for in the
standard FSSH simulations, leading to internal inconsistencies
of the method.14a,c,n On the other hand, instantaneous deco-
herence assumes that the divergent wavepackets are immedi-
ately decoupled. According to the results shown in Fig. 4 and 5,
the Ehrenfest approach data fall in between quantum popula-
tions given by the NA-ESMD simulations with and without
decoherence corrections. The possible explanation is that the
Ehrenfest force depends on the amplitudes of all electronic
states taken into account, including sufficiently low populated
higher-energy states. Then, continuous population changes due
to numerous intersections between a fairly large number of
electronic states lead to weak quasi-random fluctuations of
Ehrenfest force, which provide natural decoherence. This does
not happen in the surface hopping approach where the force is
usually determined by a single occupied adiabatic state, and
the hops are not frequent and mostly reflect only significant
population changes.

The CEO approach43 calculates the many-body eigenstates
by diagonalizing the respective tetradic CIS operator in the mole-
cular orbital (MO) basis. These CIS eigenstates are represented in
the form of Nocc � Nvirt matrices (where occ and virt refer to
occupied and virtual MOs), which can be transferred to the original
atomic orbital (AO) basis. The resulting quantities are frequently
denoted as transition density matrices (or electronic normal
modes) and can be formally written as (rI)mn 	 hfg|cm

+cn|fIi,
where |fgi and |fIi are the many-electron wave-functions for
the ground and Ith excited states, and cm

+ and cn are the
electron creation and annihilation operators with indices n
and m referring to the AO basis functions. Notably, owing
to a unitary transformation between AO and MO basis and
an orthogonality of all AO in the AM1/CIS approach, the

normalization condition
P
n;m

rIð Þnm2 ¼ 124b,25a is maintained.44

Matrix elements of the transition density matrices are subject
to a straightforward interpretation: the diagonal elements of
(rI)nn reflect45 light-induced changes in an orbital n due to
promotion of the molecule to the Ith excited state defining its
transition dipole moment (the expectation value of the dipole
operator on the transition density matrix) and, subsequently,
an oscillator strength fI. In contrast, the off-diagonal elements
of (rI)nm reflect probability amplitudes of electron transfer
between orbitals n and m, describing the optically induced
electronic coherences and charge-transfer phenomena. Overall,
the transition density matrices directly and compactly reflect
the properties of many-body wave-functions even beyond the
CIS framework. Subsequently, these are convenient quantities
to analyze photoinduced spatial electronic/excitonic delocaliza-
tion, charge-transfer, etc.13b

In order to obtain the fraction of the transition density
localized either on the two-ring or the three-ring linear PPE
units, we sum up the atomic contributions belonging to each
fragment as

rI
� �

X�ring
2 ¼

X
n;m2X�ring

rI
� �

nm
2 � 1

2

X
n;m2B�ring

rI
� �

nm
2 (35)

where X-ring (X = 2, 3) is either two- or three-ring linear PPE
unit, and B-ring refers to the ring in between that is shared by
both units.

Fig. 6 shows localization of the electronic transition density
of the four lowest electronic states at the minimum of the
ground state potential energy surface. One can see that S1

and S2 states are mainly localized on the three-ring and two-
ring units, respectively. This means that the dendritic PPE
molecule can be represented as an ensemble of weakly coupled
linear chromophore units,30c and the absorption spectra shown
in Fig. 1(b) are approximately a sum of the absorption of three-
ring and two-ring units:2,27a,b,46 the peak at 376 nm corre-
sponds to the absorption of three-ring unit (S1 state), and the
shoulder around 348 nm is due to the additional contribution of
the two-ring unit (S2 state). Therefore, the excitation at our laser
wavelength of 348 nm corresponds to an initial localization of the
electronic transition density almost equally distributed between
the two-ring and three-ring units. The electronic transition
density of higher energy excited-states (S3 and S4) is qualitatively

Fig. 5 Average populations of different electronic states as a function of
time obtained from NA-ESMD (quantum populations) using decoherence
corrections. The colours refer to the same states as in Fig. 4.

Fig. 6 Initial localization of the electronic transition densities for the four
lowest excited states.
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different from that of S1 and S2 states: it is delocalized over both
two- and three-ring fragments for S3, and strongly localized for
the S4 state.

Nuclear motion mixes electronic states providing ultrafast
energy transfer between the photoactive units. Fig. 7 compares
the time-dependencies of the average transition density frac-
tions localized on the two- and three-ring linear PPE units
((rI)X-ring

2) given by MCE-TDDB and NA-ESMD approaches. Note
that the NA-ESMD density is calculated by averaging those of the
‘‘current’’ electronic state for all trajectories in the ensemble,
similar to eqn (31) for classical electronic populations. The time-
dependencies of transition densities are consistent with our
results for the electronic populations (see Fig. 4(a) and (c)): the
NA-ESMD approach shows more efficient energy migration
toward the three-ring unit, as well as more efficient relaxation
from S2 to the lowest state S1 associated with this transfer.

It was shown previously that the electronic energy transfer is
concomitant to the intramolecular vibrational energy redistribu-
tion, and the nuclear motions in the direction of the ethynylene
bonds is playing a critical role in the process.30b Fig. 8 compares
the distributions of the two-ring ethynylene bond length in the
ground state and at S2–S1 crossing, defined as hop points for
surface-hopping trajectories and as points with high NACMEs
for Ehrenfest trajectories. Both types of calculations show that,

in agreement with previous results,30b S2–S1 crossing is asso-
ciated with ethynylene bond stretching in the two-ring part of
the molecule.

In Fig. 9, we plot the ethynylene bond lengths for both two-
and three-ring units as a function of time. Accompanying the
initial excitation of S2, this bond of the two-ring unit is initially
excited. After that, its excitation relaxes together with the ultra-
fast decay of the S2 electronic population (Fig. 4). In contrast, the
ethynylene bond of the three-ring unit becomes excited increas-
ing its average amplitude of motion.

The difference in the amplitude of motion for the ethynylene
bonds given by different approaches is consistent with our
other results. At early times of the dynamics (B20 fs), the
amplitude of motion of the ethynylene bond of the two-ring
unit is larger for Ehrenfest than that for surface hopping
simulation. This time corresponds to the time at which the
oscillatory interchange of electronic populations between S1

and S2 states takes place (see Fig. 4). At longer times, we observe
the reduction of the average vibrational amplitudes. This decay
is faster for the Ehrenfest trajectories where the nuclear motion
is coupled with amplitudes a(n)

I for all electronic states provid-
ing better vibrational energy redistribution through continuous
partial electronic transitions between many states.

Fig. 8a indicates that the ethynylene bond of the two ring unit
behaves differently for NA-ESMD and the Ehrenfest approach. The
non-adiabatic contribution to the Ehrenfest force %Fn (eqn (9)),
not present in NA-ESMD simulations, introduces additional
vibrational coherence at earlier times of simulations in the
regions with large d12( %Rn) values. At later times, the Ehrenfest
force dependence on the continuous low population changes
among higher-energy states seems to result in quasi-random
fluctuations that lead to vibrational decoherence. The same
additional vibrational coherence is responsible for higher
amplitude of the oscillation of the electronic population, which
both Ehrenfest and MCE-TDDB reveal as shown in Fig. 4.

Fig. 7 Fraction of the transition density localized in the two- and three-
ring linear PPE units as a function of time obtained from NA-ESMD (solid)
and MCE-TDDB (dashed) simulations.

Fig. 8 The probability distribution for the length of the ethynylene bond
of the two-ring unit (labeled X in the inset) in the ground state (black), and
at S2–S1 crossing: the moments of effective hops in surface hopping
dynamics (red), and moments of strong non-adiabatic coupling (greater
than 0.02 Hartree) in Ehrenfest dynamics (green).

Fig. 9 Length of particular ethynylene bonds (labeled X in the insets) as a
function of time obtained from averaged NA-ESMD (solid) and Ehrenfest
(dashed) simulations.
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This is consistent with the results of ref. 30, where a strong
coupling between S1 and S2 states was shown to exist only
during first 15–20 fs after photoexcitation.

V. Conclusion

In this study we report further development and a new imple-
mentation of the ab initio MCE approach suggested previously,
to model excited state dynamics of realistic molecular systems
beyond the Born–Oppenheimer approximation. The method
treats nuclear wave packet dynamics at a fully quantum level,
while the electronic structure can be described by a variety of
high accuracy ab initio methods. The approach is formally exact
and physical observables can be calculated unambiguously
without additional assumptions. Previously, the method has
been validated only on the model and more simple systems
reproducing benchmark results accurately.

The proposed ab initio MCE-TDDB approach is very efficient
for large conjugated molecules, such as dendrimers, where the
dynamics involving many continuously interacting electronic
states, is well described by mean-field Ehrenfest trajectories.
Although even larger basis sets with branching trajectories can
be introduced, such calculations would be extremely expensive
and unlikely to produce significantly different results.

As an application, here we simulate the exited state dynamics
for a dendrimer molecule composed of two- and three-ring PPE
chromophore units following laser pulse excitation at 348 nm.
Our ab initio MCE-TDDB results are compared with those of
surface hoping. Our calculations show that for dynamics involving a
large number of electronic states, the approaches based on Ehrenfest
trajectories naturally account for decoherence phenomena.
Thus, our MCE-TDDB calculations validate decoherence correc-
tions, previously introduced to the surface hoping technique in
an ad hoc fashion.

Altogether, this makes Ehrenfest-based techniques, such as pre-
sented here MCE-TDDB, a method of choice for on the fly simula-
tions of the excitation dynamics in large photoactive molecules.
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