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Director orientations in lyotropic liquid crystals:
diffusion MRI mapping of the Saupe order tensor

Daniel Topgaard

The macroscopic physical properties of a liquid crystalline material depend on both the properties of the

individual crystallites and the details of their spatial arrangement. We propose a diffusion MRI method to

estimate the director orientations of a lyotropic liquid crystal as a spatially resolved field of Saupe order

tensors. The method relies on varying the shape of the diffusion-encoding tensor to disentangle the effects

of voxel-scale director orientational order and the local diffusion anisotropy of the solvent. Proof-of-concept

experiments are performed on water in lamellar and reverse hexagonal liquid crystalline systems with intricate

patterns of director orientations.

Introduction

Anisotropic assemblies of amphiphilic molecules in aqueous
media occur in a wide range of materials: from lyotropic liquid
crystals1–3 to brain tissue.4 Locally, the amphiphiles have a
preferred orientation with respect to a unit vector known as the
director,5 and a liquid crystalline domain can be defined as a
region of space in which the director has a constant orienta-
tion. Material properties, such as optical birefringence, electri-
cal conductivity, and molecular diffusivity, are determined by
the local properties within a single domain as well as the spatial
pattern of director orientations, the latter being possible to
influence by temperature cycling, shear, magnetic fields, or the
presence of solid surfaces.6–27 For technical applications of
liquid crystals in drug delivery28,29 or templating of inorganic
materials,30,31 it is desirable to control the domain sizes and
orientations.

The orientational order of an ensemble of unit vectors is
often expressed as the Saupe order tensor S with elements
Sij defined by5,32–34

Sij ¼
1

2
3lilj � kij
� �

; (1)

where i,j A {x,y,z}, h�i denotes an ensemble average, kij is the
Kronecker delta, and li are the directional cosines of the vectors
in the lab frame xyz. The order tensor contains five indepen-
dent elements and is often parameterized with the principal
order parameter SZZ, the asymmetry parameter Z, and three
Euler angles describing the orientation of the principal axis
system XYZ with respect to the lab frame. In the Landau–de
Gennes theory of nematic liquid crystals,5,34 and its extension

to lyotropic nematic liquid crystals,35,36 the free energy density
at the position r is determined by the local order tensor S(r).
Hence, the results of mean-field calculations of the structure of
liquid crystals are often visualized as spatially resolved fields
of order tensors.37–39 An experimental method capable of
mapping such tensor fields would enable critical testing of
the results of theoretical calculations and allow for detailed
characterization of liquid crystals for technical applications.

The structure of a lyotropic liquid crystal is imprinted in the
orientational order and translational diffusion of the water
located in the nanometer-scale gaps between the amphiphile
aggregates. The orientational order of the water can be detected
with 2H nuclear magnetic resonance (NMR) spectroscopy as a
quadrupolar splitting of the 2H2O resonance line,40–42 while the
structural anisotropy of the liquid crystal gives rise to a directional
dependence of the water self-diffusion coefficient as observed
with diffusion NMR13,43–48 and magnetic resonance imaging
(MRI).24,27,49,50 Despite the fact that these NMR and MRI methods
have been extensively used for investigating macroscopic domain
alignment in liquid crystals,8,9,14,15,18,19,21,23,24,26,27,40,44,49–55

there are so far no reported studies where the full order tensor
has been mapped with spatial resolution. In principle, such
tensor maps could be obtained by acquiring spatially resolved
2H spectra24,27,55–57 for multiple orientations of the main
magnetic field.58 Unfortunately, such an experimental approach
would require combinations of NMR hardware that are exceed-
ingly rare.

Here, we introduce a diffusion MRI method for mapping
director order tensors in lyotropic liquid crystals. The new
method builds on conventional diffusion tensor imaging (DTI),59

which yields the average diffusion tensor hDi for each spatially
resolved volume element, ‘‘voxel’’, of the image, and our recent
method for quantifying the microscopic diffusion tensor D within
a single liquid crystalline domain of a polydomain sample.60
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The latter method relies on an acquisition protocol wherein not
only the magnitude and direction of the diffusion-encoding
is varied, as in conventional DTI, but also the shape of the
axisymmetric diffusion-encoding tensor b.60–64 In the theory
section, we present a detailed derivation of the relation between
the tensors hDi, D, and S, parts of which have previously
appeared in the literature,27,50,65–69 and describe how order
tensor fields can be calculated from independently measured
maps of hDi and D. We demonstrate the new method by proof-
of-principle experiments on lamellar and reverse hexagonal
lyotropic liquid crystals with a range of director orientation
distributions. The experiments are carried out with a slightly
modified version of the diffusion MRI pulse sequence introduced
by Lasič et al.50 and subsequently used for human in vivo studies
in a series of recent publications.62,64,69 We also elaborate on the
procedure for generating axisymmetric diffusion-encoding with
smoothly modulated waveforms for the time-dependent mag-
netic field gradients.70

Theoretical considerations

The theory section includes derivations of the expressions for
estimating the tensors hDi, D, and S from experimental data, as well
as a summary of the principles of axisymmetric diffusion-encoding

as recently introduced by Eriksson et al.60 Readers mainly interested
in the experimental demonstration of the new approach may wish
to go directly to the Results and discussion section, and simply
note that the key equations for data evaluation can be found in
eqn (12), (19), and (29).

Diffusion and order tensors

In its principal axis system (PAS), a microscopic diffusion
tensor D can be written as

DPAS ¼

DXX 0 0

0 DYY 0

0 0 DZZ

0
BBB@

1
CCCA; (2)

with the eigenvalues ordered as (DZZ � Diso) Z (DXX � Diso) Z
(DYY � Diso), where Diso is the isotropic average of the
eigenvalues:

Diso ¼
1

3
DXX þDYY þDZZð Þ: (3)

Defining the diffusion tensor anisotropy DD and asymmetry
DZ as44,60,67

DD ¼
1

3Diso
DZZ �

DYY þDXX

2

� �
and DZ ¼

DYY �DXX

2DisoDD
; (4)

Eqn (2) can be rewritten as

DPAS ¼ Diso

1 0 0

0 1 0

0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

þDD

�1 0 0

0 �1 0

0 0 2

0
BBB@

1
CCCAþDZ

�1 0 0

0 1 0

0 0 0

0
BBB@

1
CCCA

2
6664

3
7775

9>>>=
>>>;
;

(5)

which is reduced to

DPAS ¼ Diso Iþ 2DD

�1=2 0 0

0 �1=2 0

0 0 1

0
BBB@

1
CCCA

2
6664

3
7775 (6)

if the diffusion tensor is axisymmetric (DZ = 0). In eqn (6), I is
the identity matrix. While Diso corresponds to the ‘‘size’’ of the
tensor, the value of DD reports on its ‘‘shape’’, covering the
range from �1/2 (planar) to 0 (spherical) and +1 (linear).60

If the eigenframe XYZ of the axisymmetric tensor DPAS is
initially aligned with the lab frame xyz, rotation through the
polar and azimuthal angles y and f yields a lab-frame tensor D
given by

Replacing the trigonometric expressions in eqn (7) with the
directional cosines

lx = cosf sin y

ly = sinf sin y

lz = cos y (8)

gives

D ¼ Diso Iþ 2DD �
1

2

3lx
2 � 1 3lxly 3lxlz

3lxly 3ly
2 � 1 3lylz

3lxlz 3lylz 3lz
2 � 1

0
BBB@

1
CCCA

2
6664

3
7775: (9)

The terms with directional cosines can be recognized from the
definition of the Saupe order tensor S in eqn (1), which in
matrix form can be written as

S ¼ 1

2

3lx
2 � 1

� �
3lxly
� �

3lxlzh i

3lxly
� �

3ly
2 � 1

� �
3lylz
� �

3lxlzh i 3lylz
� �

3lz
2 � 1

� �

0
BBB@

1
CCCA: (10)

The principal order parameter SZZ is defined as the eigenvalue
of S with the largest magnitude.33 The values of SZZ cover the
range from �1/2 to +1. Perfect alignment in a single direction

D ¼ Diso Iþ 2DD �
1

2

3 cos2 f sin2 y� 1 3 sinf cosf sin2 y 3 cosf sin y cos y

3 sinf cosf sin2 y 3 sin2 f sin2 y� 1 3 sinf sin y cos y

3 cosf sin y cos y 3 sinf sin y cos y 3 cos2 y� 1

0
BBB@

1
CCCA

2
6664

3
7775: (7)
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corresponds to SZZ = 1, while random orientations in a plane
perpendicular to the director gives SZZ = �1/2. The value SZZ = 0
indicates completely random orientations in 3D space, but
could also result from other, more exotic, orientation distribu-
tions, e.g., three orthogonal directions with equal probability or
random orientations on a cone with aperture 109.41.

Assuming that there is no molecular exchange between the
domains on the 10–100 ms time-scale defined by the diffusion
NMR experiment, then hDi is simply the population-weighted
average of the domain tensors D.65 For an ensemble of tensors
with the same size Diso and shape DD, but different orientations
(y,f), application of ensemble averaging to both sides of eqn (9)
yields

hDi = Diso(I + 2DDS), (11)

where hDi is the ensemble-average or ‘‘voxel-average’’ diffusion
tensor as measured with standard DTI.59 Quantitative estimates
of Diso and DD can be obtained with the method of axisymmetric
diffusion-encoding introduced by Eriksson et al.60 and described
below. Once hDi, Diso and DD have been determined, S can be
calculated through element-by-element inversion of eqn (11):

Sij ¼
1

2DD
�

Dij

� �
Diso

� kij

� �
: (12)

From eqn (11) follows that the anisotropy lD of the average
tensor hDi is given by67

lD = SZZDD. (13)

Maximal macroscopic anisotropy (lD = 1) requires that both the
microscopic anisotropy DD and the principal order parameter
SZZ equal 1. Conversely, a planar macroscopic tensor (lD =�1/2)
could result from either perfect alignment of planar microscopic
tensors (SZZ = 1, DD = �1/2) or negative uniaxial alignment of
linear microscopic tensors (SZZ = �1/2, DD = 1).

Diffusion tensors are often visualized as ellipsoid59 or super-
quadric71 tensor glyphs, where the lengths and directions of the
three semi-axes are given by the corresponding tensor eigen-
values and eigenvectors. According to the definition in eqn (1),
the tensor S is traceless and has both positive and negative
eigenvalues, which cannot directly be represented as the con-
ventional tensor glyphs. Various approaches for manipulating
the order tensor to facilitate visualization can be found in
the literature.37–39 Here, we define a shifted and rescaled order
tensor S0 through

S0 ¼ 1

3
ðIþ 2SÞ: (14)

The eigenvalues of the symmetric and unit-trace tensor S0 are
all positive, covering the range from 0 to 1, and the eigenvectors
coincide with the ones for hDi. Consequently, the S0 and hDi
tensor fields can be visualized using the same kind of glyphs or
color-code.

NMR diffusion-encoding

The NMR signal is encoded with information about transla-
tional motion by applying a time-dependent magnetic field

gradient G(t) in the time interval 0 r t r t. The diffusion-
encoding tensor b is given by72,73

b ¼
ðt
0

qðtÞqTðtÞdt; (15)

where

qðtÞ ¼ g
ðt
0

Gðt 0Þdt 0 (16)

is the time-dependent dephasing vector and g is the magneto-
gyric ratio of the studied nucleus. The gradient waveform G(t)
obeys the ‘‘echo condition’’ q(t) = 0.

For a sample or volume element comprising an ensemble
of microscopic diffusion tensors D, the NMR signal I(b) can be
written as72,73

I(b) = I0hexp(�b:D)i (17)

where I0 is the signal when b = 0 and b:D is a generalized scalar
product defined as

b:D ¼
X
i

X
j

bijDij : (18)

In the limit b - 0, eqn (19) can be approximated as64

I(b) = I0 exp(�b:hDi), (19)

where hDi is the ensemble-average diffusion tensor. Eqn (19) corre-
sponds to the conventional equation for evaluating DTI data.72,73

Parameterization of the b-tensor

In analogy with the description of the diffusion tensor above,
the b-tensor can, in its principal axis system, be expressed as

bPAS ¼

bXX 0 0

0 bYY 0

0 0 bZZ

0
BBB@

1
CCCA; (20)

where the eigenvalues are ordered according to the convention
(bZZ � b/3) Z (bXX � b/3) Z (bYY � b/3), and b is the trace of the
b-tensor:

b = bXX + bYY + bZZ. (21)

The b-tensor anisotropy bD and asymmetry bZ are given by60

bD ¼
1

b
bZZ �

bYY þ bXX

2

� �
and bZ ¼

3

2
� bYY � bXX

bbD
: (22)

With the parameterization in eqn (21) and (22), eqn (20) can be
recast into

bPAS ¼ b

3

1 0 0

0 1 0

0 0 1

0
BBB@

1
CCCA

8>>><
>>>:

þ bD

�1 0 0

0 �1 0

0 0 2

0
BBB@

1
CCCAþ bZ

�1 0 0

0 1 0

0 0 0

0
BBB@

1
CCCA

2
6664

3
7775

9>>>=
>>>;
:

(23)
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Axisymmetric diffusion-encoding corresponds to bZ = 0, and a
simplified expression for the b-tensor can be written as

bPAS ¼ b

3
Iþ 2bD

�1=2 0 0

0 �1=2 0

0 0 1

0
BBB@

1
CCCA

2
6664

3
7775: (24)

For an axisymmetric b-tensor initially aligned with the lab frame,
rotation through the polar and azimuthal angles Y and F gives
the lab-frame b-tensor

Powder-averaged signal

Inserting the expressions for the axisymmetric tensors b and
D in eqn (7) and (25), respectively, into eqn (18) yields

b:D = bDiso[1 + 2bDDDP2(cos b)], (26)

where

cos b = cosY cos y + sinY sin y cos(F � f), (27)

and P2(x) = (3x2 � 1)/2 is the 2nd Legendre polynomial. For
samples comprising randomly oriented microscopic domains,
or when powder-averaged signal acquisition is applied,50 the
probability distribution P(b) of the angle b is given by

PðbÞ ¼ 1

2
sinb (28)

in the interval 0 r b r 1801. Using eqn (26) and (28) when
evaluating the ensemble average in eqn (17) yields60

I b; bDð Þ ¼ I0 exp �bDisoð Þ

�
ffiffiffi
p
p

2

exp bDisobDDDð Þerf
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3bDisobDDD
p� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3bDisobDDD
p ;

(29)

where erf(x) is the error function. Eqn (29) can be used to
extract values of Diso and DD by analyzing the powder-averaged
signal I(b,bD) acquired as a function of b and bD.60

Gradient waveforms for axisymmetric diffusion-encoding

An axially symmetric b-tensor can be obtained by selecting a
q-vector trajectory

qðtÞ ¼

qX ðtÞ

qY ðtÞ

qZðtÞ

2
6664

3
7775 ¼ qðtÞ

cos½cðtÞ� sinðzÞ

sin½cðtÞ� sinðzÞ

cosðzÞ

2
6664

3
7775; (30)

where the q-vector magnitude q(t) and azimuthal angle c(t)
satisfy the relation70,74

cðtÞ ¼ 2p
b

ðt
0

qðtÞ2dt; (31)

and the polar angle z is constant. In eqn (31), b is the trace of
the b-tensor, which can be calculated with eqn (15) and (20), or,
alternatively, directly from q(t) using75

b ¼
ðt
0

qðtÞ2dt: (32)

The angle z determines the b-tensor anisotropy bD according to60

bD = P2(cos z), (33)

where P2(x) is the 2nd Legendre polynomial as defined below
eqn (27). The gradient G(t) is given by the derivative

GðtÞ ¼ 1

g
� d
dt
qðtÞ: (34)

Explicit gradient waveforms obeying the constraints above
can be constructed by selecting an axial waveform GA(t)
from a standard pulsed gradient spin echo experiment with,
e.g., rectangular, ramped, sinusoidal, Gaussian, or exponential
gradient pulse shapes.76,77 The chosen waveform then gives
q(t) from

qðtÞ ¼ g
ðt
0

GAðt 0Þdt 0 (35)

and b and c(t) with eqn (31) and (32), respectively. Inserting q(t)
and c(t) into eqn (30) and (34) yields

GðtÞ ¼

GXðtÞ

GY ðtÞ

GZðtÞ

2
6664

3
7775 ¼

Re GRðtÞ½ � sinðzÞ

Im GRðtÞ½ � sinðzÞ

GAðtÞ cosðzÞ

2
6664

3
7775; (36)

where GR(t) is the complex radial gradient waveform

GRðtÞ ¼ GAðtÞ þ
2pqðtÞ3

gb
i

	 

exp½icðtÞ�: (37)

As shown in Fig. 1(a), axisymmetric diffusion-encoding can
be implemented in a diffusion MRI pulse sequence by replacing
the conventional rectangular or ramped gradient pulses with
the waveform G(t).50,62,64,69 The procedure for transforming an
axial waveform GA(t) and a value of z to G(t) is summarized in
Fig. 1(b). First, GA(t) is converted to q(t), b, and c(t) using
eqn (31), (32), and (35), respectively. Subsequently, these
functions and values give the radial waveform GR(t) via
eqn (37). Finally, G(t) is obtained by combining GA(t) and
GR(t) with amplitude scaling given by the angle z as described
in eqn (36). Under the condition that the XYZ PAS of the
gradients is initially aligned with the xyz lab frame, rotation
of G(t) through the angles (Y,F) yields b-tensor elements
according to eqn (25) with b and bD being given by GA(t) and
z via eqn (32), (33), and (35).

b ¼ b

3
Iþ bD

3 cos2 F sin2 Y� 1 3 sinF cosF sin2 Y 3 cosF sinY cosY

3 sinF cosF sin2 Y 3 sin2 F sin2 Y� 1 3 sinF sinY cosY

3 cosF sinY cosY 3 sinF sinY cosY 3 cos2 Y� 1

0
BBB@

1
CCCA

2
6664

3
7775: (25)
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Experimental
Sample preparation

The nonionic surfactant penta(ethylene glycol) monotetradecyl
ether (C14E5) forms a lamellar phase (La) in water over a wide
range of concentrations and temperatures.25 The planar geo-
metry of the water compartments in the La phase gives rise to a
correspondingly planar shape of the microscopic diffusion tensor
and a value of DD approaching �1/2.60 The phase diagram of
sodium 1,4-bis(2-ethylhexoxy)-1,4-dioxobutane-2-sulfonate (AOT)/
2,2,4-trimethylpentane (isooctane)/water is dominated by a
reverse hexagonal phase (HII) at 25 1C.2 The nearly linear shape
of the water compartments in the HII phase is mirrored in the
linear shape of the microscopic diffusion tensors and values of
DD near +1.60,63

The liquid crystals were made with water containing 90 wt%
1H2O (Milli-Q quality) and 10 wt% 2H2O (99.8 mol% 2H, Armar
Chemicals, Switzerland) in order to allow for NMR observation
of both 1H and 2H nuclei. All other chemicals were of analytical
grade and purchased from Sigma-Aldrich, Sweden. The samples
were prepared by weighing appropriate amounts of the ingredients
into 10 ml vials, which were sealed by screw caps and centrifuged
until the mixtures turned homogeneous. Subsequently, 0.5 ml
was transferred to 5 mm disposable NMR tubes, which were
flame sealed and subjected to further centrifugation to remove
air bubbles. One C14E5 sample (61.2 wt% surfactant) underwent
temperature cycling within the field of the NMR magnet as
described by Bernin et al.27 in order to produce an La phase
with lamellar directors aligned with the surface normals of the

tube walls, while another C14E5 sample (59.7 wt% surfactant)
was not exposed to any further treatment after centrifugation of
the NMR tube. These two samples will be referred to as
‘‘oriented La’’ and ‘‘random La’’, respectively. NMR experiments
on the C14E5 samples were performed at 50 � 1 1C. The
AOT/isooctane/water samples were melted to reverse micellar
phases at 50 1C, and subsequently cooled down at different
rates to produce varying degrees of domain alignment.1,78 One
sample (38 wt% AOT, 14 wt% isooctane) was slowly cooled to
20 1C over 12 h, giving domains preferentially aligned perpendicular
to the surface normals of the tube walls. The sample was further
equilibrated at 20 1C for 12 months before the NMR experiments.
A second sample (44 wt% AOT, 17 wt% isooctane) was cooled to
15 1C in less than 1 min, giving nearly randomly oriented domains,
and was immediately investigated with NMR. These samples will be
referred to as ‘‘oriented HII’’ and ‘‘random HII’’, respectively. The
HII samples were studied with NMR at 20 � 1 1C.

NMR experiments

NMR experiments were carried out on a Bruker Avance II
500 spectrometer (Bruker, Karlsruhe, Germany) operating at
500.13 MHz 1H resonance frequency. The 11.7 T magnet was
equipped with a MIC-5 probe capable of delivering 3 T m�1

magnetic field gradients in three orthogonal directions. The
sample temperature was controlled with a stream of air using a
BVT 2000 unit. Diffusion MRI experiments were performed with
Topspin 2.1 using the pulse sequence in Fig. 1(a), which is
based on the sequence introduced by Lasič et al.50 The images
were read out with a rapid acquisition with relaxation enhance-
ment (RARE) block,79 giving 4.8 � 4.8 mm field-of-view (x � y),
128 � 32 acquisition matrix size, 5 mm slice thickness (z), and
65 ms duration of the echo train. The relation between the imaging
slice and the NMR tube is shown in Fig. 2. The RARE block was

Fig. 1 Axisymmetric diffusion-encoding in diffusion MRI. (a) Pulse sequence
with a spin echo (901 and 1801 RF pulses) preceding RARE image read-out.
Identical diffusion-encoding gradient waveforms G(t) with duration t bracket
the 1801 pulse. The Cartesian components Gx, Gy, and Gz are shown in red,
green, and blue, respectively. (b) Flow-scheme for generating G(t). The
panels show the axial and radial waveforms GA(t) and GR(t), and the magni-
tude q(t) and azimuthal angle c(t) of the dephasing vector q(t). The real and
imaginary parts of GR(t) are colored red and green, respectively. The
magnitude b and anisotropy bD of the b-tensor are given by GA(t) and the
q-vector inclination z via eqn (32), (33) and (35). Rotation of G(t) through
the polar and azimuthal angles Y and F results in the corresponding rotation
of the b-tensor.

Fig. 2 Schematic geometry for the MRI experiments on samples with
0.5 ml liquid crystal in an NMR tube with 5 mm outer diameter. The coils
for generating the magnetic field gradients define the xyz lab frame. The
gray box indicates the 5 mm thick slice excited in the MRI experiments. The
magnified black square shows the 4.8� 4.8 mm field-of-view of the image
plane, while the gray circle delineates the outer surface of the liquid crystal
within this plane. The tensor glyphs represent voxel-average diffusion
tensors hDi for the oriented La sample obtained at 0.3 mm � 0.3 mm
resolution in the xy-plane.
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preceded by a spin-echo diffusion-encoding block with 35 ms
duration. Identical gradient waveforms G(t) of duration t = 15.9 ms
and maximum gradient amplitude of approximately 1.2 T m�1

were located on each side of the 1801 pulse. A shaped gradient
pulse with 1.59 ms quarter-sine ramp-up and 2.39 ms half-cosine
ramp-down was used to define an axial waveform GA(t), which
was converted to the radial waveform GR(t) and G(t) as described
with the scheme in Fig. 1(b). The diffusion-encoding tensor b
was sampled for a grid of four magnitudes b (geometric spacing
from 26 to 8610 � 106 s m�2), four anisotropies bD (linear
spacing from �0.5 to 1), and 31 directions (Y,F) chosen
according to the electrostatic repulsion scheme,80 giving in total
496 images. The values of bD and b were varied by changing the
angle z and scaling the amplitudes of the waveforms GA(t) and
GR(t) at constant timing parameters. Each image was acquired as
the sum of two transients at 3 s recycle delay, resulting in 52 min
of total experiment time.

Data analysis

All data processing was performed with in-house code written
in Matlab (MathWorks, Natick, MA). The images were recon-
structed at 128 � 128 matrix size, giving 37.5 mm � 37.5 mm
nominal spatial resolution, and subjected to 0.15 mm Gaussian
smoothing. For each voxel, the average diffusion tensor hDi was
evaluated by non-linear fitting of eqn (19) to the acquired signal

intensities I(b),72,73 using the initial intensity I0 and the three
eigenvalues and Euler angles of hDi as adjustable parameters.
Equations for evaluating the tensor elements hDiji from the
eigenvalues and Euler angles can be found in, e.g., the tutorial
by Kingsley,81 while eqn (25) gives the relations between the b
tensor elements and its parameterization as b, bD, Y, and F.
The sizes and shapes of the microscopic diffusion tensors D
were estimated on a voxel-by-voxel basis by averaging the I(b)
data over the 31 acquisition directions,50 leaving a reduced set
of 4 � 4 data points I(b,bD), and fitting eqn (29) to the data
using I0, Diso, and DD as adjustable parameters.60 Subsequently,
the elements of the Saupe order tensor S were evaluated by
inserting the values of hDiji, Diso, and DD into eqn (12). The
fit results were downsampled to 16 � 16 matrix size, corres-
ponding to 0.3 mm � 0.3 mm spatial resolution, when dis-
playing the results as superquadric tensor glyphs,71 while the
128 � 128 matrix size was used for generating color-coded
parameter maps.

Results and discussion

Experimental tensors hDi, D, and S0 are shown in Fig. 3 for
all samples. The oriented La sample features oblate (lD o 0)
tensors hDi with minor axes in parallel with the normal vectors
of the tube wall. The nearly planar shape (lD =�1/2) is consistent

Fig. 3 Experimental results for the oriented La (row 1), random La (row 2), oriented HII (row 3), and random HII (row 4) samples displayed as superquadric
tensor glyphs representing the voxel-average diffusion tensor hDi (column 1), microscopic diffusion tensor D (column 2), and order tensor S0 (column 3)
at a spatial resolution of 0.3 mm � 0.3 mm in the xy-plane. The figures show an oblique view of a section of the image plane illustrated in Fig. 2. The
experiment for determining D is designed to be insensitive to tensor orientation, and, for simplicity, all these tensors are shown with the cylindrical
symmetry axis along the z-direction.
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with the underlying lamellar geometry of the liquid crystal, but
could according to eqn (13) in principle result from an ensemble
of linear microscopic diffusion tensors (DD = 1) randomly oriented
within a single plane (SZZ = �1/2). All experimental D are oblate
with values of the DD around�0.49, proving that the liquid crystal
is of the lamellar type throughout the sample. Using the knowl-
edge of the size and shape of D, information about the director
orientations can be disentangled from hDi using eqn (12). For
nearly all voxels of the oriented La sample, the order tensors S0 are
linear (SZZ E 1), indicating a single preferred director orientation
within each voxel, and oriented radially with respect to the tube
axis. A few exceptions occur in the very center of the tube, where
the planar shapes of the S0 tensors show that the voxels contain a
distribution of director orientations within the xy-plane.

The hDi tensors for the random La sample have shapes ranging
from oblate (lD o 0) to prolate (lD 4 0). Since all D tensors are
identical also in this case, the varying shapes of hDi result from
the voxel-scale orientation distributions rather than from any
differences in the microscopic geometries of the liquid crystal.
The resulting S0 tensors cover a range of shapes, but they are all
mainly located within the xy-plane, indicating that the directors in
the ‘‘random’’ La sample tend to avoid the z-direction just as for
the oriented La sample, albeit with a less distinct radial pattern.

The oriented HII sample yields mainly prolate hDi tensors in
a pattern forming nearly concentric circles in the image plane,
while the random HII sample features hDi tensors covering a
range of shapes from oblate to spherical. The corresponding D
tensors all have prolate shapes and values of DD around 0.9,
leading to similar shapes and identical semi-axis orientations
of the hDi and S0 tensors. The concentric pattern of hDi tensor
orientations for the oriented HII sample thus directly corresponds
to the pattern of director orientations. The nearly spherical hDi
and S0 tensors in the interior of the random HII sample verify that
the directors to a reasonable approximation are randomly
oriented, while the more oblate tensors close to the glass
surface indicate that director orientations in parallel with the
surface normal vectors are less favorable.

In order to more clearly visualize the shapes and orienta-
tions of the S0 tensors throughout the entire image plane, color-
coded maps were generated as shown and explained in Fig. 4.
The oriented La sample has perfect radial director orientations
throughout the sample (red and green colors at surfaces with
normal vectors along x and y, respectively). The pattern with
director orientations in concentric circles (green and red at
normal vectors along x and y, respectively) is well developed for
most parts of the oriented HII sample, but somewhat less
distinct in the third quadrant of the image where the bluish tint
hints at directors aligned with the tube axis. Both ‘‘random’’
samples feature irregular patterns and color variations on multi-
ple length scales. Also for these samples the director orientations
are clearly affected by the presence of the tube walls: the random
La sample shows a rim of radially oriented directors, while the
directors avoid the radial orientation in the random HII sample
as evidenced by the dominance of turquoise and purple colors
close to surfaces with normal vectors in the x- and y-directions,
respectively.

Conclusions

We have shown that information from standard diffusion tensor
imaging and our recent method for measuring the size and shape
of microscopic diffusion tensors can be combined to generate
fields of Saupe order tensors, thereby enabling quantification of
liquid crystal director orientations at an unprecedented level of
detail. By defining a shifted and rescaled order tensor, the spatial
pattern of director orientations were visualized as arrays of tensor
glyphs and color-coded maps. In addition to detailed multi-scale
characterization of liquid crystalline materials, we believe that our
approach can be adapted to in vivo studies of cell shapes and
orientations in normal and pathological tissues by minor modi-
fications of the pulse sequence used by Szczepankiewicz et al.69
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S. Žumer, Phys. Rev. Lett., 1974, 33, 1192–1195.

66 U. Hong, J. Kärger, R. Kramer, H. Pfeifer, G. Seiffert,
U. Müller, K. K. Unger, H.-B. Lück and T. Ito, Zeolites,
1991, 11, 816–821.
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