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Freezing and melting line invariants of the
Lennard-Jones system

Lorenzo Costigliola,* Thomas B. Schrøder and Jeppe C. Dyre

The invariance of several structural and dynamical properties of the Lennard-Jones (LJ) system along

the freezing and melting lines is interpreted in terms of isomorph theory. First the freezing/melting lines

of the LJ system are shown to be approximated by isomorphs. Then we show that the invariants

observed along the freezing and melting isomorphs are also observed on other isomorphs in the liquid

and crystalline phases. The structure is probed by the radial distribution function and the structure factor

and dynamics are probed by the mean-square displacement, the intermediate scattering function, and

the shear viscosity. Studying these properties with reference to isomorph theory explains why the

known single-phase melting criteria hold, e.g., the Hansen–Verlet and the Lindemann criteria, and why

the Andrade equation for the viscosity at freezing applies, e.g., for most liquid metals. Our conclusion is

that these empirical rules and invariants can all be understood from isomorph theory and that the invariants

are not peculiar to the freezing and melting lines, but hold along all isomorphs.

1 Introduction

The phase transition from liquid to crystal and vice versa is not
yet completely understood.1–3 Reasons for searching for a better
understanding of freezing/melting invariants are many. One is
the possibility of using freezing/melting invariance to evaluate
specific system properties under conditions not easily accessible
by experiments. An example could be the estimation of liquid
iron’s viscosity under Earth-core pressure and temperature con-
ditions, a quantity that is necessary for developing reliable
geophysical models for the core.4–6

In this work several freezing line and melting line invariants,
both structural and dynamical, of the Lennard-Jones (LJ) system7

are derived from isomorph theory8 and validated in computer
simulations. The existence of invariances along isomorphs is
used to explain the Hansen–Verlet and Lindemann freezing/
melting criteria as well as the Andrade equation for the freezing
viscosity for the LJ system.

Many theories have been proposed to explain freezing and
melting9,10 and why certain quantities are often invariant along
the freezing and melting lines. Examples of such invariants are
the excess entropy, the constant-volume entropy difference
between liquids and solids on melting,11–13 the height of the
first peak of the static structure factor on freezing (the Hansen–
Verlet freezing criterion14,15), and the viscosity of liquid metals
on freezing when made appropriately dimensionless.16–18 The
Lindemann19,20 melting criterion states that a crystal melts

when the mean vibrational displacement of atoms from their
lattice position exceeds 0.1 of the mean inter-atomic distance,
independent of the pressure. This is equivalent to the invariance
of hu2i/rm

2 along the melting line,20 where hu2i is the atomic root-
mean-squared vibrational amplitude and rm is the nearest
neighbor distance. The most common approaches for explaining
such invariants attempt to connect them to the kinetics of the
freezing/melting process. For instance, going back to Born it has
been suggested that a crystal becomes mechanically unstable
when hu2i/rm

2 exceeds a certain number.9 From this perspective,
it is not easy to understand why these invariants do not hold for
all systems. It is also difficult to understand why related invariants
hold for specific curves in the liquid state. Thus, in an extension
of what happens along the melting line of, e.g., the Lennard-Jones
system, the radial distribution function is invariant along the
curves at which the excess entropy Sex is equal to the two-body
entropy S2.21 Diffusivity is also constant, in appropriate units, along
constant Sex curves,22 implying (from the Stokes–Einstein relation)
an invariance of the viscosity in appropriate units along these
curves. This relationship between viscosity and excess entropy was
recently confirmed by high-pressure measurements.23

A possible explanation for the invariants along the freezing
and melting lines, as well as along other well-defined curves in
the thermodynamic phase diagram, is given by isomorph
theory.8,24–26 According to it27 a large class of liquids exists for
which structure and dynamics are invariant to a good approxi-
mation along the constant–excess–entropy curves. These curves are
termed isomorphs, and the liquids which conform to isomorph
theory are now called Roskilde-simple (R) liquids27–32 (the original
name ‘‘strongly correlating’’ caused confusion due to the existence
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of strongly correlated quantum systems). Liquids belonging to this
class are easily identified in computer simulations because they
exhibit strong correlations between their thermal-equilibrium fluc-
tuations of virial and potential energy in the NVT ensemble.24,33

Isomorph theory not only offers the possibility of explaining
the freezing/melting invariants without reference to the actual
mechanisms of the freezing/melting process itself, but by
evaluating the virial potential-energy correlation coefficient
also provides a way to predict whether these invariants hold
for a given liquid.

The main features of isomorph theory are summarized in
Section 2 where how to identify the isomorphs of the LJ system
is also shown. This is followed by a short section describing
technical details of the simulations performed. The isomorph
equations are used in Section 4 to show that the freezing line
can be approximated by an isomorph, termed the freezing
isomorph, without the need for any fitting. Section 5 deals
with freezing invariants, the Hansen–Verlet criterion,14,15 and
Andrade’s freezing viscosity equation;16–18 Section 6 focuses on
melting line invariants of the FCC LJ crystal and their connec-
tion with the Lindemann criterion.19 The last section discusses
the differences between isomorph theory and other approaches
used to describe liquid invariances in the past years and
summarizes the main results of this work.

2 Isomorphs

An R system is characterized by strong correlations between
virial and potential energy equilibrium fluctuations in the
NVT ensemble,24,33 i.e., by a virial potential-energy equilibrium
correlation coefficient R(r,T) greater than 0.9:

Rðr;TÞ ¼ hDWDUiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðDWÞ2h i ðDUÞ2h i

p 4 0:9: (1)

Here D denotes the instantaneous deviations from the equili-
brium mean value, the brackets denote NVT ensemble averages,
W denotes the virial, U denotes the internal energy and (r,T)
denotes the density and temperature of the system. When such
strong correlations are present, the theory predicts the existence
of curves in the thermodynamic phase diagram along which
several structural, dynamical, and thermodynamical properties
are invariant8,24,33–35 when expressed in reduced units; these
curves are termed isomorphs.8

Reduced quantities (marked by a tilde) are defined as
follows. Distances are measured in units of r�1/3, energies
in units of kBT, and time in units of m1/2(kBT)�1/2r�1/3, where
m is the average particle mass (for Brownian dynamics, a
different time unit applies8). These reduced units should not be
confused with the so-called Lennard-Jones (LJ) units. We use the
latter units below for reporting quantities like temperature and
density.

By definition an isomorph has the following property: for
any two configurations, R1 � (r(1)

1 ,. . .,r(1)
N ) and R2 � (r(2)

1 ,. . .,r(2)
N )

r1
1/3R1 = r2

1/3R2 ) P(R1) = P(R2) (2)

where ri is the position vector of particle i, N is the number of
particles and P(Ri) is the Boltzmann statistical weight of
configuration Ri at the relevant thermodynamic state point
on the isomorph.24 In other words, configurations that are
identical in reduced units (R̃ � r1/3R) have proportional
Boltzmann factors.

The isomorph theory is exact only for systems with an Euler-
homogeneous potential energy function, for instance, inverse-
power-law (IPL) pair-potential systems.24,33 However, the theory
can be used as a good approximation for a wide class of
systems. Examples of models that are R liquids27 in part of
their thermodynamic phase diagram, in liquid and solid
states,26 are the standard and generalized Lennard-Jones systems
(single-component as well as multi-component),8,35,36 systems
interacting via the exponential pair potential,37 and systems
interacting via the Yukawa potential.28,38 R systems also include
some molecular systems like, e.g., the asymmetric dumbbell
models,39 Lewis–Wahnström’s three-site model of OTP,39 the
seven-site united-atom model of toluene,24 the EMT model of
liquid Cu24 and the rigid-bond Lennard-Jones chain model.40

Predictions of isomorph theory have been shown to hold
for experiments on glass-forming van der Waals liquids by
Gundermann et al.,41 Roed et al.,42 and Xiao et al.43 Power-
law density scaling,44 which is often observed in experiments
on viscous liquids, can be explained by isomorph theory.36

Isomorphic scaling, i.e., the invariance along isomorphs of
many reduced quantities derived from the identical statistical
weight of scaled configurations8 does not hold for all reduced
quantities. For example, the reduced-unit free energy and
pressure are not invariant, whereas the excess entropy, reduced
structure, and reduced dynamics are all isomorph invariant.8

These invariances follow from the invariance along isomorphs
of Newtonian and Brownian equations of motion in reduced
units for R liquids.8

For an R system at a given reference state point (r0,T0),
it is possible to build an isomorph starting from that point.8

For R systems, a function h(r) exists which relates the state
point (r0,T0) to any other state point (r,T) along the same
isomorph25,36 by the identity:

hðrÞ
T
¼ h r0ð Þ

T0
: (3)

The functional form of h(r) depends on the interaction
potential, and only for simple systems it is possible to find an
analytical expression. As shown by Ingebrigtsen et al.25 and
Bøhling et al.,36 if the pair potential is a sum of inverse-power
laws involving the exponents ni (i = 1,. . .,N), h(r) can be
expressed in the following way:

hðrÞ ¼
XN
i¼1

ai
r
r0

� �ni=3

: (4)

For a LJ system, the pair potential is the well-known

v(r) = 4e((r/s)�12 � (r/s)�6) (5)
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where only two IPL exponents, 12 and 6, are involved. It is not
difficult to show that25,36 for the LJ system, h(r) is given by

hðrÞ ¼ g0
2
� 1

� � r
r0

� �4

� g0
2
� 2

� � r
r0

� �2

(6)

where g0 is the so-called density-scaling exponent at the reference
state point defined by the canonical averages

g0 r0;T0ð Þ ¼ hDWDUi
ðDUÞ2h i

����
r0 ;T0ð Þ

: (7)

Eqn (6) is easily derived from applying g = d ln h/d lnr25 at the
reference state point to eqn (4), adopting the normalization
h(r) = 1. The correlation coefficient R of the LJ system increases
with increasing temperature and increasing density;24 this means
that if the LJ system is an R liquid at the reference state point
(r0,T0), it will be strongly correlating also at higher densities on
the isomorph through (r0,T0).

Recently isomorph theory has been reformulated starting
from the assumption that for any couple of configurations of R
systems, the potential energies obey the relation

U(R1) o U(R2) ) U(lR1) o U(lR2) (8)

when the configurations are scaled to a different density.29 All
the results described in this section can be derived from this
simple scaling rule. The predictions of the new isomorph
theory are close to those of the old one, which is used below.

3 Simulation details

This work presents the results of molecular dynamics simula-
tions of a single-component LJ system performed using the
GPU code RUMD.45 For each liquid state point an NVT simula-
tion was used to obtain the structure and dynamics, while a
SLLOD simulation46–48 was used to find the viscosity. The
simulations were carried out using a shifted-potential cutoff
at 2.5s. In the simulations the LJ parameters were set to unity,
i.e., s = 1.0 and e = 1.0. The time step was adjusted with
increasing temperature along an isomorph to keep the reduced
time step constant, equal to 0.001 for all simulations. For
instance, the time step is 0.001 in LJ units for a simulation at
r = 1.0 and T = 1.0. At every state point the system was
simulated for 5 � 108 timesteps, which takes about 20 hours
(in the case of SLLOD simulations) on a modern GPU card
(Nvidia GTX 780 Ti). The NVT simulations used to calculate g
and R at the starting state point for any isomorph ran for 1010

time steps in order to get good statistics for g. In the NVT
simulations of the FCC LJ crystal, the thermostat time con-
stant was kept constant in reduced units. The value for the
reduced thermostat constant is 0.4. The details of how to
obtain viscosity from SLLOD simulations can be found in the
Appendix. In the liquid phase and along the freezing line,
1000 LJ particles were simulated; for the FCC LJ crystal, 4000 LJ
particles were simulated.

4 The freezing line

As mentioned in Section 2, along an isomorph scaled con-
figurations have the same statistical weight. This implies that
the freezing and melting lines of an R liquid are isomorphs:
consider a state point of the fluid state in which the disordered
configurations are the most likely, and another state point in
which the system is in a crystalline phase. Since in the latter
case the ordered configurations are most likely, these two state
points cannot be on the same isomorph. It follows that the
freezing and melting lines cannot be crossed by an isomorph
(in the region where the system is an R system), i.e., in both the
liquid and crystalline regions isomorphs must be parallel to the
freezing and melting lines, respectively. In particular, these
lines are isomorphs themselves. This statement follows from
assuming that the physically relevant states obey the isomorph
scaling conditions.8

The LJ system is an R liquid, so its freezing line is approxi-
mately an isomorph. This was first confirmed by Schrøder
et al.35 using data from computer simulations by Ahmed and
Sadus49 and Mastny and de Pablo,50 and subsequently by
Pedersen51 with data obtained by his interface-pinning method.52

Recently, the approximate isomorph nature of the freezing line
has been documented in detail by Heyes et al.53,54 The quoted
papers all focus on densities fairly close to unity (in LJ units).
From the fact that the freezing line is an isomorph it is possible to
understand the invariance along the freezing line of several
properties, as recently was shown by Heyes et al.,53 who studied
the invariance of the reduced-unit radial distribution function,
mean force, Einstein frequency, self-diffusion coefficient, and
linear viscoelasticity of an LJ liquid along the freezing line, for
densities around unity. All these quantities were found to be
approximately invariant, as predicted by isomorph theory.

In this section the validity of an equation for the freezing
line of the LJ system obtained from isomorph theory is checked
over a considerably wider range of temperatures and densities
than previously studied. In Section 5, the results of Heyes et al.53

regarding structural and dynamic invariants are extended to a
wide range of densities along the freezing line.

In Fig. 1 the agreement between the freezing isomorph and
the freezing line is shown to hold for the whole range of
temperatures and densities studied by Agrawal and Kofke.56

The red line in Fig. 1 is the prediction from isomorph theory;
this line is built by starting from the freezing point T0 = 2.0 and
r0 = 1.063, obtained by Pedersen.51 The correlation coefficient R
and the scaling parameter g at the state point (r0,T0) are:

R0 = 0.995, g0 = 4.907. (9)

Using eqn (3) and (6) and this value for g0, it is possible to
build the freezing isomorph from

TF(r) = AFr
4 � BFr

2 (10)

where TF is the freezing temperature, AF = 2.27, and BF = 0.80 as
found from the reference state-point information given in
eqn (6) and (9). The same power-law dependence for the LJ
freezing line was obtained in 2009 by Khrapak and Morfill55
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and, in fact, long ago by Rosenfeld from his ‘‘additivity of
melting temperatures’’ (derived with reference to the hard-
sphere system).57,58 This is consistent with isomorph theory
because Rosenfeld’s rule can be derived from the quasi-
universality of single-component R liquids.31,32

Fitting to the same simulations for the freezing line
as referenced above,49,50,56 Khrapak and Morfill55 found the
following values for the coefficients: A = 2.29 and B = 0.71. The line
obtained inserting these values of A and B into eqn (10) is shown in
Fig. 1(a) (black line). There is a significant difference in the second
coefficient between the two equations. The second coefficient of
Khrapak and Morfill is obtained using data for the triple point
which may explain the difference; in that region isomorph theory
does not provide a good approximation for the freezing line of the LJ
system, as Pedersen recently showed.51 Nevertheless, the two curves
are close to each other. The freezing isomorph provides a slightly
better prediction of freezing temperatures at any density when
compared to the Khrapak and Morfill fit (inset of Fig. 1(a) and (b)).

The main result of this section is that isomorph theory provides
a technique for approximating the freezing line of an R liquid from
simulations at a single state point, i.e., without any fitting, and that
this approximation is valid over a wide range of densities. The
relative difference between the predicted freezing temperature and
the one obtained from computer simulations56 is about 6% for
density change of more than a factor of 3 and temperature change
of more than a factor of 100, as shown in Fig. 1. Isomorph theory
allows, therefore, estimating the freezing temperatures with small
relative uncertainties, and it may be useful for estimating the
freezing temperatures in the high density regimes, where it is
difficult to perform direct experiments for real liquids, which are R
liquids in the relevant part of the phase diagram.

5 Invariants along the freezing line

In this section we discuss different invariants along the freezing
isomorph as well as another isomorph ‘‘parallel’’ to it in the
liquid state, generated from the state point (r,T) = (1.063,4.0).
It is demonstrated that invariants originally proposed for the
freezing line are also found along the liquid isomorph. Along
the two isomorphs investigated, the excess pressure in reduced
units is also evaluated (Fig. 2(a)). This quantity is invariant for
any IPL system, but not for the LJ system. In the framework of
isomorph theory, it is well understood why some quantities are
invariant, e.g., the reduced viscosity, while others are not, e.g.,
the reduced pressure.8 This shows that the scaling properties
studied in this work are not simply the consequences of an
effective IPL scaling. Also note that it is necessary to go to quite
high densities before g E 4, as shown in Fig. 2(b). In the same
figure, the correlation coefficient R and the reduced viscosity
are plotted as a function of density along the freezing isomorph.
The reduced viscosity is predicted to be invariant.8 For r 4 1.1,
the reduced viscosity is invariant to a good approximation.
At lower densities, the correlation coefficient R decreases and
the reduced viscosity begins to vary.

5.1 Structure and the Hansen–Verlet freezing criterion

Fig. 3 shows the radial distribution functions (RDF) g(r) at different
state points along the freezing line (a and d), the approximate
freezing isomorph (b and e), and the liquid isomorph (c and f). In
Fig. 3(a)–(c), g(r) is expressed as a function of the pair distance,
while in Fig. 3(e)–(g), the g(r) is expressed as a function of the
reduced distance, r̃ = r1/3r. When the RDFs are plotted in reduced
units, they collapse onto master curves, as predicted by isomorph
theory. The results obtained for the freezing line confirm the
recent findings of Heyes et al.,53 who showed the same collapse
albeit for a smaller density range.

Starting from the invariance of g(r) it is easy to show that the
structure factor S(q) is invariant when considered as a function
of the reduced wave vector,

SðqÞ � 1 ¼ r
ð
V

dr e�iq�rgðrÞ

¼
ð

~V

d~r e�i r�1=3qð Þ�~rgð~rÞ ¼ Sð~qÞ � 1:

(11)

Fig. 1 Freezing line of the LJ system. In (a) the isomorph approximation to
the freezing line is marked by the red line and the Khrapak and Morfill
approximation55 by the black line; freezing state points obtained in the past
years using various techniques are shown by symbols.49–51,56 Both approx-
imations reproduce the data points well; the inset focuses on low densities. In
(b) the relative difference between Agrawal and Kofke freezing-temperature
data56 and the two approximations is shown. The isomorph approximation
gives smaller deviations from the simulation data. The main advantage of
approximating the freezing line by an isomorph lies, however, in the possibility
of predicting the full freezing line from the knowledge of a single freezing
state point.
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Structure factors S(q) along the freezing line, the approximate
freezing isomorph, and the liquid isomorph are shown in Fig. 4.
The invariance of the structure factor implies the Hansen–Verlet
freezing criterion14,15 stating that the LJ system freezes when the
height of the first peak of the structure factor reaches a definite
value close to 3 (equal to 2.85 in the original work14,15): if S(q) is
invariant along an isomorph, points which are on the same
isomorph have the same height of the first peak. And since the
freezing line for R liquids is well approximated by an isomorph,
the invariance of S(q) implies the validity of the Hansen–Verlet
freezing criterion. Fig. 4 confirms this.

5.2 Dynamic invariants: mean-squared displacement and
intermediate scattering function

The dynamical behavior of the system is described by the mean-
squared displacement (MSD) and the self-intermediate scattering
function (ISF). In Fig. 5 and 6, the MSDs and ISFs are shown,

respectively, as functions of non-reduced and reduced quantities.
As for the structure, the curves collapse onto master curves.

5.3 Viscosity along the freezing line and the Andrade equation

In order to evaluate the viscosity the system was simulated
using the SLLOD algorithm48 (details are given in the Appendix).
Studies of the viscosity of the LJ system were done in the past,
e.g., by Ashurst and Hoover,59 and more recently by Galliero
et al.60 and Delage-Santacreu et al.,61 in all cases for densities
fairly close to unity.

Isomorph theory predicts the reduced viscosity to be constant
to a good approximation along an isomorph (and therefore along
the freezing line),

~Z � Z
r2=3

ffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBT
p ¼ const: (12)

From this equation it is clear that if we know the value of Z at a
given state point we can calculate the expected viscosity at any
state point on the same isomorph. Along the freezing line (F) this
equation can be written as

ZFðrÞ ¼ ~Z0 � r2=3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTFðrÞ

p
(13)

where the subscript F stands for freezing, TF(r) is the freezing
temperature at density r and ~Z0 = 5.2 is the reduced value of Z at
the reference state point (r0,T0) = (1.063,2.0). Eqn (13) is
identical to the Andrade equation for the freezing viscosity17,18

from 1934:

Z rF;TFð Þ ¼ b � rF2=3
ffiffiffiffiffiffi
TF

p
(14)

where rF is the density at freezing. This is well known to apply
for most metals to a good approximation.62 The parameter b in
eqn (14) depends on the system, just as the value of ~Z0 in
eqn (13) depends on the chosen potential.

In Fig. 7 viscosity results are compared to the values of the
viscosity predicted from isomorph theory using eqn (13).

The green line in Fig. 7(b) is obtained by solving eqn (10)
with respect to r2 and using the solution to remove the r
dependence from eqn (13). This results in

Z TFð Þ ¼ ~Z0
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mkBTF

p BF þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
BF

2 þ 4AF � TF

p
2AF

 !1=3

(15)

in which AF = 2.27 and BF = 0.80 are the freezing isomorph
coefficients identified in Section 4 using eqn (6) and (9), i.e.,
based exclusively on simulations at the reference state point
(r,T) = (1.063,2.0) (the units of AF and BF are s12�e/kB and s6�e/kB,
with e and s being LJ parameters). The red dot in Fig. 7 marks
the reference state point.

In Fig. 8 we show the reduced viscosity along the freezing
isomorph as well as along the liquid isomorph with reference
state point (r0,T0) = (1.063,4.0). The figure demonstrates that
invariance of the reduced viscosity along the freezing line is not
a specific property of the freezing line, but a consequence of the
more general isomorph invariance.

Andrade’s equation for the freezing viscosity, which is
explained by isomorph theory, was also discussed recently

Fig. 2 (a) Excess pressure in reduced units, P̃ex = W/(NkBT) along two
different isomorphs, the freezing isomorph and a liquid isomorph. For inverse
power-law pair potentials this quantity is invariant, while for the LJ system
clearly it is not. This shows that isomorph scaling is not simply a trivial IPL
scaling. (b) In the top panel, the scaling coefficient g, eqn (7), is shown as a
function of density along the freezing line and the freezing isomorph. The
green line is the predicted value from g = d ln h(r)/d lnr.25,36 The middle and
bottom panels show the virial potential-energy correlation coefficient R and
the reduced viscosity ~Z along the freezing line and the freezing isomorph. The
blue symbols mark data at freezing state points taken from Pedersen;51 the red
symbols are the same quantities calculated at freezing isomorph state points.
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by Fragiadakis and Roland.63 It is interesting to compare
the temperature range accessible to experiments with that of
the present work. Fragiadakis and Roland63 reported data
on liquid argon in a range of temperatures corresponding
to [0.75,4.17] in LJ units. This is impressive, but simula-
tions allow one to cover an even wider range of freezing
temperatures.

6 Invariants along the melting line

Following the same argument as for the freezing line (Section 4),
the melting line is also an approximate isomorph. A study
similar to that of Section 5 was performed, evaluating the
structure and MSD, for an FCC LJ crystal along the melting line
as well as another isomorph in the crystalline phase. The starting

Fig. 3 Liquid results. Radial distribution function along the Pedersen freezing line (a and d),51 along the approximating freezing isomorph (b and e) and
along an isomorph well within the liquid state (c and f); in (a–c), the RDFs are plotted as a function of distance in Lennard-Jones units, in (d–f), the RDFs
are plotted as a function of the reduced distance. It is worth noting that while in (a) and (d) the density change is only a few percent, in the other figures
density changed by about a factor of 3. The same holds for Fig. 4–6.

Fig. 4 Liquid results. Structure factor along the Pedersen freezing line (a and d),51 along the approximate freezing isomorph (b and e), and along an
isomorph well within the liquid state (c and f); in (a–c), S(q) is plotted as a function of wave vector in Lennard-Jones units, in (d–f), S(q) is plotted as a
function of reduced wave vector.
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point for the melting isomorph is taken from Pedersen;51 this is
the state point (r,T) = (1.132,2.0). The starting point for the
crystal isomorph is (r,T) = (1.132,1.0), which is well within
the crystalline phase. The melting isomorph equation for the LJ
system is

TM(r) = AMr4 � BMr2 (16)

where AM = 1.76 and BM = 0.69. The equation has the same
mathematical form as the freezing equation, eqn (10), (but
different coefficients) because the shape of isomorphs reflects
the pair potential, not the phase. The existence of isomorphs in
the crystalline phase was demonstrated in a recent publication
by Albrechtsen et al.;26 this paper showed that isomorph theory,
in fact, is more accurate in the crystalline phase than for

Fig. 5 Liquid results. Mean-squared displacement along the Pedersen freezing line (a and d),51 along the approximating freezing isomorph (b and e) and
along another isomorph in the liquid state (c and f); in (a–c), the MSDs are plotted as a function of time in LJ units, in (d–f), the reduced MSDs are plotted
as a function of reduced time.

Fig. 6 Liquid results. Self-intermediate scattering function along the Pedersen freezing line (a and d),51 along the approximating freezing isomorph
(b and e), and along another isomorph in the liquid state (c and f); in (a–c), the ISFs are plotted as a function of time in Lennard-Jones units, in (d–f), the
ISFs are plotted as a function of reduced time. All the ISFs correspond to the q value of the first peak of S(q), qmax. The quantity q̃max is invariant along an
isomorph due to the invariance of S̃(q̃), eqn (11).
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liquids. In Table 1 the predicted melting temperature at density
3.509 from eqn (16) is compared to the results for the melting
line obtained in the present work using Pedersen’s interface

pinning method.51,52 As for the liquid-state isomorphs and the
freezing line, the RDF is invariant both along the melting
isomorph and along the crystal isomorph when expressed as
a function of the reduced pair distance (Fig. 9). The MSD is
shown in Fig. 10. The plateau of the MSD at melting confirms
the pressure invariance of the Lindemann melting criterion.19,20,64

The approximate invariance of reduced-unit MSD in the crystal
implies that the value of the plateau for the mean atomic
displacement is constant in reduced units along an isomorph
(and consequently along the melting line), and is consistent
with the Lindemann criterion. At low densities the invariance of
the MSD plateau is violated. This is the region where the
melting isomorph provides a worse approximation to the LJ
melting line, Fig. 10(d), as also shown by Pedersen.51 The
Lindemann constant increases slightly with increasing density
along melting, as reported by Luo et al.65 For temperatures
above 1.8, the Lindemann criterion is accurately satisfied, i.e.,
the reduced vibrational mean-square displacement becomes
density independent, Fig. 10(d) and (e).

7 Discussion

We have studied several properties of the LJ model along its
freezing and melting lines, as well as along isomorphs well
within the liquid and crystalline phases. In Table 2 the coeffi-
cients describing the four isomorphs studied in this work are
given together with the relative reference state points. The
primary aim was not to report that these invariances hold,
which is already well known9,14,16,66,67 albeit over smaller melting
temperature/density ranges than studied here, but to relate these
invariances to isomorph theory. With this goal in mind we
investigated whether the invariants, thought to be peculiar to
the freezing/melting process, also hold along other isomorphs in
the liquid and crystalline phases. The results show that this is
indeed the case. This means that these invariants are consequences
of the LJ system being an R liquid in the relevant part of its
phase diagram, not a specific property of freezing or melting.

Fig. 7 Viscosity along the approximate freezing isomorph, eqn (10), as a
function of density (a) and temperature (b). The black dots represent results for
the viscosity obtained from our SLLOD simulations (Appendix). The green line
is the predicted viscosity assuming the invariance of reduced viscosity along an
isomorph (eqn (13)). The red dot is the viscosity of the state point from which
the freezing isomorph is built and the constant of eqn (13) determined, (r,T) =
(1.063,2.0). The reduced viscosity at this state point is ~Z0 = 5.2.

Fig. 8 Reduced viscosity along the freezing isomorph and along an
isomorph well within the liquid state.

Table 1 Comparison between the melting temperature at a given density,
predicted using eqn (16), and that calculated for the same density using the
interface pinning method.52 The freezing and melting state temperatures
at r = 3.509 have been calculated in this work, while the other data are
from Pedersen.51 The parameters in eqn (16) were calculated at the
reference state point (r,T) = (1.132,2.0)

rM TM Tpinning DT/TM

0.973 0.800 0.921 �0.132
0.989 0.900 1.006 �0.106
1.005 1.000 1.095 �0.086
1.034 1.200 1.270 �0.055
1.061 1.400 1.453 �0.036
1.087 1.600 1.636 �0.022
1.109 1.800 1.812 �0.007
1.132 2.000 2.000 +0.000
1.153 2.200 2.191 +0.004
1.172 2.400 2.371 +0.012
1.191 2.600 2.561 +0.015
3.509 258.44 275.81 +0.067
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Nevertheless it should be stressed that invariances of reduced
unit quantities, which would be exact if the freezing/melting

lines were perfect isomorphs, are violated somewhat close to
the triple point.

Fig. 9 Crystal results. Radial distribution function along the Pedersen melting line (a and d),51 along the approximating melting isomorph (b and e), and
along an isomorph well within the crystalline state (c and f); in (a–c), the RDFs are plotted as a function of distance in Lennard-Jones units, in (d–f), the
RDFs are plotted as a function of reduced distance. It is worth noting that while in (a) and (d) the density change is only a few percent, in the other figures
density changed by about a factor of 3. The same holds for Fig. 10.

Fig. 10 Crystal results. Mean-squared displacement along the Pedersen melting line (a and d),51 along the approximate melting isomorph (b and e), and
along an isomorph well within the crystalline state (c and f); in (a–c), the MSDs are plotted as a function of time in LJ units, in (d–f), the reduced MSDs are
plotted as a function of reduced time. The invariance of the plateau of MSD along the melting line implies the Lindemann melting criterion for R liquids
because the invariance of the reduced-unit vibrational mean-square displacement in equivalent to the invariance of the Lindemann constant (Section 6).
Along the melting isomorph diffusion of defects is observed. Defect formation is a stochastic phenomenon, as shown by the non-monotonicity of its
appearance with respect to T or r. In order to study the isomorphic invariance of defect formation, it is necessary to average over many simulations at
every state point and it could be the object of future studies. The diffusion of defects in crystal, when appropriately averaged, has been shown to be an
isomorphic invariant by Albrechtsen et al.26
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Before discussing our results in detail, we would like to
point out the differences between isomorph theory and other
approaches often used to describe the LJ system invariances.
These other attempts to describe LJ invariances are the well-
known hard sphere (HS) paradigm and the WCA (Weeks,
Chandler, Andersen) approximation. The HS paradigm and
isomorph theory are able to describe the nature of the same
invariances, but with some important differences. A first
difference is in the possibility of determining when the theory
is expected to work and when it is not. In the case of isomorph
theory there is a simple prescription: if the system is strongly
correlating then it is possible to build isomorphs along which
many reduced quantities are invariant. In the framework of
hard spheres it is not possible to proceed in this way. It is not
even possible to know from one single state point if some
invariances will hold in the region around that state point
because there is no equivalent of the correlation coefficient R
defined in eqn (1). Another fundamental difference between
the two approaches is the presence of an ad hoc-defined hard
sphere radius that is in general state-point dependent.
Isomorph theory works without the need of introducing any
ad hoc parameters. A last difference, which is perhaps the most
important, lies in the possibility of predicting which invar-
iances the system will have. According to the HS paradigm,
once the mapping from the studied system to the HS system is
done using the ad hoc defined HS radius, the invariances of the
HS system are inherited from the studied system. This means
that the structure, dynamics and thermodynamic quantities
should be invariant along constant-packing-fraction curves. In
Fig. 2 we showed that the reduced pressure of the LJ system is
not invariant along an isomorph (a) while the reduced viscosity
is (b), as predicted from isomorph theory. Another possible
comparison is between isomorph theory and the WCA approxi-
mation for the LJ system. While in isomorph theory there is
no reference system, the WCA approximation is based on the
idea that only the repulsive part of the LJ potential is relevant
to the description of the system, providing a convenient refer-
ence system, and that LJ invariances can be derived from HS
invariances.68

In Fig. 11(a) the viscosity is shown along the freezing line
data from Agrawal and Kofke56 for the LJ system and for the IPL
potential:

nIPL(r) = 4r�12 (17)

which is the repulsive term of the LJ potential. The viscosity
calculated using the two different potentials along the freezing
line is very different. The difference is larger than 10% before
reaching considerably high densities and temperatures ((r,T) =
(2.417,68.5) in LJ units). This means that the effects of attrac-
tion are not negligible up to really high densities. As Rosenfeld
wrote in 1976 ‘‘It is important here to emphasize that the r�6

term of the L-J potential gives appreciable contribution to the
thermodynamic properties of the system up to very high
temperatures’’58 regarding the difference between the freezing
line of IPL12 and LJ.

In Fig. 11(b) the diffusion constant D for the LJ system with
the WCA approximation and with the 2.5s cutoff are shown.
The WCA approximation is well known to reproduce with good
accuracy the structure of the LJ system, but it fails in reprodu-
cing the dynamics. Berthier and Tarjus69 already underlined
that this was the case for the Kob–Andersen binary LJ system,

Table 2 Coefficients A and B of the isomorph in eqn (10) for the four
isomorphs studied in this work. The first two columns contain the
coefficients and the latter four columns contain temperatures, densities,
density scaling coefficients g, and correlation coefficients R of the state
points the isomorphs studied in this work start from. A pure n = 12 IPL pair
potential leads to g = 4

A B T r g R

Liquid isomorph 4.32 1.34 4.0 1.063 4.7589 0.9966
Freezing isomorph 2.27 0.80 2.0 1.063 4.9079 0.9955
Melting isomorph 1.76 0.69 2.0 1.132 4.8877 0.9985
Crystal isomorph 0.91 0.39 1.0 1.132 4.9979 0.9986

Fig. 11 (a) Viscosities (inset) of the IPL12 system and the LJ system along
the freezing line (data from Agrawal and Kofke56) and their ratio (main
figure). The viscosities are calculated using the SLLOD algorithm.46–48 The
viscosity of the IPL12 system is substantially different from that of the LJ
system for temperatures lower than T = 68.5 in LJ units. (b) Diffusion
constant for the LJ system and the WCA system along the Pedersen
freezing line. It is well known that the WCA potential reproduces with
good accuracy the structure of the LJ system while this is not the case for
dynamics, as the figure shows.

Paper PCCP

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

8 
A

pr
il 

20
16

. D
ow

nl
oa

de
d 

on
 7

/2
4/

20
25

 1
2:

04
:0

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5cp06363a


14688 | Phys. Chem. Chem. Phys., 2016, 18, 14678--14690 This journal is© the Owner Societies 2016

and Pedersen et al.70 showed how isomorph theory provides a
better description of the LJ system dynamics while preserving
the good description of the structure.

In Sections 5 and 6 we discussed the relationship between
isomorph theory and freezing/melting criteria. It was shown
that the invariance along the freezing line of the maximum of
the static structure factor S(q) (the Hansen–Verlet criterion)
results from a general invariance along isomorphs of the entire
S(q) function. The first peak of the structure factor along an
isotherm decreases gradually with decreasing density. This
means that there will be a specific value which corresponds
to the freezing phase transition. The evidence that the value of
this height is constant along the freezing line is not a peculiarity
of the freezing process itself, but a consequence of isomorph
scaling. The reason why the maximum height of S(q) is 2.8514,15

cannot be explained within isomorph theory, but is a feature of
the freezing process. In order to explain the universality of the
number 2.85, as well as the universality of the Lindemann
melting criterion number, one must refer to quasiuniversality,
a further consequence of the isomorph theory detailed, e.g., by
Bacher et al.71 Note the compatibility of the general isomorph
theory with the results of Saija et al.72 on the pair-potential
dependence of the maximum height of S(q) at freezing.

The study of the LJ structure factor along the freezing line also
allows explaining some properties of structure factors for liquid
metals observed in X-ray experiments. As shown by Waseda and
Sukuri in 1972,73 for some liquid metals the ratio of the position of
the first and second peaks in the structure factor is the same while
there are others for which this does not hold, for example, Ga, Sn,
and Bi. The first set of metallic liquids are the ones which are R
liquids (i.e., exhibit strong virial potential-energy correlations) and
therefore are similar to the LJ system studied in this work, while
those in the second do not, as shown very recently by Hummel
et al.74 from ab initio density functional theory calculations.

Along the melting line we studied the Lindemann criterion,
which has been widely discussed65,66,72,75 and also experimentally
tested,76 and the same conclusion holds as for the Hansen–Verlet
criterion. Isomorphs’ existence implies that an R liquid’s thermo-
dynamic phase diagram becomes effectively one-dimensional
with respect to the isomorph-invariant quantities. The reduction
of the 2d phase diagram to an effectively 1d phase diagram is
crucial for understanding the connection between isomorph
theory and the Lindemann criterion, because it removes one
of the main criticisms against this criterion, i.e., its being
a single-phase criterion.9 If the phase diagram is effectively
one-dimensional, there is a unique melting process and the
Lindemann constant is the value associated with this phase
transition; the invariance of the Lindemann constant along the
melting line is, in this view, a consequence of isomorph
invariance. This argument also explains why one can use a
single-phase criterion to predict where the melting process
takes place for R liquids. According to the Lindemann criterion,
the crystal melts when the vibrational MSD exceeds a threshold
value, which in reduced units is constant along the melting
line. This condition is equivalent to the invariance of the MSD
along the melting line, an isomorph prediction. Note that

isomorph theory can be used to predict for which systems the
Lindemann criterion (at least) must hold, namely all R liquids.
Recent comprehensive density-functional theory (DFT) simulation
data from Hummel et al.74 show that most metals are R liquids
and therefore the Lindemann criterion must apply for them in the
sense that the reduced-unit MSD is approximately invariant along
the melting line. On the other hand, systems that do not exhibit
strong correlations between virial and potential-energy do not
necessarily obey the Lindemann criterion. Thus as discussed by
Stacey and Irvine already in 1977,67 the Lindemann criterion
applies for systems which ‘‘undergo no dramatic changes in
coordination on melting’’. This is not the case for hydrogen-
bonding systems, which are not R liquids.24,27 The non-universal
validity of the Lindemann criterion is also supported by Lawson66

and by Fragiadakis and Roland.63 Another interesting point is the
connection between the Lindemann and Born criteria, relating
melting to the vanishing of the shear modulus in the crystal. Jin
et al.77 showed that for a LJ system when the Lindemann criterion
is satisfied, the Born criterion78 too holds to a good approxi-
mation. In view of isomorph theory this is not surprising, because
the reduced shear modulus is invariant along an isomorph and
therefore constant on melting.

In Section 5 we discussed the relation between isomorph
theory and Andrade’s viscosity equation from 1934 for the
viscosity of liquid metals at freezing. This equation is equiva-
lent to stating invariance of the reduced viscosity along an
isomorph, eqn (13) and (14). As for the Lindemann criterion,
isomorph theory provides the possibility to predict whether a
liquid will obey the Andrade equation. The DFT simulation data
from Hummel et al.74 explain why this equation holds for liquid
alkali metals (as well as other invariances79); likewise one also
expects this equation to hold for many other metals, for
example, iron. The last point is of significant interest because
the estimation of viscosity of liquid iron close to the freezing line
in the Earth core is of crucial relevance for the development of
Earth-core models,4–6 but is still widely debated.80–82 Isomorph
scaling predicts an increase of the real (non-reduced) viscosity
along the freezing line consistent with the results of Fomin et al.81

8 Conclusions

We have shown that the freezing and melting lines are approxi-
mately isomorphs and how the isomorph theory can be used to
explain why some liquids have simple behavior at freezing and
melting, i.e., have several structural and dynamical approximate
invariants along the freezing and melting lines. Thus this theory can
be used for R liquids to determine the melting and freezing physical
quantities not easily accessible by experiments, ranging from noble
gases like argon to liquid metals to certain molecular liquids.

A Determining the zero-strain rate
viscosity from SLLOD simulations

An SLLOD simulation46–48 is a molecular dynamic simulation
performed by shearing the simulation box with constant speed.
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Between the bottom part of the box and the top part there is a

relative shearing motion with a strain rate _g ¼ @ux
@y

, where ux is

the streaming velocity at ordinate y when the box is sheared in
the x direction. Under low strain-rate conditions, this kind of
simulation reproduces an ordinary, linear Coulette flow and the
linear, shear-rate-independent, viscosity can be calculated from
the stress tensor sij through the equation

Z ¼ sxy
_g

(18)

Eqn (18) holds only when the viscosity is independent of the
strain rate, i.e., at a sufficiently small shear rate. As shown by
Separdar et al.83 the strain rate _g for which the measured
viscosity starts to be strain-rate dependent is isomorph invariant
when given in reduced units.

The behavior of the reduced viscosity ~Z as a function of the

reduced strain rate ~_g is shown in Fig. 12. When the two
considered state points are on the same isomorph, they exhibit
the same shear-thinning behavior in reduced units; this is not
true if we move along an isochore or along an isotherm. The
dotted green line in Fig. 12 marks the reduced strain rate used
for the simulations along the freezing line reported in the paper.
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