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Amylin—Ap oligomers at atomic resolution using
molecular dynamics simulations: a link between
Type 2 diabetes and Alzheimer’s diseaset

Michal Baram,? Yoav Atsmon-Raz,?° Buyong Ma,“ Ruth Nussinov*““ and
Yifat Miller**°

Clinical studies have identified Type 2 diabetes (T2D) as a risk factor of Alzheimer's disease (AD). One of
the potential mechanisms that link T2D and AD is the loss of cells associated with degenerative changes.
Amylin;_3; aggregates (the pathological species in T2D) were found to be co-localized with those of
AB1-42 (the pathological species in AD) to form the Amylin;_3,—AB1_4> plaques, promoting aggregation and
thus contributing to the etiology of AD. However, the mechanisms by which Amylin,_z; co-aggregates
with AB;_4, are still elusive. This work presents the interactions between Amylin, 3, oligomers and AB;_4»
oligomers at atomic resolution applying extensive molecular dynamics simulations for relatively large
ensemble of cross-seeding Amylin;_3z7;—ABi-4> oligomers. The main conclusions of this study are first,
AB1_4, oligomers prefer to interact with Amylin,_3; oligomers to form single layer conformations (in-register
interactions) rather than double layer conformations; and second, in some double layer conformations of
the cross-seeding Amylin;_z;—AB1_4> oligomers, the Amylin,_z; oligomers destabilize the AB;_4> oligomers
and thus inhibit AB;_4»> aggregation, while in other double layer conformations, the Amylin; _3; oligomers

www.rsc.org/pccp

Introduction

Type 2 diabetes (T2D) is one of the most common metabolic
disorders and its prevalence increases with age. Clinical and
epidemiological studies identified T2D as a risk factor of
Alzheimer’s disease (AD).'” Several studies have shown that
there are many similarities between T2D and AD, and that both
conditions underlie common physiological processes.> AD is
characterized by intracellular neurofibrillary tangles (NFTs),
containing an abnormally hyperphosphorylated form of tau
protein, and extracellular senile plaques, mainly composed of
Amyloid B (AP) aggregates. Both Tau and AP aggregates which
are the pathological hallmarks of AD are found in T2D.*’
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stabilize AB;_42 oligomers and thus promote AB;_4, aggregation.

One of the potential mechanisms that link T2D and AD is the
loss of cells associated with degenerative changes.*® AD is a
neurodegenerative disease with extensive neuronal loss resulting
from Tau and AP aggregation. T2D is also a degenerative disease
that results from selective destruction of pancreatic p-cells and
associated neuropathies,” which are caused by aggregation of
the neuroendocrine hormone named “Amylin”.

Recently, Jackson et al.'® identified Amylin deposits in the
temporal lobe gray matter — a major component of the central
nervous system - of diabetes patients. In addition to the Amylin
deposition in the human brain, Amylin aggregates are co-localized
with AP aggregates to form the Amylin-Af plaques, promoting
aggregation and thus contributing to the etiology of AD. Recent
in vivo studies investigated the cross-seeding between AP and
Amylin aggregates.''™ Yet, the mechanisms by which Amylin
co-aggregates with AP are still elusive. Both Af and Amylin
are misfolded peptides. The direct interaction of misfolded
peptides, a topic which to date has been poorly explored, could
play a major role in the genesis and progression of several patho-
logical conditions. Although not extensively studied, in vitro
reports show cross-seeding interactions among several amyloido-
genic proteins.'*° One of these studies'® showed that AB;_4, acts
as a good seed for Amylin, 3, oligomerization; however, Amylin, 3,
aggregates slightly affect soluble AP, ,, oligomerization. A recent
study applied electrospray ionization-ion mobility spectroscopy-mass
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spectroscopy to characterize the dynamics and the kinetics of
Amylin,_3; oligomerization, AB; 4, oligomerization and Amylin, ;-
AB,_yo oligomerization.* The interactions between Amylin,_5, aggre-
gates and AP, 4, aggregates at atomic resolution are still elusive.

Several studies proposed that the sequences of AP, 4, and
Amylin,_3; have 25% identity and 50% similarity and thus some
domains in A and some in Amylin participate in the co-assembly of
AB-Amylin.**° Yet, these studies do not provide the atomic resolu-
tion of the molecular structures of AB,_,,-Amylin, 3, aggregates.
Recently, Berhanu et al.”” investigated the molecular structures of
ABys 40-Amylin, 35 oligomers at atomic resolution. They explored
an ABys_4o oligomer fragment of the sSNMR model of AB;,_4,,”® not
considering the toxic full-length AB;4, oligomer, arguing that
residues 1-16 in the N-terminus of AP are in a disordered domain
and thus unlikely to play a role in aggregation. However, previous
studies have shown that residues 1-16 in the N-terminus of Ap can
play important roles in fibrilization and form a well-organized
B-strand structure.”* It is known that several mutations in the
N-terminus accelerate amyloid formation, such as the English (H6R)
mutation;>* in addition, mutating Ala2 to Thr or Val modifies the AB
aggregation landscape.®>® Amylin,, 35 oligomers of one of the two
structures proposed by the Eisenberg group,* which differ in the
orientation of the residues along the U-turn region and thus can
strongly affect the interaction between AP and Amylin,*® were
explored,””*° but not those proposed by the Tycko group.*" Recently,
our group illustrated that Amylin, 3, oligomers have four variant
models that differ in the orientation of the residues along the
B-strands and the turn region of the B-arch.*” The interactions
between AP and Amylin may differ due to these different orienta-
tions. Although residues 1-7 in the N-terminus of Amylin are not
part of the P-sheet of the experimental models and the disulfide
bridge between Cys2 and Cys7 does not contribute to aggregate
assembly, it may have an effect on AB-Amylin aggregation when
considering single and double layer conformations. Residues Ala8
and Thr9 in Amylin that were overlooked in earlier studies” may
also contribute to AB-Amylin aggregation. Finally, the N-terminus of
AB, residues Asp1-Lys16, may interact with Amylin and thus affect
cross-seeding of AP-Amylin aggregation. Here we study the inter-
actions between AB;_4, oligomers with each of the four models of the
full-length Amylin,_;, oligomers at atomic resolution. Our results led
to two important conclusions. First, all four variant models of the
full-length Amylin, 3, oligomers prefer to interact with AB;_, oligo-
mers to form single layer conformations. Second, interactions
between the cross-seeded species in the single layer and the double
layer conformations affect differently the flexibility (or rigidity) of the
turn region of the self-assembled B-arch amyloids. Finally, residues
in the N-termini of AR and Amylin contribute to the cross-seeding
AB-Amylin aggregation; therefore it is important to consider
the full-length AP and Amylin.

Materials and methods
Molecular dynamics protocol

MD simulations of the solvated oligomers were performed in the
NPT ensemble using NAMD™* with the CHARMM?27 force field.*"*
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The oligomers were energy minimized and explicitly solvated in a
TIP3P water box*®*” with a minimum distance of 15 A from each
edge of the box. Each water molecule within 2.5 A of the oligomers
was removed. Counter ions were added at random locations to
neutralize the charge of the oligomers. The Langevin piston
method**®*° with a decay period of 100 fs and a damping time
of 50 fs was used to maintain a constant pressure of 1 atm. The
temperature (330 K) was controlled by a Langevin thermostat with a
damping coefficient of 10 ps.* The shortrange van der Waals
(VDW) interactions were calculated using the switching function,
with a twin range cutoff of 10.0 and 12.0 A. Long-range electrostatic
interactions were calculated using the particle mesh Ewald method
with a cutoff of 12.0 A.>*** The equations of motion were integrated
using the leapfrog integrator with a step of 1 fs.

The solvated systems were energy minimized for 2000 con-
jugated gradient steps, where the hydrogen bonding distance
between the B-sheets in each oligomer is fixed in the range
2.2-2.5 A. The counter ions and water molecules were allowed
to move. Hydrogen atoms were constrained to the equilibrium
bond using the SHAKE algorithm.>> The minimized solvated
systems were energy minimized for 5000 additional conjugate
gradient steps and 20 000 heating steps at 250 K, with all atoms
allowed to move. Then, the systems were heated from 250 K to
300 K and then to 330 K for 300 ps and equilibrated at 330 K for
300 ps. Simulations ran for 30 ns for each variant model, with a
total run of 960 ns for all models. The structures were saved every
10 ps for analysis. These conditions were applied to all models.

Generalized Born method with molecular volume (GBMV) and
population analysis

To obtain the relative structural stability of the models,
the trajectories of the last 5 ns were extracted from the explicit
MD simulation excluding water molecules. The solvation
energies of all systems were calculated using the generalized
Born method with molecular volume (GBMV).”*** In the GBMV
calculations, the dielectric constant of water was set to 80.0.
The hydrophobic solvent-accessible surface area (SASA) term factor
was set to 0.00592 kcal mol "> Each variant was minimized for
1000 cycles and the conformation energy was evaluated by grid-
based GBMV. The minimization does not change the conforma-
tions of each variant, but only relaxed the local geometries due to
thermal fluctuation which occurred during the MD simulations.
A total of 16 000 conformations (500 conformations for each
of the 32 examined conformers) were used to construct the free
energy landscape of the conformers and to evaluate the con-
former probabilities by using Monte Carlo (MC) simulations.
In the first step, one conformation of conformer i and one
conformation of conformer j were randomly selected. Then, the
Boltzmann factor was computed as e~ Z)/kT, where E; and
E; are the conformational energies evaluated using the GBMV
calculations for conformations i and j, respectively, k is the
Boltzmann constant and T is the absolute temperature (298 K
used here). If the value of the Boltzmann factor was larger than
the random number, then the move from conformation i to
conformation j was allowed. After 1 million steps, the visited
conformations for each conformer were counted. Finally, the
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relative probability of model n was evaluated as P;, = Njy/Niotal, Where
P, is the population of model n, N, is the total number of
conformations visited for model n, and N, is the total steps.
The advantages of using MC simulations to estimate conformer
probability lie in their good numerical stability and the control that
they allow for transition probabilities among several conformers.
Using all 32 models and 16 000 conformations (500 for each
model) generated from the MD simulations, we estimated the
overall stability and populations for each conformer based on the
MD simulations, with the energy landscape being computed with
GBMV for these 32 models. The group that these 32 models are
likely to represent may be only a very small percentage of the
ensemble. Nevertheless, the carefully selected models cover the most
likely structures. It should be noted here that the results obtained in
this study depend on the initial structures and the initial conditions.

Analysis details

We examined the structural stability of the models by following
the changes in the number of the hydrogen bonds between
B-strands, with the hydrogen bond cut-off set to 2.5 A. In addition we
followed the root-mean square deviations (RMSDs) and root-mean
square fluctuations (RMSFs) of all structures. The i/ and ¢ angles of
each residue in the Amylin models were computed for the last 5 ns
to estimate the secondary structure of the self-assembled models.

Reaction coordinates for the formation of Amylin-Ap oligomer
structures

To investigate the stability of each soluble Amylin-Af oligomer
structure, the conformational energies were computed for all
Amylin oligomers and for the Af oligomer (Table S1, ESIT). The
conformational energies for each model are based on the
energy computed with the GBMV method. For each model, a
total of 500 conformations from the last 5 ns of the simulations
were used to evaluate the conformational energy.

We estimated the relative stability of each Amylin-Af model
by comparing its energy with the energies of its two types
of components, the Amylin model and the AP oligomer, as
illustrated by the following chemical “reaction’:

(Amylin),, + (AB), < (Amylin),-(AB), (1)

where 7 indicates the number of monomers within the Amylins’
model and the AP oligomer. In the current study n = 6.

Obviously, single and double layer models may have different
interaction types. Yet, as we previously demonstrated?!—33-40:4%535:56
one can compare the relative conformational energies between the
single and the double layer models to provide insight into these
different interactions. The differences in the interaction types may
explain the differences in the relative energies.

Results and discussion

Experiment-based Amylin,_;, oligomer model, AB,_4, oligomer
model and AB;_4,-Amylin,_;, oligomer model construction

Previously, we illustrated four models of Amylin,_3, that differ
in the orientation of the residues along the backbone of the
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B-strands and along the turn domain of the B-arch structure.*
These four models (M1-M4, Fig. S1, ESI{) were based on the
experimental structures of Tycko*' and Eisenberg.*® Herein,
on the basis of Tycko’s two-fold AP;_4 model,>” we extended
the C-terminus by two residues to form Af;_4,, which is more
toxic than AP;_40. For each of the four Amylin, ;; oligomers
we constructed eight models of AB;_;,-Amylin,_3; oligomers,
where each model consists of six AB;_4, monomers and six
Amylin,;_;; monomers. Four were single layer conformations and
four double layer conformations. Therefore, we constructed
a total of 32 AP;_s,—~Amylin, 3, models. Table 1 details all 32
AB;_4o,-Amylin, ;; models: B1-B8, C1-C8 and D1-D8. Fig. 1
illustrates the eight initial models of AB;_s,—~Amylin, 3, oligo-
mers of one of the four Amylin, 5, models (model M1): B1-BS8.
Similarly we constructed the arrangements between AB; 4,
oligomers and Amylin, 3, oligomers (models M2, M3 and M4).
Fig. S2-S4 (ESIT) demonstrate the other 24 initial AB;_s,-Amylin, 3,
models and Fig. S5-S8 show the 32 simulated AB;_,,-Amylin, 5,
models. Finally, we simulated the AB;_4, oligomer model which
is based on Tycko’s two-fold AB;_4 model (Fig. S9a, ESIf).>”
Interestingly, the simulated AP, 4, oligomer model illustrated a

Table 1 The investigated 32 models of AB;_4,—Amylin;_3; dodecamers:
AB1-42 hexamers are based on Tycko's structure (ref. 51) and the four types
of Amylin;_37 hexamers M1-M4 were taken from Miller's structures (ref. 36)
[based on Tycko's ssSNMR (ref. 35) and Eisenberg's crystal structures (ref. 34)].
AB1-42 hexamers and Amylin; _z7 hexamers in models B3, C3, D3 and E3 are
constructed in an antiparallel orientation. AB;_4> hexamers and Amylin;_z7
hexamers in models B4, C4, D4 and E4 are constructed in parallel dimers
that are organized in an antiparallel orientation

Orientations between

Model Amylin type AP and Amylin
B1 M1 Parallel

B2 M1 Antiparallel

B3 M1 Parallel

B4 M1 Antiparallel

B5 M1 N(AB)-N(Amylin)
B6 M1 N(AB)-C(Amylin)
B7 M1 C(AB)-N(Amylin)
B8 M1 C(Amylin)-C(AB)
C1 M2 Parallel

C2 M2 Antiparallel

C3 M2 Parallel

C4 M2 Antiparallel

C5 M2 N(AB)-N(Amylin)
Cé6 M2 N(AB)-C(Amylin)
c7 M2 C(AB)-N(Amylin)
cs M2 C(Amylin)-C(AB)
D1 M3 Parallel

D2 M3 Antiparallel

D3 M3 Parallel

D4 M3 Antiparallel

D5 M3 N(AB)-N(Amylin)
D6 M3 N(AB)-C(Amylin)
D7 M3 C(AB)-N(Amylin)
D8 M3 C(Amylin)-C(Ap)
E1 M4 Parallel

E2 M4 Antiparallel

E3 M4 Parallel

E4 M4 Antiparallel

E5 M4 N(AB)-N(Amylin)
E6 M4 N(AB)-C(Amylin)
E7 M4 C(AB)-N(Amylin)
E8 M4 C(Amylin)-C(AB)

This journal is © the Owner Societies 2016
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Fig. 1 Constructed initial AB;_42—Amylini_3; dodecamers. AR hexamer is
based on Tycko's structure (ref. 51) and the Amylin hexamer M1 is obtained
from Miller's structures (ref. 36) [based on Tycko's ssNMR (ref. 35) and
Eisenberg's crystal structures (ref. 34)]. Models B1-B4 are single layer
conformations and B5-B8 are double layer conformations.

third B-stand at the C-termini of the monomers (Fig. S9b, ESIY)
leading to a new structural model of the AB;_,, oligomer. Recently,
a novel structural model of the AB;;_4, oligomer provided further
evidence for the highly polymorphic nature of the AP peptide
fibril.>® Polymorphism was also obtained in some of the simulated
AB;_s,-Amylin,_;; models. Structural comparison suggests that the
structural similarity between the AP, 4, oligomer and amylin
oligomers is lower than with the model of the A oligomer in the
current study. It will be interesting to examine the cross-seeding
ABy_4,-Amylin, 5, oligomers using this new AB structure®® as well
as with additional polymorphic states such as the triangular
structure.® Previous ssNMR studies have shown o-helical struc-
tures of Amylin and not cross-f structures.®®* Recent sSNMR
studies presented unstructured AP oligomers® and Amylin oligo-
mers that form large micelles,** which may be a general phenom-
enon for natively unstructured Amylin. We did not apply these
o-helical and the unstructured amylin, or the unstructured AP
oligomers in the current study, because of the lack of the PDB
coordinates. Future work would need to solve these oligomer
structures in order to study the cross-seeding of AB;_s,-Amylin,; 3,
oligomers. Finally, the RMSDs and the hydrogen bond analysis
illustrate that the simulated AB;_4,-Amylin,_;; models are structu-
rally stable (Fig. S10-S15, ESIt).

Single layer conformational arrangements of Af,_,,—Amylin, 3,
oligomer models are preferred over double layer
conformational arrangements

In order to compare the 32 AB;_4,-Amylin, ;; oligomers we
generated 500 conformations for each arrangement by MD
simulations and estimated the conformational energies and
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Fig. 2 Populations of the simulated Ap;_42—Amylin, _3; dodecamers, which
are estimated by Monte-Carlo simulations.

the populations (Table S1, ESIt). Fig. 2 demonstrates the popula-
tions of all 32 AB;_s,-Amylin, 3, oligomers. One can see that
single layer conformations of AB;_4,~Amylin, 3, oligomers with
parallel and antiparallel arrangements (B1, B2, C1, C2, D1, D2, E1
and E2) show the highest populations and thus are preferred over
the two single layer conformations and all the double layer
conformations. We previously showed that in the cross-seeded
AB,5_4,-mutated Tau R2 oligomers the double layer conformations
are preferred over the single layer conformations.>® The prefer-
ence of the cross-seeding of some conformations over others may
be due to the interactions between residues along the sequences
of the various types of amyloids. The interactions that stabilize
structurally and energetically the cross-seeding amyloid oligomers
will yield preferred organizations.

We computed the secondary structures of AB;_4, oligomers in all
32 cross-seeding Amylin, 3,-AP;_4, oligomers (Fig. S16-S23, ESIt).
Interestingly, one can see from Fig. $16-521 (ESIt) that in the single
layer simulated AP;_4,-Amylin, 3; oligomer models and in the
double layer simulated AB;_4,—-Amylin, 3, oligomer models (in which
the C-termini of AP, 4, monomers do not interact with Amylin)
residues Val39-Ala42 in the C-termini of AB;_4, showed formation of
a third B-strand and a second turn region (residues Gly37-Gly38).
The original experiment-based AB,_,, oligomer’” has two B-strands
connected by a U-turn; however, herein our simulations demon-
strate that the AB;_4, oligomer has three p-strands connected by two
turns both when it does not interact with Amylin, 3, oligomers and
when it does. A previous study has shown that isoforms of Tau
repeats form triple-stranded and two-turn structures.®

Common mechanisms between various types of Amylin,_;,
oligomers and AP;_4, oligomers

To investigate the mechanisms by which Amylin, 3, oligomers
interact with AP, 4, oligomers to form the cross-seeded
Amylin, 3,-AB;_4, oligomers, we estimated the “reaction coordinate”
in which Amylin, 3, oligomers interact with AB;_4, oligomers. To
this aim, we computed the relative conformational energies of
the separated oligomers and the cross-seeding Amylin,_3;,-AB;_42

Phys. Chem. Chem. Phys., 2016, 18, 2330-2338 | 2333
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oligomers using the GBMV method>>** for each of the four
Amylin,_;, oligomers (Fig. 3).*> We previously studied similarly
the cross-seeding interactions between two types of amyloids®>>®
and two types of Amylin,_;,.**

Interestingly, the common mechanisms by which Amylin,_;,
oligomers interact with AB;_4, oligomers to form the cross-seeded
Amylin, 3,-AB;_4, oligomers illustrate that each of the four
Amylin, 3, oligomers prefers to interact with an AP, 4, oligomer
to form a single layer conformation in parallel and in antiparallel
orientation, yielding an ‘exothermic reaction’. In some of the four
Amylin, 3, oligomers there are other mechanisms that illustrate
the formation of double layer conformations, but in all four
Amylin, 3, oligomers the common mechanisms show the for-
mation of the single layer conformation. Therefore, the preference
of the single layer conformation indicates a strong cross-seeding
tendency between A, 4, and Amylin, 3, peptides.

The effect of cross-seeding on the structural features of
Amylin,_3, oligomers and AB,_,, oligomers

One of the interesting topics in studying the cross-seeding
between amyloids is to investigate the effect of cross-seeding on
the structural features of the amyloids. The cross-seeding between
Amylin, 3, oligomers and AB;_4, oligomers is of particular inter-
est, because there are four variant models of Amylin,_3, oligomers
that differ in the orientation of the residues along the B-arch
structures and thus we expect that the effect on the structural
features of the various cross-seeding Amylin,_;,~AB;_4, oligomers
may be different.

We first examined the effect on the B-strand of the B-arch
structures of AB;_4, oligomers. The secondary structures of
these oligomers in all 32 cross-seeding Amylin, ;,-AB;_4»

—
Q
'
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AB + Amylin (M1)
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Energy (kcal/mol)
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oligomers were computed (Fig. S16-523, ESIt). In AB;_4, oligo-
mers residues D1-F20 and residues A30-A42 show the properties
of B-strand, but in the cases (models B6, C6, D6 and E6) where
the N-termini of AB; 4, oligomers interact with the C-termini of
Amylin, 3, oligomers to form double layer conformations these
residues do not demonstrate -strand properties. Also, in some
cases (models C5 and D5) where the N-termini of AB;_4, oligo-
mers interact with the N-termini of Amylin, 3, oligomers or in
one case (model B7) where the C-termini of AB;_4, oligomers
interact with the N-termini of Amylin, 3, oligomers these resi-
dues do not show B-strand properties. In such cases the cross-f
structures that characterize the fibrillation of amyloids yield
structurally less stable cross-seeding.

We then examined the fluctuation of the backbone of AB,_,,
oligomers and Amylin,_;; oligomers for each of the 32 cross-
seeding Amylin,;_3,~AB;_4, oligomers using RMSF calculations
(Fig. 4 and 5). Interestingly, in cases (models B6, C6, D6 and E6)
where the N-termini of AP, 4, oligomers interact with the
C-termini of Amylin, 3, oligomers to form double layer conforma-
tions, the turn regions of AP, 4, oligomers fluctuate relatively
more than in other cross-seeding models. These models demon-
strated no B-strand properties, because the interactions in the
double layer conformations do not allow structurally stable struc-
tures. One can see from the simulated models (Fig. S5-S8, ESIY)
that AB;_4, oligomers do not show cross-f structures, and are
structurally unstable oligomers. Finally, those simulated models
that do not exhibit cross-§ structures (models C5, D5 and B7) also
fluctuate in the turn region of the AB;_4, oligomers.

Our results suggest that among the double layer conforma-
tions of the cross-seeding oligomers, the stability of the turn
region domain in the AP, 4, oligomers may be affected by the

(b)

537kcal/mol C6

337kcal/mol C5

3
% 72kcal/mol c8
£ || AB + Amylin (M2) I
&
o t-41kca|/mol Cc7
£ —
-52kcal/mol c2
c1

-201kcal/mol

420kcal/mol | E6

(d)

AB + Amylin (M4)

1-78kcal/mol E8

-96kcal/mol E7

Energy (kcal/mol)

-132kcal/mol | E1

-155kcal/mol E5

-256kcal/mol E2

Fig. 3 The relative conformational energies of separated AB;_4> hexamers and Amylin;_z; hexamers (M1-M4) and AB;_4>—Amylin,_3; dodecamers.
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Fig. 4 The averaged RMSF of residues of ABi_4> in the 32 models of
AB1-42—Amylini_3; dodecamers.
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Fig. 5 The averaged RMSF of residues of Amylin;_z, in the 32 models of
AB1-42—Amylini_3; dodecamers.

interactions with all four Amylin,_;, oligomer variants suggest-
ing that the turn region may affect the fibrillation (or the self-
assembly process) of AB;_4, oligomers. In cases where the turn
regions in AB;_4, oligomers are destabilized due to the interac-
tions with Amylin,_;, oligomers, these interactions may inhibit
aggregation of the AB,;_,, oligomers. Zanni’s group proposed an
aggregation pathway for amylin in which the turn regions of
amylin play a role as initial seeding for aggregation.®® We thus
suggest that in some cases destabilization of the turn regions of
AB,_4, oligomers may inhibit AB,_,, aggregation. However, in
some cases the turn regions in AB;_4, oligomers are stabilized
by these interactions and therefore we expect that these inter-
actions will induce aggregation of AB,_,, oligomers.

Our study illustrates for the first time the importance
of investigating the cross-seeding between full-length AB and
full-length Amylin and that the N-termini play a role in some
cases in the stabilization of the cross-seeding of Apf-Amylin
oligomers. One can see that interactions between residues
in the N-termini of AP and Amylin (those that had not been
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considered earlier*’) stabilize both single and double layer
conformations (Fig. S24-S26, ESIt). On the other hand, inter-
estingly, in some cases the interactions between the Val12 of A
(which is located in the N-terminus) and the C-terminus of
Amylin (residues Ile26 and Leu27) destabilize the AB oligomers
but do not affect the stabilization of Amylin (Fig. S27, ESIT).
Therefore, this is the first study that illustrates the role of the
interactions of the N-termini in cross-seeding AB-Amylin aggre-
gation at atomic resolution. In some cases, the N-termini
are favorable for cross-seeding and in some other cases the
N-termini are unfavorable for cross-seeding.

Finally, we examined the effect of the interactions of AB;_4,
oligomers on the fluctuation of the turn regions of Amylin, ;-
oligomers. Interestingly, one can see from Fig. 5 that the
interactions of AP, 4, oligomers with the variant models of
Amylin, 3, oligomers (M3 and M4) result in fluctuations of the
turn regions of Amylin,_z, oligomers, i.e. flexibility of the turn
regions, which is in contrast with the interactions of AB;_4,
oligomers with the variant models of Amylin,_;, oligomers (M1
and M2) which result in more rigid turn regions. Previously we
showed that the variant models M1 and M2 of Amylin, 3,
oligomers illustrated rigid turn regions, while with the variant
models of Amylin; ;; oligomers M3 and M4 showed flexible
turn regions.*> We thus suggest that the interactions of AB;_4,
oligomers do not affect the structural features of Amylin,_;,
oligomers; rather, in some cases Amylin,_;, oligomers affect the
structural features and the stability of AB;_4, oligomers.

Conclusions

Many, though not all, clinical studies indicate that individuals
with T2D are at higher risk of eventually developing AD or other
dementia,’™ but the connection between these two diseases is
not understood. Recently, Amylin deposits were found in the
temporal lobe gray matter — a major component of the central
nervous system - of diabetes patients.’® In addition to the
Amylin deposition in the human brain, Amylin aggregates were
found to co-localize with AP aggregates to form Amylin-AB
plaques, promoting aggregation and thus contributing to the
etiology of AD. The mechanisms by which Amylin co-aggregates
with A are still elusive. Herein, we present for the first time the
co-aggregation between the full-length AB;_,, oligomer and
each of the four variants of the full-length Amylin,_;, oligomers
that we have recently established.*> Here, we focus on the
parallel B-sheet structure of the AB,_4, oligomer, although the
antiparallel B-sheet structure of AB;_40 oligomers has also been
considered as a toxic species.®” Yet, it is known that AB;_4, is
more toxic than AB;_40. The toxicity of A oligomers to neuronal
cells has been demonstrated to occur via a two-step mechanism
of membrane disruption.®®

Two important observations emerge from this study. First,
all four variant models of the full-length Amylin, 3, oligomers
preferred to interact with AB;_,, oligomers to form polymorphic
single layer conformations. Second, the interactions between
the cross-seeding Amylin; ;,-AB;_4, oligomers both in single
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and in double layer conformations affect the structural features
differently. In particular, the differences center on the flexibility/
rigidity of the turn region and the order/disorder of the B-strands
in the self-assembled B-arch amyloids. Finally, while studying
cross-seeding Amylin, ;,-AB;_4, oligomers, it is important to
investigate the full-length of these amyloids because of the role
that the terminal residues may play in the stabilization of the
hetero-oligomers. Understanding the mechanisms and the range
of structural features of the co-aggregates of Amylin, ;,-AB;-45
oligomers is of crucial importance for effective drug design to
reduce co-aggregate formation and maybe to prevent patients
with T2D from developing AD in later life. A recent study
demonstrated the cross-seeding effects of bacterial curli on
semen enhancer of viral infection (SEVI), AB and Amylin.®® This
experimental study reports important implications and it would
be useful to further strengthen this study using MD simulations,
as reported in the present study.
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