Volume 18 | Number 6 | 14 February 2016 | Pages 4225-5058

PCCP

Physical Chemistry Chemical Physics

WWW.rsc.org/pccp

ISSN 1463-9076

\n

' ROYAL SOCIETY PAPER o
OF CHEMISTRY Adam J. Trevitt et al. ﬁ
Formation and stability of gas-phase o-benzoquinone from oxidation of b2

" ortho-hydroxyphenyl: a combined neutral and distonic radical study




Open Access Article. Published on 19 October 2015. Downloaded on 2/2/2026 1:05:39 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

PCCP

ROYAL SOCIETY

OF CHEMISTRY

View Article Online
View Journal | View Issue

CrossMark
& click for updates

Cite this: Phys. Chem. Chem. Phys.,
2016, 18, 4320

Received 22nd May 2015,
Accepted 12th October 2015

DOI: 10.1039/c5cp02953h

www.rsc.org/pccp

1. Introduction

Formation and stability of gas-phase
o-benzoquinone from oxidation of ortho-
hydroxyphenyl: a combined neutral and distonic
radical study+

Matthew B. Prendergast,® Benjamin B. Kirk,” John D. Savee,® David L. Osborn,®
Craig A. Taatjes,® Kye-Simeon Masters,® Stephen J. Blanksby,® Gabriel da Silva" and
Adam J. Trevitt*®

Gas-phase product detection studies of o-hydroxyphenyl radical and O, are reported at 373, 500, and
600 K, at 4 Torr (533.3 Pa), using VUV time-resolved synchrotron photoionisation mass spectrometry.
The dominant products are assigned as o-benzoquinone (CgH4O,, m/z 108) and cyclopentadienone
(CsH40, m/z 80). It is concluded that cyclopentadienone forms as a secondary product from prompt
decomposition of o-benzoquinone (and dissociative ionization of o-benzoquinone may contribute to
the m/z 80 signal at photon energies 9.8 eV). lon-trap reactions of the distonic o-hydroxyphenyl
analogue, the 5-ammonium-2-hydroxyphenyl radical cation, with O, are also reported and concur with
the assignment of o-benzoquinone as the dominant product. The ion-trap study also provides support
for a mechanism where cyclopentadienone is produced by decarbonylation of o-benzoquinone. Kinetic
studies compare oxidation of the ammonium-tagged o-hydroxyphenyl and o-methylphenyl radical
cations along with trimethylammonium-tagged analogues. Reaction efficiencies are found to be
ca. 5% for both charge-tagged o-hydroxyphenyl and o-methylphenyl radicals irrespective of the charged
substituent. G3X-K quantum chemical calculations are deployed to rationalise experimental results for
o-hydroxyphenyl + O, and its charge-tagged counterpart. The prevailing reaction mechanism, after
O, addition, involves a facile 1,5-H shift in the peroxyl radical and subsequent elimination of OH to yield
o-benzoquinone that is reminiscent of the Waddington mechanism for B-hydroxyperoxyl radicals. These
results suggest o-hydroxyphenyl + O, and decarbonylation of o-benzoquinone serve as plausible OH
and CO sources in combustion.

Phenol is a product of catechol thermal decomposition,” benzene
and hydroxyl radical reactions® as well as phenyl® and benzyl

Phenolic compounds, including alkylphenols, represent a sub-
stantial portion of lignin-derived biofuel stocks" and the lighter
fractions from lignite pyrolysis.” They are also used as additives
to enhance the oxidative stability of biodiesel and diesel.*®
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radical oxidation."

The pyrolysis of phenol proceeds with H-migration and CO
elimination to produce cyclopentadiene or, at higher tempera-
tures, H-loss to produce the phenoxyl radical."' Investigations
into the phenol + OH reaction report the H-abstraction product
as the phenoxyl radical.’®"* However, at >390 K, H-abstraction
from the phenyl ring and OH addition reactions are also expected
with the former process resulting in hydroxyphenyl radicals."*
The o-hydroxyphenyl radical is an intermediate in the pyrolysis
reaction reported for dimethoxybenzene (a model compound
for the B-04 aryl ether unit within G-type lignin)."® The addition
of O, to the o-hydroxyphenyl radical site will produce the
o-hydroxyphenylperoxyl radical, with its hydroxy H-atom within
close proximity to the peroxyl radical substituent. As is the case
for the o-methylphenylperoxyl radical,'®"” o-hydroxyphenylperoxyl
is expected to isomerise and eliminate OH via a phenoxyl QQOH
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intermediate to produce o-benzoquinone (0-BQ), a known pre-
cursor to cyclopentadienone (CPO) + CO."® ! This mechanism
was reported for the oxidation of protonated tyrosinyl radicals>*
and has some similarities to the Waddington mechanism for
B-hydroxyperoxyl radicals.>** Yet, to date, no direct experimental
results have validated this mechanism for the o-hydroxyphenyl +
O, reaction system.

In this work, we report reactions of gas-phase o-hydroxyphenyl
with O, using two approaches: synchrotron-based time-resolved
photoionisation mass spectrometry and distonic-ion mass
spectrometry. The synchrotron-based method couples a slow-
flow kinetic reactor to a time-of-flight mass spectrometer and
VUV photoionisation that allows detection of reaction products
with kinetic and isomeric details. The distonic ion approach
exploits charge-tagged derivatives of neutral radical species to
study radical kinetics by ion-trap mass spectrometry.>® These
distonic ion oxidation experiments build on a framework pro-
vided by previous studies of distonic phenyl*” and o-methylphenyl
radical oxidation.'” In combination, we show that OH elimination
follows the reaction of o-hydroxyphenyl radicals with O, to form
0-BQ. The stability of this nascent 0-BQ is also investigated.

2. Experimental
2.1 Synchrotron photoionisation mass spectrometry

The o-hydroxyphenyl + O, reaction was investigated using time-
resolved photoionisation mass spectrometry®® at the Chemical
Dynamics Beamline®***® at the Advanced Light Source (ALS at
Lawrence Berkeley National Laboratories, USA). The apparatus
comprises a slow-flow tube reactor, quasi-continuous vacuum-
ultraviolet (VUV) synchrotron light source and an orthogonal
acceleration time-of-flight mass spectrometer. o-Hydroxyphenyl
radicals were generated within the flow tube by photolysis of
o-bromophenol using a pulsed KrF excimer laser (248 nm)
operating at 4 Hz with a fluence of ca. 50 mJ cm 2.

The heatable quartz reactor flow tube is 62 cm long with a
1.05 cm inner diameter maintained at 4 Torr (533.3 Pa). Gas
continuously escapes the reactor into a differentially pumped
vacuum chamber through a 650 um pinhole situated 37 cm along
the flow tube. In the experiments reported here, o-bromophenol,
O, gas, and He gas are supplied to the reactor through separate
mass-flow controllers at the overall rate of 202 sccm. The
o-bromophenol was entrained in He gas using a fritted bubbler
with the liquid sample maintained at 291 K (18 °C) and ~ 573 Torr
(76.4 kPa). The vapour pressure of o-bromophenol is roughly
approximated at 291 K to be 0.17 Torr using Antoine parameters
known for phenol.*! At 373 K and 4 Torr, number densities within
the reactor are ca. 1.7 x 10" molecule cm ™ for o-bromophenol,
7.7 x 10" molecule cm™® for O, gas, and a total of 9.6 x
10"® molecule cm ™2 for He gas. Reactions were conducted with
the reactor temperature maintained at 373 K, 500 K and 600 K.
The temperature profile of the reactor is such that the length
ca. 20 cm above the pinhole is maintained at the set tempera-
ture. Gas flow velocities are as follows: 10.1 m s * at 373 K,
13.5 m s " at 500 K, and 16.2 m s~ at 600 K. Total gas flow
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densities were: 1.0 x 10" molecule cm™ at 373 K, 7.7 X

10'® molecule cm™ at 500 K, and 6.4 x 10'® molecule cm™
at 600 K.

The gas that escapes through the 650 um pinhole is sampled
by a skimmer to create a near-effusive molecular beam that
is intersected by quasi-continuous vacuum-ultraviolet (VUV)
synchrotron light. Ions produced by photoionisation are detected
using a 50 kHz pulsed orthogonal-acceleration time-of-flight mass
spectrometer. The photoionisation energy was typically scanned
from 9 to 10 eV with 0.025 eV steps. Mass spectra are compiled
into three-dimensional arrays of mass-to-change (m/z), reaction
time, and photoionisation energy. All data are normalised for
variations in the ALS photocurrent using a NIST-calibrated photo-
diode (SXUV-100, International Radiation Detectors Inc.). Back-
ground subtraction is achieved by subtracting the average signal
during the 20 ms prior to the photolysis pulse from the dataset.
The resulting photoionisation spectra and kinetic traces are
normalised by the area under the curve and averaged together
for each temperature. The error bars provided at a given photo-
ionisation energy represent two standard deviations (20) for a
mean of at least three measurements at 373 and 500 K, and two
measurements at 600 K.

2.2 Ion-trap mass spectrometry

Distonic radical cation experiments were conducted on a modified
Thermo Fisher Scientific LTQ ion-trap mass spectrometer (Thermo
Fisher Scientific Inc., San Jose, USA) situated at the University of
Wollongong. Radical precursor ions were generated by infusing
methanolic solutions of 10 pM 2-bromo-4-aminophenol (M + H]"
at m/z 188 and 190), 3-bromo-4-methylaniline (M + H]" at m/z 186
and 188), or 3-iodo-4-hydroxy-N,N,N-trimethylbenzenaminium
iodide ([M — I]" at m/z 278) into the electrospray ion source at
5 uL min~" and were mass-selected using an isolation window
of 5-6 Th (mass-to-charge) for brominated, and 1-2 Th for the
iodinated cations with a g-parameter of 0.250. Mass spectra
acquired with the ion-trap mass spectrometer and presented
herein are an average of 50 scans unless otherwise stated.
Typical instrumental settings: electrospray voltage (4-5 kV),
capillary temperature (250 °C), and sheath gas flow at 10-15,
auxiliary gas flow at 0-5 and sweep gas flow at 0 (arbitrary units).
The normalised collision energy was typically 20-30% (ref. 32) for
CID experiments with an activation time of 30 ms as defined
within the control software.

2.2.1 Photodissociation (PD). Modifications to the ion-trap
mass spectrometer required for PD of trapped ions are similar
to those previously reported®*=* and are detailed elsewhere.**=¢
At the beginning of a specified MS” ion activation step, where
laser PD is desired, the mass spectrometer transmits a signal to a
digital delay generator that subsequently triggers the flashlamp of
the Nd:YAG laser (4th harmonic, 4 = 266 nm) such that only a
single laser pulse is delivered per MS" cycle. The unfocussed laser
pulse (ca. 30 mJ cm™?) is directed through a 2 mm orifice in the
back lens of the ion-trap assembly to overlap with the ion cloud
within the ion trap.

2.2.2  Ton-molecule reactions. Distonic radical cations generated
within the ion trap were mass selected and then allowed to
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react with O, for 0.030-10 000 ms (set by the control software).
Background O, resides in the trap due to air entrained by the
atmospheric pressure ESI source. Reactions were also conducted
with an increased O, concentration by using a He bath gas
doped with O, (770 £ 45 ppm; BOC, Australia). Similarly, a He
bath gas doped with oxygen-18 was used for isotopic labelling
experiments.

The O, concentration (molecule em™) within the ion-trap
region was determined using the measured pseudo-first order rate
coefficient for 3-carboxylatoadamantyl + O, and its known second-
order rate coefficient of 8.5 & 0.4 x 10" cm® molecule " s~ " with
the O, concentration determined for each experiment.’” The
background O, concentration within the ion trap is typically
6.4 x 10° molecule cm ™2 and the increased O, concentrations
ranged from 1.6-2.2 x 10'! molecule cm* with an O,-doped
bath gas. The effective temperature of ions stored within a
linear quadrupole ion trap has been estimated at 318 + 23 K,*®
consistent with an earlier estimate of 307 K.*”

The kinetic plots that show ion signal decay with increasing
reaction time were produced by integrating the ion signal
intensity over a selected mass-to-charge range and normalising it
to the integrated total ion signal intensity. The normalised inte-
grated ion signal intensity is then averaged for at least 10 scans
and plotted against reaction time (0.030-10000 ms) to track
changes in ion signal intensity due to reactions with O,. Measured
pseudo-first order rate coefficients (k;s) were obtained by fitting
eqn (1) to the average normalised integrated peak intensity against
reaction time, for a select mass-to-charge range, using the
Levenberg-Marquardt algorithm. Satisfactory fits with eqn (1)
are consistent with pseudo-first order kinetic behaviour. Thus,
allowing the second-order rate coefficient (k,,q) to be calculated
using eqn (2) with a measured [O,]. The residual plots accom-
panying kinetic curves in Fig. 5, Fig. S7, and S8 (ESIt) show the
difference between the average normalised integrated ion signal
intensity and the expected value from eqn (1), ie. the residuals,
plotted as a function of reaction time.

Yy = Ap exp(—kist) + constant (1)
klst

kond = 2

= 10,] (2)

At least five kinetic decay curves were acquired in succession to
ensure consistent conditions, with one decay curve taking
20-30 min to acquire. For the ion-molecule reactions below,
pseudo-first order kinetic character was observed. The second
order rate coefficient for 5-ammonium-2-hydroxyphenyl + O, is
an average from 17 decay curves over three experiments at low
[0,] and 20 decay curves over two experiments at increased [O,].
The 5-ammonium-2-methylphenyl + O, second order rate coeffi-
cient is calculated as the average of 19 decay curves at low [O,] and
30 decay curves at increased [O,] over three experiments at each
concentration. The second-order rate coefficient for 5-(N,N,N-
trimethylammonium)-2-hydroxyphenyl radical + O, is an average
of 5 decay curves at low [O,]. Reported reaction efficiencies were
calculated from the second-order rate coefficients as a percentage
of the reactants’ collision frequency estimated using the Langevin
collision model for ion-molecule collision pairs.*
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Statistical uncertainty from fitting pseudo-first order rate
coefficients (k;5) to experimental decay curves was typically
20 < 10%. Systematic uncertainty in the ion-trap pressure and
O, concentration, including the generation of neutrals and
charged species with mass-to-charge less than the low mass
cut-off (50 Th) result in an upper limit of 50% uncertainty in the
O, concentration that is accumulated in reported second-order
rate coefficients and reaction efficiencies.

2.3 Quantum chemical calculations

Reaction enthalpies were calculated from electronic energies
computed with the G3X-K composite method*’ in Gaussian 09.**
G3X-K is a modified G3SX composite method that uses M06-2X
density functional theory in place of B3LYP and is parameterised
for thermochemical kinetics. It is capable of reproducing barrier
heights in the DBH24/08 test set** to within 1 kecal mol™", on
average.*® The CBS-QB3 method was used for the calculation of
adiabatic ionisation energies (AIE) and cation dissociation
barriers, with an estimated error of 1 kcal mol~* (0.05 eV) for
AIEs**** and 2 kcal mol " for barriers from the DBH24/08
database.** All stationary points were characterised as either
minima (no imaginary frequencies) or transition states (one
imaginary frequency whose normal mode projection approxi-
mates motion along a reaction coordinate). The assignment of
a transition state between minima was verified by IRC calculations.
The M06-2X geometries and frequencies and G3X-K energies were
used to calculate preliminary product ratios within the MultiWell
2013 suite of programs.*® All reported energies include the zero-
point energy correction for 0 K enthalpies and AIEs.

2.4 Materials

3-Bromo-4-methylaniline, 4-amino-2-bromophenol, oxygen-18
(97%), and o-bromophenol (98%) were purchased from Sigma
Aldrich. Gases and reagents obtained from commercial sources
were used without further purification. The synthesis of 3-iodo-
4-hydroxy-N,N,N-trimethylbenzenaminium iodide is described
in Section 1 of the ESI.t

3. Results and discussion

3.1 Synchrotron photoionisation mass spectrometry:
o-hydroxyphenyl + O,

Fig. 1a is a product mass spectrum after photolysis of o-bromo-
phenol with no O, added to the reactor, serving as a back-
ground measurement. The spectrum is integrated from 0 to
20 ms after photolysis at a photoionisation energy of 10 eV with
a reactor temperature of 373 K. Major photolysis product peaks
are present at m/z 92 and 94. The photoionisation (PI) spectra
for m/z 92 and 94 (not shown) are well matched to the integrated
photoelectron spectrum for -cyclopenta-2,4-dien-1-ylidene-
methanone (CsH,CO, AIE = 8.09 eV)**™*® and the known photo-
ionisation spectrum for phenol (C¢HsOH, AIE = 8.49 eV),"*™!
respectively. However, since the characteristic AIEs are below
the photoionisation energy range scanned, these are tenta-
tive assignments for these background species. As an aside,
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Fig. 1 Product photoionisation mass spectra at 373 K and 10 eV integrated 0—20 ms after 248 nm photolysis of (a) o-bromophenol and (b) o-bromophenol

in the presence of additional O (7.7 x 10*° molecule cm™3)

.In product spectrum (b) m/z 108 and 80 are reaction product peaks but, as discussed in the text,

a portion of the m/z 80 signal may arise from dissociative ionisation of 0-BQ (assigned to m/z 108).

cyclopenta-2,4-dien-1-ylidenemethanone (CsH,CO, m/z 92) may
arise from o-bromophenol photolysis via HBr loss>* and phenol
(CeH5OH, m/z 94) is probably formed via H-abstraction by the
m/z 93 radical from the abundant o-bromophenol precursor.
Fig. 1b is a product mass spectrum from photolysis of
o-bromophenol in the presence of 7.7 x 10" molecule cm* 0,.
The new product peaks at m/z 80, 108 and the minor peak at
m/z 110 are consistent with CsH,0O, C¢H,0O,, and CcHgO, and
are attributed to the o-hydroxyphenyl + O, reaction. The PI
spectra for m/z 80 and 108, integrated 0 to 20 ms after photo-
lysis at 373 K, are provided in Fig. 2a and b. PI spectra at 500 K
and 600 K are provided in the ESIt (Fig. S1 and S2, respectively).
The PI onsets for m/z 80 at 9.4 eV and m/z 108 at 9.2 eV are in
agreement with reference spectra for cyclopentadienone (CPO,
m/z 80) and o-benzoquinone (0-BQ, m/z 108),>*>° and consistent
with AIEs provided in Table 1. Ionization onsets for CPO and
0-BQ were recently reported by Ormond et al.>® and compared
within the inset of Fig. 2. The p-benzoquinone isomer can be
excluded as a m/z 108 product contributor as its AIE is 9.96 eV
with a sharp photoionisation onset,”>*® and there is no such
feature in the PI spectrum up to 10 eV. The m/z 109 signal
present in mass spectra obtained at 373, 500 and 600 K (ESI,{
Fig. S3) could result, in part, from decomposition of o-hydroxy-
phenylperoxyl to o-hydroxyphenoxyl + O(*P). The hydroxyphenoxyl
cation is expected at m/z 109, however unequivocal assignment
of the m/z 109 species is confounded by the '*C isotope peak of
the dominant m/z 108 product. In unpublished studies, we have
observed phenoxyl radical decay that is kinetically matched to
the growth of a +1 Da ion signal intensity. A m/z 110 product ion
is present in Fig. S3 (ESIt) and kinetic traces in Fig. S5 (ESIt)
show that the appearance of m/z 110 ions is delayed relative to
m/z 108 ions (a primary product kinetic reference). Therefore,
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(a)
=O=m/z 80 at 373 K
wimn Ref, 53 === Ref. 54

ion intensity (arb. units)

(b)
=O=m/z 108 at 373 K
mumn Ref. 53

ion intensity (arb. units)

9.0 10.0

2 9.4 9.6 9.
photoionization energy (eV)

Fig. 2 Photoionisation spectra integrated 0-20 ms after photolysis for
(@) m/z 80 and (b) m/z 108 from o-hydroxyphenyl + O, at 373 K. Each
spectrum is an average of three Pl spectra and the 20 statistical uncertainty
is represented by vertical error bars. Figures inset within (a) and (b) compare
the experimental Pl spectra near the onset to reference spectra for CPO and
0-BQ from ref. 53 (1000 K). Reference PI spectra are also provided in (a) for
CPO from ref. 54 and 55 (873 K).

the delayed appearance of m/z 110 ions could be explained via
H-abstraction by the o-hydroxyphenoxyl radical to produce
o-catechol (CcH,OHOH, m/z 110).

The detection of 0-BQ (m/z 108) is rationalised by O, addi-
tion to the o-hydroxyphenyl radical, followed by isomerisation
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Table 1 Measured photoionisation thresholds for m/z 80 and 108 com-
pared to calculated CBS-QB3 AIE for CPO, 0-BQ and p-benzoquinone.
Literature vertical (VIE) and adiabatic ionisation energies (AIE) are provided
with the original reference

Measured Calculated

Species (eV) AIE (eV) Literature values
Cyclopentadienone 9.4 9.41 9.41 £ 0.01 (AIE)*
(CPO, m/z 80)

o0-Benzoquinone 9.2 9.18 9.3 £ 0.1 (AIE)*?
(0-BQ, m/z 108)

o-Hydroxyphenoxyl radical 8.14

(m/z 109)

o-Hydroxyphenol 8.14 8.56 (VIE)***7
(catechol, m/z 110)

p-Benzoquinone (p-BQ) 9.89 9.96 + 0.01 (AIE)*®°°

of the hydroxyphenylperoxyl intermediate to hydroperoxyphenoxyl
and subsequent OH loss to form 0-BQ (Scheme 1). This pathway is
analogous to the O, addition and subsequent OH loss mechanism
that operates in the o-methylphenyl + O, reaction*®'” and OH loss
in the Waddington mechanism for B-hydroxyperoxyl radicals.>*>*
Scheme 1 also includes pathways from 0-BQ that lead to CPO and
the CPO radical cation that will now be discussed.

Included in Fig. 2a are reference PI spectra for CPO from
Yang et al.>* and Parker et al.>® The close agreement between
the m/z 80 and reference PI spectra shown in Fig. 2a from 9 to
9.8 eV support our assignments of m/z 80 as CPO. It is evident
that at PI energies >9.8 eV all m/z 80 PI spectra diverge with the
reference spectra under-predicting the current experimental
data. Additional PI spectra acquired at 500 and 600 K (Fig. S1
and S2, ESIt) also diverge from the reference spectra at PI
energies >9.8 eV.

View Article Online
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The possibility of other CsH,0 isomers contributing to the
m/z 80 ion signal was ruled out by calculating AIEs for closed-
shell linear CsH,O isomers listed in Table S1 (ESIt). Isomers
were excluded on the basis of having: an AIE <9.2 eV, or an
AIE >10.0 eV and a relatively high formation enthalpy. As it
stands, CPO is the only plausible isomer contributing to the
m/z 80 PI spectra, however, the source of neutral CPO and the
cause of the disparity around 9.8 eV in the m/z 80 PI spectra
(Fig. 2a) require further examination.

The systematic differences between the m/z 80 signal and
CPO reference spectra in Fig. 2a at photoionisation energies
>9.8 eV could arise from dissociative ionisation of higher mass
species, where 0-BQ is a likely candidate. It is known that
dissociative ionisation of 1,2-naphthoquinone and 9,10-phenan-
threnequinone result in CO loss (both contain the 0-BQ sub-
structure).”® Fig. S3 (ESIt) shows product mass spectra at 373,
500 and 600 K integrated over two energy ranges; 9.40-9.75 eV
(Fig. S3a-c, ESIt) and 9.85-10.00 eV (Fig. S3d-f, ESIT). These
mass spectra reveal some variation in the product ratios but no
additional product signals. Comparing the kinetic traces for
m/z 80 and 108 at 500 K integrated over 9.40-9.75 eV (Fig. S4a,
ESIt) shows that the kinetic traces are clearly different and
consistent with the dominant fraction of each ion population
arising from photoionisation of different neutrals. However, at
higher energies (9.85-10.00 eV, Fig. S4b, ESIt), the m/z 80 and
108 kinetic traces appear more similar - this is consistent with
a portion of C¢H,0, (108 Da) undergoing dissociative ionisa-
tion to yield product ions with m/z 80. Furthermore, the
potential energy scheme for CO loss from the 0-BQ radical
cation (m/z 108) provided in Fig. 3 shows the cation dissociation
barrier to be 9.7 eV relative to neutral 0-BQ. These results

+0, -OH
> — — e Q + CO
0o OOH o]
OH OH o) o} 0
hVALSl hvars
.ot .4
E—
Qo dissociative Q +CO
o ionisation 0
m/z108 m/z 80
Scheme 1

< 9.8+ ke
2 9.6
3 9.4- o

o}

photoionisation ener:
9.18 eV

AIE=9.
o

[0)

0.0-

9.73 ¢V

AE =

Fig. 3 Potential energy schematic that depicts loss of CO from the 0-BQ radical cation. CBS-QB3 0 K enthalpies are provided in kcal mol™ relative to
the 0-BQ radical cation. CBS-QB3 AIE and dissociation barrier are provided in eV relative to 0-BQ.
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support the proposition that at photoionisation energies >9.8 eV
some of the m/z 80 signal arises from the dissociative ionisation of
0-BQ. This contribution is in addition to the ionisation of CPO
produced within the reactive flow.

Analogous to product pathways of the phenylperoxyl radical in
phenyl + O, reactions,”*®* CPO could be produced after decom-
position of hydroxyl-substituted oxepinoxyl radicals. Unimolecular
reaction pathways leading directly to CPO are discounted on the
basis of experiments in Section 3.2 and prohibitively high energy
pathways reported in Section 3.3.3. Ultimately, we propose that
the m/z 80 and 108 products are generated according to processes
summarised in Scheme 1: the o-hydroxyphenyl radical undergoes
O, addition to form the hydroxyphenylperoxyl radical and sub-
sequent OH loss to produce 0-BQ. And, a portion of the nascent
vibrationally-excited 0-BQ population then decomposes via
decarbonylation to produce CPO.'*?° In addition, dissociative
ionisation of 0-BQ possibly contributes to the measured m/z 80
signal at energies >9.8 eV.

To further establish connections between the reaction pro-
ducts of o-hydroxyphenyl + O, (¢f. Scheme 1), charge-tagged
derivatives of o-hydroxyphenyl radicals were prepared within an
ion-trap mass spectrometer (at the University of Wollongong).
The study of distonic radical ions can provide useful insight
into the reactions of their neutral radical counterparts. The
presence of a relatively unreactive charged substituent enables
isolation and manipulation of reactive intermediates using ion-
trap mass spectrometry, while products arise from reactions
with the spatially separated radical moiety.'”*>** Quantum
chemical calculations were also conducted, and discussed later
in Section 3.3, to rationalise experimental results for both the
neutral and charge-tagged systems.

3.2 Ion-trap mass spectrometry: distonic o-hydroxyphenyl + O,

Photodissociation (PD, / = 266 nm) of isolated m/z 188 and 190
ions ([M + HJ', assigned 3-bromo-4-hydroxybenzaminium cation)
resulted in the m/z 109 signal in Fig. 4a. The m/z 109 ion,
consistent with Br loss, was assigned to the 5-ammonium-2-
hydroxyphenyl radical cation shown in Scheme 2. Isolation of
this radical cation in the presence of background O, (6.4 X
10° molecules cm ) resulted in a major product ion at m/z 124
and a minor product ion at m/z 96 (< 1%) that both grew in with
increasing reaction times (0.030-10 000 ms). A mass spectrum
acquired with 2000 ms reaction time is shown in Fig. 4b. The
m/z 124 product ion is rationalised by O, addition to the charge-
tagged 2-hydroxyphenyl radical followed by prompt OH elimi-
nation to yield 4-ammonium-2-benzoquinone.

The mass spectrum in Fig. 4c, from isolation and subsequent
collision-induced dissociation (CID) of m/z 124 product ions,
shows major signals at m/z 96 and 107 and minor signals at
m/z 79 and 81. The product ion at m/z 96 (—28 Da) is consistent
with decarbonylation of ammonium-tagged o0-BQ to yield
ammonium-tagged CPO + CO. Fragment ions at m/z 107, 79,
and 81 are assigned to loss of NH; (—17 Da), NH; + CO (—45 Da)
and NC,H; or C,H;0 (—43 Da) from m/z 124, respectively. To
verify these assignments, '®0, was introduced into the ion trap
and reacted with m/z 109 radical cations. The m/z 126 ions
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Fig. 4 Mass spectra resulting from (a) PD of 3-bromo-4-hydroxybenzen-

aminium (m/z 188 and 190), (b) isolation of m/z 109 ions resulting from

266 nm PD of 3-bromo-4-hydroxybenzenaminium and storage for 2 seconds

in the presence of background O, (10° molecules cm™), and (c) CID of the

product ion at m/z 124. Experiments were repeated with ¥0, and (d) the

product ion at m/z 126 was subjected to CID.

produced are consistent with **0, addition and **OH loss (—19 Da,
Fig. 4d) and exclude any contribution of NH; loss (—17 Da).
Isolation and subsequent CID of the m/z 126 ions resulted in
fragments at m/z 96 and 98 consistent with loss of C'®*0 and
C'°0 from '®0O-labelled 0-BQ to yield CPO. Taken together,
these data demonstrate a connection between the 0-BQ inter-
mediate (m/z 124) and the CPO structure (m/z 96) via processes
summarised in Scheme 2. These data do not provide evidence
for a “phenyl-like” oxidation mechanism for the direct forma-
tion of CPO via phenoxyl and oxepinoxyl radicals.>*"®* Other
fragment ions at m/z 79, 81, 83, and 109 are assigned to loss of
NH; + C'®0 (—47 Da), NH; + C'°0 or C,H;"%0 (—45 Da), NC,H; or
C,H;"'°0 (—43 Da), and NH; (—17 Da) from m/z 126, respectively.

Potential energy schemes for formation of 0-BQ and CPO are
compared and discussed for both neutral and distonic cases in
Section 3.3. Reactions of the PD generated 5-ammonium-2-
hydroxyphenyl radical cation (m/z 109) with O, were charac-
terised further by kinetic measurements.

3.2.1 Distonic ion + O, reaction kinetics. Product mass
spectra for the reactions of m/z 109 ions with background O,
([0,] = 6.4 + 0.4 x 10° molecules cm?) and increased O,
concentrations ([O,] = 1.6-2.2 x 10"" molecules cm ) were
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Fig. 5 Kinetic curves for m/z 109 (solid blue circles), from PD of 3-bromo-4-hydroxybenzaminium cations, in reactions with (a) background O,
(6.4 x 10° molecules cm™) and (b) increased O, (1.9 x 10 molecules cm™). Residual plots from the fitting of eqn (1) are provided above. The m/z 124
product data are shown (red diamonds) and track with a rate coefficient in agreement with the m/z 109 decay (within 2¢). Error bars are 1o.

recorded as a function of reaction time. The normalised inte-
grated intensity for a selected mass-to-charge range (1-2 Th) was
plotted against reaction time (0.030 to 10000 ms) to produce
kinetic curves that describe decay of m/z 109 ion signal intensity
due to reactions with O,.

A single exponential decay (eqn (1)) was satisfactorily fitted
to the experimental data, in accord with pseudo-first order
kinetic behaviour. Representative kinetic curves for m/z 109 and
124 ions are provided in Fig. 5 with fitted data and residuals
from eqn (1) for m/z 109 signal decay. The k; 4 values for m/z 109
signal decay and m/z 124 signal growth are in agreement (e.g., in
Fig. 53, 1.9 + 0.2 s compared to 1.8 + 0.1 s~ within 2¢) and
the m/z 124 intensity is well matched to the m/z 109 signal
decay. This indicates that m/z 124 ions are the main reaction
product from depletion of m/z 109 ions. As shown in Fig. 5b, at
increased O, concentrations the m/z 109 ion signal intensity
ultimately approaches a constant value of ca. 10% at 1000 ms
and remains constant up to a reaction time limit of 10 000 ms.
This indicates the presence of an unreactive isomer (or isomers)
and is accounted for by the constant offset included in eqn (1).

Additional experiments that compare the oxidation kinetics
of the ammonium-tagged o-hydroxyphenyl and o-methylphenyl
radical cations along with trimethylammonium-tagged analogues
are now described. Sample kinetic plots are provided in Fig. S7
(ESIt) for oxidation of 5-ammonium-2-methylphenyl radical
cations (m/z 107) and in Fig. S8 (ESIf) for 5-(N,N,N-trimethyl-
ammonium)-2-hydroxyphenyl radical cations (m/z 151). For reac-
tions of 5-ammonium-2-methylphenyl radical cations (m/z 107)

4326 | Phys. Chem. Chem. Phys., 2016, 18, 4320-4332

the non-zero horizontal offset (shown in Fig. S7b, ESIt) is ca. 40%
of the isolated m/z 107 ion population. Interestingly, &, values for
5-ammonium-2-methylphenyl radical (m/z 107) and 5-ammonium-
2-hydroxyphenyl radical (m/z 109) signal decay are separable
with 2¢ uncertainty, where the ks for the 5-ammonium-2-
hydroxyphenyl radical cations is reproducibly greater by ca. 15%.
In the case of trimethylammonium-tagged o-hydroxyphenyl
radical + O, reactions, the m/z 151 ion population can be com-
pletely depleted by O, reaction, suggesting that a pure popula-
tion of trimethylammonium-tagged o-hydroxyphenyl radicals are
formed from PD of the precursor. This observation is consistent
with our previous investigation of trimethylammonium-tagged
o-methylphenyl + O, reaction kinetics'” and may be attributed to
the greater number of internal degrees of freedom from the
trimethylammonium substituent thus reducing the propensity
for isomerisation.

Second-order rate coefficients (kyng, cm® molecule™ s’l)
and reaction efficiencies (9%) derived from fitted pseudo-first
order rate coefficients (k) are reported in Table 2. Collision
frequencies were calculated using the Langevin collision model.*®
Kinetic measurements were conducted at background O, ([O,] =
6.4 + 0.4 x 10° molecule cm™?) and increased O, concentrations
([0,] = 1.6-2.2 x 10" molecule cm?). Repeated kinetic measure-
ments provided consistent results and statistical uncertainties
from fitting k5 were typically 20 < 10%. These results indicate
stable absolute O, concentrations within the ion trap as indicated
by the linear relationship between ks and [O,] (Fig. S9, ESIt).
However, the uncertainty in the ion-trap pressure ultimately

This journal is © the Owner Societies 2016
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Table 2 Second-order rate coefficients (konq, cm® molecule™ s72) and reaction efficiencies (#%) for reactions of PD generated distonic radical cations

with O, (molecule cm™3)

frequencies calculated using the Langevin collision model*®

. Uncertainties are an estimated upper limit of 50% in second-order rate coefficients and reaction efficiencies. O, collision

Collision frequency

Distonic radical [0,] (molecule cm?) kzna (cm® molecule ' s77) (cm® molecule ' s 1) D (%)
5-Ammonium-2-hydroxyphenyl Low [10°] 2.9 x 10~ 1 5.9 % 10~1° 4.9
High [10"] 3.2 x 10" 5.5
5-Ammonium-2-methylphenyl Low [10°] 2.6 x 10! 5.9 x 10~1° ad
High [10™'] 2.6 x 107! 4.4
5-(N,N,N-Trimethylammonium)-2-hydroxyphenyl 6.6 x 10° 2.5 x 101 5.7 x 107 ° 4.4
5-(N,N,N-Trimethylammonium)-2-methylphenyl* 2.2 x 10° 2.9 x 107! 5.7 % 10~1° 51
8.5 x 10° 2.6 x 1071 4.5

“ Rate coefficients reported in ref. 17. Ions of m/z 149 were generated by PD of the 3-bromo-N,N,N,4-trimethylbenzenaminium cation.

results in an upper limit of 50% uncertainty in the trap [O,],
and consequently, a 50% uncertainty for the reported second-
order rate coefficients and reaction efficiencies in Table 2.

Reaction efficiencies for all species reported in Table 2 are
all approximately equal to 5%, similar to reported reaction
efficiencies for neutral phenyl radicals and a range of positively
charged distonic phenyl radical ions, including trimethyl-
ammonium and pyridinium-tagged phenyl radicals,*” and distonic
o-methylphenyl radicals."” For the 5-ammonium-2-hydroxyphenyl +
O, reaction mechanism discussed further below, proximity
of the ortho-OH-substituent to the peroxyl-radical site in the
o-hydroxyphenylperoxyl radical provides a notably low-energy
reaction pathway (refer to Fig. 6) that competes with dissociation
of the peroxyl radical intermediate toward separated reactants,
however, it does not appear to significantly affect measured
reaction efficiencies compared to the other values reported in
Table 2 and for the phenyl-type radical + O, reactions cited
above. This moderate reaction efficiency of ~ 5%, consistent for
a range of phenyl-type radicals,"”*” indicates that the rate of
reaction is not controlled by the microcanonical rate for forward
dissociation pathways. Instead, it may result from an entropic
bottleneck after formation of the non-covalent complex between
the phenyl radical and O, (ref. 65-67) that reflects reaction flux
back to the free reactants. More experiments and insights are
required to address this question.

3.3 Reaction mechanism

3.3.1 o-Hydroxyphenyl + O, — 0-BQ + OH. To assist in
rationalising the experimental data, enthalpies of key reaction
intermediates and transition states were calculated for the
neutral and ammonium-tagged o-hydroxyphenyl + O, systems
using the G3X-K method.*® The potential energy schematic in
Fig. 6 shows O, addition, 1,5-H-transfer and subsequent OH
elimination to produce the neutral (scheme shown in black) and
charge-tagged 0-BQ (shown in blue). Potential energy schemes for
other possible reaction processes, including those involving the
hydroxyl-substituted oxepinoxyl radical intermediate, are also dis-
cussed below and provided in the ESIt (Fig. 8 and Fig. S12-515).

Addition of O, to the neutral o-hydroxyphenyl radical pro-
duces the o-hydroxyphenylperoxyl radical species (N2) that is
49.0 keal mol ™" below the energy of separated reactants (N1), as
shown in Fig. 6. Close proximity of the OH substituent to the

This journal is © the Owner Societies 2016

-49.0
@oo’ OOH Q + OH
OH o) o
: 0

Fig. 6 Potential energy schematic depicting the peroxyl — hydroperoxy radical
isomerisation and subsequent OH elimination for both neutral (black) and
ammonium-tagged (blue) o-hydroxyphenyl + O,. G3X-K 0 K enthalpies are
provided in kcal mol™ relative to the respective o-hydroxyphenyl + O, reactants.

peroxyl radical site in the o-hydroxyphenylperoxyl radical (N2)
allows for a 1,5-H shift via TS N2 — N3 with an incredibly small
1.7 keal mol " barrier to the o-hydroperoxyphenoxyl radical
(N3). Elimination of OH from the hydroperoxyl group in N3 via
TS N3 — N4 (11.5 keal mol ™" barrier) results in 0-BQ + OH with
a reaction exothermicity of 51.9 keal mol™~'. Comparing this to the
charge-tagged case, the o-hydroxyphenylperoxyl radical analogue
(C2) is 44.8 kecal mol ™ * below the energy of the separated reactants
(C1). The barrier to the 1,5-H shift in C2 and subsequent OH loss
from C3 is 27.4 kcal mol ! below reactants and the resulting
4-ammonium-2-benzoquinone + OH (C4) products are formed
with an exothermicity of 38.9 kcal mol ™' (13.0 kcal mol " less
than in the neutral case). As shown by Fig. S10 in the ESL, the
reaction enthalpy for charge-tagged 0-BQ + OH is reduced by
separation of the charge tag and ring structure via inclusion of
methylene linkages, indicating that differences shown in Fig. 6
are (in part) due to a through-space charge effect. Still, inter-
mediates and transition states for both cases shown in Fig. 6
are well below the energy of the reactants and, therefore,
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OH-elimination is expected to be facile. This mechanism is
consistent with the appearance of 0-BQ (m/z 108) in neutral
flow-tube experiments and ammonium-tagged o0-BQ (m/z 124)
in the distonic radical cation experiments.

3.3.2 0-BQ — CPO + CO. The appearance of signal at
m/z 80 in the ALS neutral experiments is rationalised by prompt
CO elimination from 0-BQ (m/z 108)*" and is supported by
distonic radical cation experiments (Fig. 4c and d). The potential
energy schematic for CO elimination from 0-BQ is provided in
Fig. 7 and Fig. S11 (ESIY) for the charge-tagged case, with reaction
enthalpies reported relative to the 0-BQ species. Shown in Fig. 7,
the pathway via N7 has the lower barrier of 41.9 kcal mol "
(—10.0 keal mol ™ relative to o-hydroxyphenyl + O,). An alternate
mechanism via TS N6 — N8 (ref. 68) has a higher 43.5 kcal mol "
barrier. A transition state for concerted CO loss was located
with a 62.6 kcal mol™! barrier, 10.7 kcal mol™ in excess of the
o-hydroxyphenyl + O, entrance channel (not shown). The CPO +
CO + OH product is 45.5 kcal mol™* below the energy of the
o-hydroxyphenyl + O, reactants.

Fig. S11 (ESIt) shows the potential energy scheme for CO
elimination from ammonium-tagged 0-BQ. The mechanisms
shown in Fig. Slla (ESI}) feature barriers that exceed the
entrance channel (5-ammonium-2-hydroxyphenyl + O,) by
2.8 kcal mol ' via TS C6a — C8 and 6.7 kcal mol ' via
TS C6b — C8. In Fig. S11b (ESIT), however, the highest barrier
is 35.0 kcal mol ' via TS C4 — C5 (3.8 kcal mol " below
5-ammonium-2-hydroxyphenyl + O,). The decomposition reac-
tions shown in Fig. S11 (ESIT) are less likely to proceed due to
the reduced exothermicity of the charge-tagged 0-BQ + OH and
barriers to decarbonylation approaching the entrance channel
limit. Collisional activation of the charge-tagged 0-BQ inter-
mediate should provide the activation energy required to generate
charge-tagged CPO + CO, consistent with a loss of 28 Da from CID
of m/z 124 ions shown in Fig. 4c. The appearance of a small m/z 96
ion peak in Fig. 4b (<1%), prior to isolation of the m/z 124 ion,
may result from decomposition of the high-energy portion of the
nascent m/z 124 ion ensemble. It is likely that further exploration
of 0-BQ decomposition is required to reveal additional competi-
tive pathways resulting in CPO + CO.

3.3.3 OH-substituted phenoxyl and oxepinoxyl mechanisms.
In the case of unsubstituted phenyl radical oxidation, the direct
phenoxyl + O(*P) channel and the indirect oxepinoxyl radical

View Article Online

Paper

decomposition pathways can lead to CHO, CO, O, and H losses
to produce CPO and 0-BQ.****¢>%*71 Tq explore the possible
role of phenoxyl and oxepinoxyl pathways here, analogous
hydroxy-substituted intermediates and transition states were
located along the neutral o-hydroxyphenyl and 4-ammonium-2-
hydroxyphenyl radical oxidation schemes. Potential energy
schematics are provided in the ESI} (Fig. 8 and Fig. S12-S15).
The O(*P) loss from hydroxyphenylperoxyl has a 30.6 kcal mol *
barrier and subsequent decomposition of the o-hydroxy-
phenoxyl radical (N40, Fig. S12, ESIt) to produce CPO occurs
via stationary points that exceed o-hydroxyphenyl + O, by as
much as 61.1 kcal mol ™" (TS N43 — N44). In the charge-tagged
case, O(’P) loss occurs with a 32.0 kcal mol™" barrier (inset
Fig. S12, ESIt) and the overall barrier to 3-ammonium-cyclo-
pentadienone + H + CO + O(*P) is 69.9 kcal mol ' above the
reactants. These high reaction barriers are unlikely to compete
with lower energy pathways. As previously mentioned in Section
3.1 above, small quantities of o-hydroxyphenoxyl radicals are
likely generated and later react by H-atom addition to produce
o-catechol (C4H,OHOH, m/z 110). These data together indicate that
generation of CPO from o-hydroxyphenoxyl radicals is unlikely.

Rearrangement of o-hydroxyphenylperoxyl (N2) toward
7-hydroxyoxepinoxyl (N23) and 6-carboxy-1-oxo-hex-2,4-dienyl
radicals (N21) via dioxirane-hydroxycyclohexadienyl intermediates
are described in Fig. 8. The reactions of these intermediates
represent plausible unimolecular pathways to both m/z 80 and
108 ions in the ALS experiments. Reactions toward the 7-hydroxy-
oxepinoxyl radical proceeds through TS N2 — N22 18.1 kcal mol
above the barrier to 0-BQ (TS N3 — N4 in Fig. 6) with an
exothermicity of 102.3 kcal mol . Formation of the 6-carboxy-
1-oxo-hex-2,4-dienyl radical (N21) occurs via TS N2 — N20 at
11.6 kcal mol ™' above TS N3 — N4. Reactions of charged-
tagged o-hydroxyphenylperoxyl toward hydroxyoxepinoxyl and
6-carboxyoxohexdienyl, shown in Fig. S13 (ESIt), generally
parallel those described by Fig. 8. The rate limiting steps toward
the two hydroxyoxepinoxyl (TS3c) and carboxyoxohexdienyl
radicals (TS1c¢) are 22.2 and 5.1 kcal mol ™', respectively, above
the barrier to charge-tagged 0-BQ (TS C3 — C4, Fig. 6).

In the case where either hydroxyoxepinoxyl or carboxyoxo-
hexdienyl radicals are produced, their decomposition could
possibly follow pathways described by Fig. S14 and S15 (ESIf).
Likely products, by analogy to phenyl radical oxidation,'®°

N4
0.0

Fig. 7 Potential energy schematic for CO loss from 0-BQ (N4) along the singlet CgH4O, surface. G3X-K 0 K enthalpies are provided in kcal mol™*

relative to o-BQ.
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Fig. 8 Potential energy schematic comparing the OH-cis and OH-trans reaction pathways to the hydroxyoxepinoxyl and 6-carboxy-1-oxo-hex-2,4-
dienylintermediates along the neutral o-hydroxyphenyl + O, reaction surface. The barrier to TS N3 — N4 (leading to 0-BQ) and reaction enthalpy for the
o-hydroxyphenoxy! radical (N40) are included for comparison. G3X-K energies are reported in kcal mol™! relative to o-hydroxyphenyl + O,.

include 0-BQ + OH, CPO + HOCO, 3-hydroxy-2-benzoquinone +
H, and 2-hydroxy-cyclopentadienone + HCO with barriers far
below the reactants. The absence of peaks at m/z 96 and 124
within ALS experimental results (Fig. 1) and the high barriers to
hydroxyoxepinoxyl and carboxyoxohexdienyl intermediates indi-
cate that at most only a small fraction of the reaction flux follows
these channels. Furthermore, preliminary RRKM modelling of
the o-hydroxyphenylperoxyl radical (N2) decomposition, utilizing
Multiwell,** indicates H-migration and OH-loss to form 0-BQ
(N4, shown in Fig. 6) comprehensively outcompetes the path-
ways toward hydroxyoxepinoxyl and carboxyoxohexadienyl radi-
cals (shown in Fig. 8, N2 toward TS1n and TS4n). The sums of
states for salient transition states and corresponding rate coeffi-
cients are provided in Table S2 (ESIt). The oxepinoxyl pathways
(via TS1n and TS4n) experience comparatively tight transition
states with state counts several orders of magnitude lower than
any other along the 0-BQ pathway. This is in accord with our
previous statement that the prevailing mechanism is formation
of 0-BQ via an o-hydroxyperoxylphenoxyl radical intermediate
(N3). The appearance of m/z 80 in ALS experiments is explained
by 0-BQ decomposition, supported by distonic experiments that
show connectivity between the analogous charge-tagged species.

4. Conclusions

Product detection experiments conducted at the ALS synchro-
tron reveal that the o-hydroxyphenyl + O, reaction produces two
major products detected at m/z 80 and 108 that are consistent
with CPO and 0-BQ. We conclude that CPO forms as a secondary
product from prompt decomposition of 0-BQ and dissociative
ionisation of 0-BQ leads to some enhancement of the m/z 80
signal at photoionisation energies >9.8 eV. There are indications

This journal is © the Owner Societies 2016

of a minor o-hydroxyphenoxyl + O(*P) pathway in the ALS experi-
ments. To establish connections between the major reaction
products, distonic radical analogue ammonium-tagged o-hydroxy-
phenyl + O, reactions were studied using ion-trap mass spectro-
metry. Reactions of the 5-ammonium-2-hydroxyphenyl radical
cation (m/z 109) with O, produced product ions consistent with
ammonium-tagged 0-BQ produced via O, addition, H-atom migra-
tion and subsequent OH loss. CID of the m/z 124 ions yielded a
species assigned ammonium-tagged CPO produced by CO loss.

Second order rate coefficients (ky,q) for 5-ammonium-2-
hydroxyphenyl (m/z 109) + O, were measured to have a 5%
reaction efficiency. Additional kinetic measurements for O,
reactions with PD generated 5-ammonium-2-methylphenyl and
5-(N,N,N-trimethylammonium)-2-hydroxyphenyl radical cations
and a previous investigation of trimethylammonium-tagged
o-methylphenyl + O, reaction kinetics"” demonstrate for this small
set that the identity of the charged-tag and ortho-substituent does
not significantly affect the reaction efficiency (ca. 5%).

Quantum chemical calculations are in accord with our
experimental observations, where a 1,5-H shift in the o-hydroxy-
phenylperoxyl adduct and subsequent OH elimination is the
minimum energy pathway for both o-hydroxylphenyl + O, and
the ammonium-tagged counterpart. Decomposition of the 0-BQ
toward CPO does encounter large barriers. However, the indica-
tion from preliminary kinetic modelling is that production of
0-BQ is the dominant unimolecular pathway.

The prevailing mechanism for decomposition of the o-hydroxy-
phenylperoxyl radical produced by O, addition is via 1,5-H
migration and OH loss from the hydroperoxyphenoxyl radical
intermediate to produce 0-BQ. Its decomposition via ring opening,
cyclisation, and CO elimination is the likely pathway to CPO.
These proposed pathways to 0-BQ and CPO serve as source of OH
and CO species in reactive environments.
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