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Serpentine polymorphism: a quantitative insight
from first-principles calculations†

Raffaella Demichelis,*a Marco De La Pierre,a Mainak Mookherjee,b

Claudio M. Zicovich-Wilsonc and Roberto Orlandod

Single-walled chrysotile nanotubes [Mg3Si2O5(OH)4] of increasing size (up to 5004 atoms per unit cell, cor-

responding to a radius of 205 Å) have been modelled at the Density Functional level of theory. For the first

time, it is demonstrated that the (n, −n) and (n, n) series present a minimum energy structure at a specific

radius (88.7 and 89.6 Å, respectively, referring to the neutral surface), corresponding to a rolling vector of

(60, −60) and (105, 105), respectively. The minima are nearly overlapped and are lower in energy than the

corresponding slab of lizardite (the flat-layered polymorph of chrysotile) by about 3.5 kJ mol−1 per formula

unit. In both cases, the energy profile presents a shallow minimum, where radii in the range of 63 to 139 Å

differ in energy by less than 0.5 kJ mol−1 per formula unit. The energy of larger nanotubes has a trend that

slowly converges to the limit of the flat lizardite slab. Structural quantities such as bond distances and an-

gles of nanotubes with increasing size asymptotically converge to the flat slab limit, with no discontinuities

in the surrounding of the minimum energy structures. However, analysis of the elongation of a rectangular

pseudo-unit cell along the nanotube circumference indicates that the main factor that leads lizardite to

curl in tubes is the elastic strain caused by the mismatch between the lattice parameters of the two adja-

cent tetrahedral and octahedral sheets. It is also shown in this study that the curvature of the layers in one

of the lately proposed models of antigorite, the “wavy-layered” polymorph of chrysotile, falls within the

range of radii of minimum energy for the nanotubes. These findings provide quantitative insights into the

peculiar polymorphism of these three phyllosilicates. They show also that chrysotile belongs to those fami-

lies of inorganic nanotubes that present a minimum in their strain energy profile at a specific range of radii,

which is lower in energy with respect to their flat equivalent.

1 Introduction

Lizardite, chrysotile and antigorite represent one of the most
fascinating, yet not fully understood, cases of polymorphism.1

They are hydrous phyllosilicate minerals belonging to the
group of serpentines, and have an ideal formula unit corre-
sponding to Mg3Si2O5(OH)4. Their crystal structure consists of
TO layers, where a brucite-type octahedral sheet (O) is at-
tached to a silica tetrahedral sheet (T, made of di-trigonal
rings formed by SiO4 tetrahedra units) through sharing one

oxygen atom (an “apical” oxygen, Oa). What makes their struc-
tures so peculiar and difficult to determine is the bending
flexibility of these slabs (Fig. 1), which can give rise to a range
of layered structures where the layers can be flat (like in
lizardite), modulated or “wavy” (like in antigorite, whose peri-
odicity and features along the ab plane is still a matter of
debate2–7), or curled in the form of concentric or spirally-
wrapped nanotubes (chrysotile8–13).

While lizardite has been characterized with a high level of
accuracy for a range of temperature and pressure conditions
(despite the fact that discriminating between the many possi-
ble polytypes is still a challenging task),14–21 the other two
polymorphs are still a matter of study, together with the rea-
sons that cause such a diverse range of structures.22 Owing to
its relevance and the role it might play in transporting water
into the Earth's interior, some physical properties of anti-
gorite have been examined as well.23–26

A number of qualitative hints on what could be the cause
of the high flexibility of the TO slab27–30 are present in the lit-
erature, suggesting that curling is a result of the lattice pa-
rameter misfit between the O and the T sheets and that this
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adjustment is facilitated by a balance between the high flexi-
bility of the Mg–O bonds and the high rigidity of the Si–O
bonds.

A first attempt to quantify the lattice parameter misfit was
made by D'Arco et al.,31 where electronic structure calcula-
tions were carried out on relatively small chrysotile single-
walled fibres with a radius of up to about 35 Å (correspond-
ing to the tiniest fibre found in nature). The lattice parame-
ters of the ideal isolated T and O sheets were calculated,
confirming that the a lattice parameter of lizardite falls in be-
tween the T and O lattice parameters that differ by around
0.1 Å. The aforementioned study also shows that one addi-
tional main structural factor that allows the slab to curl is
the rotational freedom of the SiO4 tetrahedra around the
Si–Oa axis.

Due to the limited extent of the investigated range of radii,
these results could not provide final indications about the be-

haviour of the strain energy profile of chrysotile against
lizardite (i.e. the energy difference between the tube and the
flat slab as a function of the tube radius), and in particular,
about the existence of a minimum at large radii. This hypoth-
esis has also been recently explored by Krasilin and
Gusarov30 by theoretical modeling based on Young's modulus
data collected in a number of other experiments; here, it is
the spread of experimental data that has not permitted con-
clusions on this point.

The implementation of a number of tools in the past few
years allowed for an extension of the analysis by D'Arco
et al.,31 where the (n, −n) series was modelled only up to the
smallest observed nanotube n = 24.‡ In particular, what made
the present study feasible in terms of computing time and re-
sources were the exploitation of helical symmetry (including
symmetry planes that were not yet implemented at the time
of ref. 31) up to any number of symmetry operators (in this
case, it means modelling unit cells with thousands of atoms
while maintaining an asymmetric unit of only 12 atoms),32

improved exploitation of symmetry in algorithms operating
on Fock and density matrices (resulting in both shorter com-
puting times and reduced memory requirements),33–35 and
the geometry guess option described in ref. 36 that dramati-
cally reduces the number of optimisation steps required to
reach structural convergence.

In this work, we have modeled chrysotile as a series of 58
single-walled (n, −n) nanotubes with a radius between 13 and
205 Å (measured with reference to the neutral surface, NS,
i.e. the ideal cylinder surface whose size is equal to that of a
flat, unrolled lizardite slab), and a second series of 14 single-
walled (n, n) nanotubes with a radius in the range of 24–101
Å. Lizardite and one of the latest proposed models for anti-
gorite5 were modeled, too, for structural comparison with
chrysotile. After a brief summary on the computational
methods that we have adopted, the following sections will
present and discuss the results.

2 Computational methods

Periodic models of different dimensionalities were adopted
to describe the various structures investigated in this work:
3D for lizardite bulk 1T, lizardite bulk 2H1 and antigorite
(m = 16); 2D for the flat lizardite slab and the free-standing
flat T and O sheets; 1D for the chrysotile nanotubes.

Calculations were performed at the Density Functional
Theory (DFT) level as implemented in the CRYSTAL14 public
package.37,38 Maximum advantage is taken of the highly sym-
metric helical groups of chrysotile nanotubes at all stages of
the electronic structure calculation, direct transformations
are performed between the bases of Atomic Orbitals (AOs)
and Symmetry Adapted Molecular Orbitals, and allocation of

‡ Here, the standard (n1, n2) notation is used for nanotubes, according to which
the rolling vector is defined as , where and are the lattice pa-
rameters of the hexagonal 2D unit cell of lizardite.

Fig. 1 Schematic representation of the slab stacking in lizardite (top),
antigorite (centre) and chrysotile (bottom). Mg is coloured in green, Si
in brown, Oa in blue and the remaining O atoms in red. Coordination
tetrahedra and octahedra are shown too.
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full matrices in the basis of AOs is always avoided. Perfor-
mance in terms of CPU time and memory allocations is
discussed in detail in ref. 33–35.

The B3LYP functional was used, as previous studies on
lizardite and on chrysotile demonstrated its accuracy in de-
scribing the structural features and the properties of these
polymorphs.21,31 The well-known inaccuracy of DFT methods
in predicting relative energies, due to short- and long-range
dispersion interactions not being properly accounted for, will
not represent a major issue in this study, since the atomic co-
ordination, the density within a slab, and the spacing be-
tween subsequent slabs is quite similar between the three
polymorphs.39

6-31G* basis sets from ref. 40 and 41 were adopted, with
the most diffuse exponents reoptimised for chrysotile in the
work by D'Arco et al.31 Thresholds controlling the accuracy of
the Coulomb and exchange series and of their approximation
were set more strictly than default values (TOLINTEG 13 13
13 13 26, NOBIPOLA; see ref. 37 for further details). While
thresholds adopted in a previous publication31 were tight
enough to guarantee convergence on the smaller tubes (n of
up to 24), more strict values were required to reach conver-
gence on bigger tubes, most probably because of the very
large number of symmetry operators and then symmetry
equivalent atoms within a unit cell. Similarly, the accuracy of
the grid used to evaluate the DFT exchange–correlation con-
tribution via numerical integration over the unit cell volume
was increased with respect to the one adopted in the work by
D'Arco et al.:31 the XXLGRID keyword was used,37 corre-
sponding to a pruned grid with 99 radial and 1454 angular
points. With this grid, the error on the numerically integrated
density is as small as 4 × 10−5|e| on a total of 2520 |e| and
9 × 10−3|e| on a total of 38 920 |e| for the (9, −9) and (139,
−139) structures, respectively.

The reciprocal space was sampled according to a
Monkhorst–Pack mesh with a shrinking factor of 6, corre-
sponding to 4, 7, 34, 28 and 68 independent k vectors in the
irreducible part of the Brillouin zone for chrysotile nano-
tubes, flat lizardite slab, lizardite bulk 1T, lizardite bulk 2H1

and antigorite (m = 16), respectively.
The threshold on the self consistent field energy was set

to 10−8 Eh. Structure optimisation was performed by use of
analytical energy gradients with respect to atomic coordinates
and unit cell parameters, within a quasi-Newton scheme
combined with the Broyden–Fletcher–Goldfarb–Shanno42–45

scheme for Hessian updating. The default optimisation con-
vergence criteria were used for energy, gradient components
and nuclear displacement. In order to compute the elastic
modulus for isotropic unit cell distortions of the slabs, opti-
misation of the atomic coordinates was repeatedly performed
while keeping the cell parameters fixed across a range of values.

3 Structure and properties of lizardite

As mentioned in the introduction, bulk lizardite has a well-
known layered structure where each layer consists of one T

and one O sheets joined together through apical oxygen
atoms. This layer, or slab, will represent the reference model
for most of our discussion on serpentine polymorphs.

Given this layered structure, a number of possible poly-
types have been identified in the past,14 with the one-layer
trigonal (1T) and the two-layer hexagonal (2H1) being the
most likely in nature. They differ by minor distortions in the
angles between the oxygen-sharing tetrahedra.46 The
electronic energy difference at 0 K between the two polytypes
as calculated within the current computational framework is
very small, 0.6 kJ mol−1 per formula unit in favour of the 2H1

structure. Despite this datum being in apparent disagree-
ment with the fact that 1T-lizardite is most commonly
detected in the experiments, it should be considered as just
an estimation, which does not include any temperature or
pressure effect. Temperature has indeed been found to play a
crucial role in determining structural changes (and therefore
stability) for values >300 K.15 Being a comparison between
multi-layered systems, the Basis Set Superposition Error47

(BSSE) should in principle be taken into account for the en-
ergy per layer; however, the structure and spacing between
the layers are so similar that we can reasonably assume that
the BSSE will cancel nearly exactly when calculating the relative
energy, as well as all those interactions that are not properly
accounted for when using DFT. As a further check, calculations
repeated with different choices of computational parameters,
with a more accurate basis set48 and with a different DFT func-
tional (PBEsol49) give results that fall within the range of 0.6–
0.8 kJ mol−1 per formula unit in favour of the 2H1 polytype.

The calculated and experimental structural parameters of
1T and 2H1 lizardite are reported in Table 1, together with
those for antigorite (m = 16 polysome; see the following sec-
tions for further details on antigorite). The observed slight
overestimation of distances is a known feature of the B3LYP
functional. Overall, the agreement between the calculated
and experimental structures is excellent, including the inter-
layer atomic arrangement and spacing (c lattice parameter,
O⋯O distance).

Table 1 Calculated and experimental5,14 structures of 1T- and 2H1-
lizardite, and of antigorite (m = 16): lattice parameters (a, b, c, β), cell vol-
ume (V), minimum and maximum inter-atomic distances, minimum and
maximum inter-layer distance between the H-bond donor and acceptor
(O⋯O). Lengths are in Å, angles are in degrees

1T-lizardite 2H1-lizardite
Antigorite
(m = 16)

Calc. Exp. Calc. Exp. Calc. Exp.

a 5.350 5.325 5.348 5.318 81.977 81.664
b — — — — 9.298 9.255
c 7.318 7.259 14.644 14.541 7.302 7.261
β — — — — 91.013 91.409
V 181.4 178.3 362.7 356.2 5565 5486
Si–Omax 1.665 1.651 1.666 1.648 1.665 1.668
Si–Omin 1.608 1.577 1.608 1.602 1.607 1.595
Mg–Omax 2.151 2.139 2.150 2.125 2.248 2.210
Mg–Omin 2.026 2.024 2.064 2.021 2.025 2.003
O⋯Omax 3.06 3.04 3.08 3.09 3.16 3.14
O⋯Omin — — — — 2.99 3.00
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This first analysis has shown that the method, basis set
and computational parameters adopted here are accurate
and predictive for serpentine polymorphs. Further validation
is provided by Prencipe et al.,21 whose full analysis of 1T-
lizardite vibrational properties shows an excellent agreement
with the available experimental values.

In order to investigate the role of the lattice mismatch be-
tween T and O sheets in determining the equilibrium struc-
ture of a lizardite slab, we performed a set of calculations on
free-standing, flat sheets of the two types, using hydrogen to
saturate the dangling bonds (see also work by D'Arco et al.31).
In this way, the O sheet corresponds to a layer of brucite,
whereas the T sheet has no equivalent in nature. The com-
puted equilibrium lattice parameters of the T and O sheets
are 5.317 and 5.432 Å, respectively, to be compared with the
simulated value for the lizardite slab, 5.363 Å. Next, we com-
puted the dependence of electronic energy on the isotropic
variation of the unit cell (see Fig. 2), so that we could esti-
mate through best-fit the corresponding moduli, 753 (T) and
584 (O) kJ/(mol Å2). The parameters from these best-fits pre-
dict that the lattice parameter value that minimises the com-
bined strain energy of the two sheets is 5.369 Å, which is only
0.006 Å larger than the actual lizardite value from the simula-
tions. This simple calculation confirms that the most impor-
tant factor in determining the structure of the lizardite bi-
layer is actually the elastic strain related to the lattice
mismatch. It then seems reasonable to try and exploit similar
arguments in estimating the minimum energy curvature of
chrysotile in the following discussion.

4 Structure and energy of chrysotile
nanotubes

Bulk chrysotile presents a very high level of structural com-
plexity, in terms of both large unit cells, the full details of

which are partly unknown, and relatively low space group
symmetry. A detailed model for spirals and for the possible
stacking sequences of concentric cylinders is currently
unavailable. All these factors make the simulation of the bulk
structures of chrysotile polymorphs/polytypes currently
unaffordable with the first-principles approach adopted here.
For these reasons, with the aim of making a first step forward
in building a realistic model of this system, we carried out ex-
tensive investigation on a large set of individual nanotubes
with different radii and rolling directions.

Single-walled chrysotile nanotubes were constructed as de-
scribed in ref. 31, by rolling-up a mono-layer of lizardite

along the vector, where and are lizardite's

unit cell vectors with an equal module and an angle

of 120°, and n1 and n2 are the nanotube indices (n1 = −n2 in
(n, −n), or n1 = n2 in (n, n)). The only periodic lattice vector is
parallel to the nanotube axis and has a length in the ranges
5.28–5.36 Å (see Fig. S1(d) in the ESI†) and 9.23–9.28 Å along
the (n, −n) and (n, n) series, respectively.

Fig. 3(a) reports the computed strain energy ΔE of a struc-
turally relaxed single-walled chrysotile as a function of the ra-
dius of its neutral surface rNS, i.e. the energy difference be-
tween the nanotube and the flat slab. It can easily be
observed that the energy curve presents a shallow minimum
around a radius of 88.7 Å (n = 60) for the (n, −n) series and of
89.6 Å (n = 105) for the (n, n) series which is 3.5 kJ mol−1 per
formula unit lower in energy with respect to the flat struc-
ture. Structures with radii in the range of 63–139 Å differ by
no more than 0.5 kJ mol−1, indicating that these curled struc-
tures are energetically favoured in a wide range of sizes.§

Notably, Whittaker10,12,50 observed that the average be-
tween the inner and the outer radius was 84 Å and 96 Å for
clino- and para-chrysotile, respectively, and predicted that the
strain-free layer of lizardite would have a radius of 88 Å on
the basis of X-ray diffraction data.

As (n, n) nanotubes have a lattice vector about times
larger than that of (n, −n) ones, for a given radius value, the
(n, n) tube has about 70% more atoms, resulting in much
more expensive calculations. A smaller set of points was then
computed along this series, which are reported in Fig. 3(a).
Despite (n, −n) being generally assumed as the preferred
rolling direction, the (n, n) family of tubes actually shows the
same trend with radius and turns out to be only 0.1 kJ mol−1

per formula unit less stable.
D'Arco et al.31 performed some best fits on energy vs. ra-

dius data for the (n, −n) family, based on two different formu-
las; notably, one of them predicted the presence of a shallow
minimum at −3.1 kJ mol−1 for n = 58. However, data in that
study were collected only up to n = 24 and therefore the ex-
trapolated result was not enough at that time to claim the ac-
tual presence of a minimum in the energy profile.

Fig. 2 Strain energy per formula unit of free-standing flat T and O
sheets [kJ mol−1] as a function of the unit cell parameter [Å]. The
superimposed dotted curves have been obtained through quadratic
best-fit over the corresponding datasets; the dash-dotted curve is the
sum of the former two. Also shown for sake of comparison is the value
of the cell parameter for the flat lizardite slab (its position along the y
axis is arbitrary).

§ Different DFT functionals and basis sets may give slightly different radii and
the position of the minimum may vary by a few n units.
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Fig. 3(b) shows the strain energy as a function of the cur-
vature, i.e. inverse radius, and clearly suggests nearly para-
bolic behaviour. In fact, a quadratic best-fit of the energy
values around the minimum (16 points were considered) pro-
vides a very good description of the dataset along a much
wider range of radii. The curvature parameter obtained from
the fit permits an estimation of the bending modulus of the
slab, 20.6 eV. A closer look at the figure reveals that the best-
fit overestimates energies below the minimum-energy radius,
whereas it underestimates values above this radius. This
points towards a non-linear elastic effect such that the bend-
ing modulus is dependent on the tube radius. To try and esti-
mate this effect, we performed a second best-fit using a quar-
tic function; this time the whole dataset, except for the
smallest tube, could be included in the fit. The resulting
bending modulus spans a range of values between 17.6 and
22.5 eV, when considering radii included between 35.5 and
205.5 Å, with a percent variation larger than 20%. At the ra-
dius of minimum energy, this second model gives a bending
modulus of 20.7 eV, which is in close agreement with our
first evaluation. We could also try and extrapolate an estimate
for the flat slab (i.e. infinite radius), which amounts to
24.1 eV.

A wide range of structural data can be extracted from our
calculations, and analysed as a function of the index n (or
tube radius). For example, Fig. 4 plots values for slab thick-
ness and surface area per formula unit for selected atomic
layers. Both quantities reveal monotonic behaviour, either in-
creasing or decreasing, as a function of n, with asymptotical
convergence towards the values found in the flat lizardite
slab. Similar monotonic trends can be found for a wide set of
other structural properties, including lattice parameter, sheet
thicknesses, bond distances and angles; the corresponding
data can be found in Fig. S1 and S2 and Tables S2 and S3 in
the ESI.† None of these quantities shows discontinuities
around the n values corresponding to the minimum strain
energy.

An alternative rectangular unit cell can be defined for the
lizardite slab. This is relevant to our discussion because
(n, −n) chrysotile nanotubes are wrapped by rolling the flat
slab along the longest side of this unit cell, a′, and by keep-
ing the shortest side as their cell parameter. Visual

Fig. 3 Energy difference per formula unit of (n, −n) single-walled chrysotile nanotubes with respect to the flat lizardite slab [kJ mol−1], as a func-
tion of (a) NS radius [Å] and index n, and (b) inverse NS radius [Å−1] and index n. The superimposed curve has been obtained through quadratic
best-fit over a set of 16 points around the energy minimum. In (a), data for the (n, n) series are also shown. In (b), only the subset of (n, −n) data in
the energy range of −3.6–−2 kJ mol−1 is shown. All the corresponding (n, −n) data are reported in Table S1 in the ESI.†

Fig. 4 Dependence of selected structural parameters of single-walled
(n, −n) chrysotile nanotubes on the index n: (a) total slab thickness
(measured from inner to outer oxygen atoms); (b) surface area per for-
mula unit for a set of atomic layers. Values for the flat lizardite slab are
reported, too. Distances are in Å, areas are in Å2. The number of for-
mula units and of atoms in the unit cell is equal to 2n and 36n, respec-
tively. The corresponding data are reported in Table S2 in the ESI.†
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representation of a' and its geometrical relationship with a
lizardite unit cell is reported and discussed in ref. 31. In the
tubes, a′ is not a repeating unit (that is why we refer to it as a
“pseudo”-unit cell parameter). However, being aligned with
the tube circumference, it gives a direct measure of the struc-
tural strain as a function of the tube radius compared to the
flat slab. Fig. 5 reports a′ as a function of the radius rNS and
of the index n, for a set of atomic layers: outer, apical and in-
ner oxygen atoms. The first and the second sets of oxygen
atoms delimit the O sheet, whereas the second and the third
ones delimit the T sheet. Like the other quantities, all a'
curves exhibit monotonic behaviour converging to the value
for lizardite, 9.289 Å.

Let us now consider the a′ values for the free-standing flat
O and T sheets: they are 9.408 and 9.210 Å, respectively, lying
for both sheets between the data for small-radius nanotubes
and the datum for flat lizardite, which represents the asymp-
totic limit at infinite radius. If elongation along a′ were a rele-
vant factor, we would then expect a lower nanotube strain
energy at radii corresponding to the a′ values of the O and T
sub-sheets that lie closer to the values for their free-standing
homologues; also, the minimum strain energy would be
determined by combination of the effects for the two sheets.
Given that the O and T sheets in the nanotubes have a finite
thickness and, beside elongation, they also incur in bending,
correct calculation of their strain energy would be demand-
ing. Nonetheless, we can get a simplified insight by looking
at what happens at half-thickness (darker straight lines in
Fig. 5): here, O and T sheets cross the free-standing sheet a′
values around a radius of 105 and 96 Å, respectively. In this
picture, one would then expect the minimum strain radius to
fall within this range, which is extremely close to the actual

radius of minimum energy, 88.7 Å (actually closer than 0.1 kJ
mol−1 per formula unit on the energy scale). This finding pro-
vides a strong evidence of the main role played by elastic
strain due to the lattice mismatch in determining the mini-
mum energy radius in chrysotile nanotubes.

5 The structure of antigorite

The bulk structure of antigorite has been debated for a long
time and there are a few models in the literature that are
claimed to best describe its features.2,4–6,51 These models re-
fer to different “polysomes”, i.e. structures that differ by the
number of silicate tetrahedra spanning a wavelength along

the lattice vector.5 m = 17 and m = 16 polysomes were

found in several samples by Capitani and Mellini,5 with m =
17 being the most common. These two polysomes have 17
and 16 silicate tetrahedra per wavelength, respectively, and
present 4- and 8-membered rings of tetrahedra at the posi-
tion where the tetrahedral sheets reverse their orientation.6

Full analysis of the structure of antigorite is not within the
scope of this paper. Rather, antigorite is considered here for
structural comparison with its cylindrically wrapped poly-
morph, chrysotile. For this reason, since there are no major
structural differences between the two polysomes, we have
decided to refer to the m = 16 structure here, as its unit cell
is smaller and features higher symmetry than the m = 17
model. This results in a largely reduced computational cost,
in terms of time and memory resources, and also simplifies
the analysis of the structure. The main structural data are
reported in Table 1.

Here, it is interesting to observe that the imaginary arc
containing the silicon atoms in each of the silicate half-waves
of antigorite has a radius falling in the range of 83–88 Å. Be-
sides, the radius of the atomic layer of silicon atoms in the
minimum energy (n, n) chrysotile nanotube is 88.2 Å. The
proximity of these values establishes a clear link between the
peculiar structure of antigorite and that of chrysotile. Similar
results can be expected for the m = 17 polysome, although
the lower symmetry might result in a wider range of values
for the radius.

6 Conclusions and perspectives

This paper quantitatively demonstrates that lizardite slabs
have an intrinsic tendency to curl at a specific range of radii
by using state-of-the-art first-principles methods. In fact, the
(n, −n) and (n, n) series of single-walled chrysotile nanotubes
present a minimum energy structure at a radius of 88.7 and
89.6 Å, respectively, referring to the neutral surface, with index
(60, −60) and (105, 105), respectively. The plot of the energy vs.
tube radius for the (n, n) series nearly overlaps with that of the
(n, −n) series. The electronic energy in the minima is about
3.5 kJ mol−1 per formula unit lower with respect to the corre-
sponding flat slab of lizardite. While tubes with a radius in
the range of 63 to 139 Å differ in energy by no more than
0.5 kJ mol−1 per formula unit, the energy of the series slowly

Fig. 5 Rectangular pseudo-unit cell parameter a′ of single walled
(n, −n) chrysotile nanotubes as a function of NS radius [Å] and index n for
a set of atomic layers: outer oxygen Oout, apical oxygen Oa and inner
oxygen Oin. Areas of values corresponding to the O and T sheets are
shaded, and values lying at half-thickness of the same sheets are repre-
sented through darker straight lines. Data for the free-standing flat T
and O sheets and for the flat lizardite slab are reported, too. The radius
value corresponding to the minimum energy chrysotile is highlighted,
with the horizontal bar referring to a ±0.1 kJ mol−1 energy range around
the minimum.
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converges for very large radii to the limit of the lizardite slab.
Similar behaviour is observed for the structural parameters.

Notably, the curvature of the half-waves in the m = 16 poly-
some of antigorite has a radius that falls around the same
value as that of the chrysotile minimum energy structures.
The m = 17 polysome has not been explicitly considered in
this paper, but its experimental structure suggests that a sim-
ilar comment is likely to hold for its structure as well.

Analysis of the elongation of lizardite and chrysotile unit
cell parameters provides clear evidence that the elastic strain
caused by the mismatch between the lattice parameters of
the T and the O sheets is the main driving factor towards the
curling of the slab.

While much research is being devoted in investigating the
stability and phase diagram of these phases on the Earth's
crust and mantle, little attention has been paid so far to pro-
viding a satisfactory description of their structures and prop-
erties at the atomic level, despite the fact that the occurrence
of a given polymorph is intrinsically related to interplay of
fundamental interactions. While the calculations presented
here are currently at the limit of feasibility at such an accu-
rate level of theory, further steps will be required towards bet-
ter atomic understanding of serpentine polymorphism, which
involve adding further levels of complexity to our systems.
Among these, substitution of Mg and Si with other elements
(Al and Fe, for instance) can importantly affect the lattice
structure, and thus its curling and stability. Moreover, multi-
walled and spirally-wrapped chrysotile fibres need to be con-
sidered to account for inter-layer interactions, which include
strong hydrogen bonds and could play a role in stabilising
one phase with respect to the others.
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