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In the context of green chemistry, the replacement of high mole-
cular weight stoichiometric oxidants with O, is most desirable but
difficult. Here, we report the asymmetric aerobic oxidative synthesis
of dihydropyranones. The oxidation is aided by a system of electron
transfer mediators and is selective toward the homoenolate. The
dihydropyranones can be isolated in high to excellent yields, with
high ee (up to 95%).

Within the field of asymmetric N-heterocyclic carbene (NHC)
catalysis," ® oxidative reaction paths have emerged as an attractive
way to activate o,f-unsaturated aldehydes towards nucleophiles.” ™
Mechanistically, this strategy includes a selective in situ oxidation of
the homoenolate to the o,B-unsaturated acyl azolium (Scheme 1a)."
The oxidatively derived acyl azolium is a well-exploited reaction
intermediate and a prominent starting point to introduce stereo-
discrimination by using chiral catalysts. Kharasch oxidant
(1, Scheme 1) is the most frequently used oxidant in NHC
catalysis."® However, it suffers from a high molecular weight,
resulting in a high E factor for these reactions,'* thus severely
restricting the scalability of these reactions.

For reasons of atom economy and waste prevention, the
replacement of high molecular weight stoichiometric oxidants
with oxygen (O,) is most desirable. However, oxidations using
0, are problematic, due to a high energy barrier for the reaction
between oxygen and the substrate leading to unselective
reactions.'® In oxidative NHC catalysis direct usage of oxygen
results in carboxylic acid formation as the main product™®™® or
as a stoichiometric byproduct."®

In synthesis, a common method of addressing the issue of
the poor reactivity of O, has been to mimic the respiratory
chain®® by introducing a system of electron transfer mediators
(ETMs)."> ETMs provide a low-energy path for the electrons to
flow from the substrate to a suitable terminal oxidant such as O,.
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Scheme 1 (a) Asymmetric oxidative carbene-catalysed formation of

dihydropyranones. (b) Stoichiometric oxidation with the Kharasch oxidant.
(c) Direct aerobic oxidation with O,. (d) Aerobic oxidation via multistep
electron transfer.

A prime example within transition-metal catalysis, where ETMs
enable the use of O, as the terminal oxidant, is the Wacker
oxidation in which CuCl, serves as the ETM between Pd°
and 0,.>** In this respect, Bickvall and co-workers have
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shown that coupled ETMs are applicable to a plethora of
reactions, for instance in the aerobic 1,4-oxidations of 1,3-
dienes,>>"*® aerobic oxidative carbocyclisations®>”*® and aerobic
oxidations of alcohols.??*

Dihydropyranones are an interesting class of compounds, as
they can be found in several natural products®*** and can be
used in the synthesis of, for example, 1,5-diketones,** 2-cyclo-
hexanones,*® dihydro-2-pyridones,*® and pyrones.>”*° Thus, several
enantioselective NHC-catalysed'®****> and transition-metal-
catalysed*®"” strategies have been developed. However, the
majority suffer from poor atom economy (as in the use of
stoichiometric oxidants),*”**** incorporated leaving groups,*****®
sacrificial reagents'® and coupling reagents.* Clearly, an enantio-
selective, mild and environmentally benign entry to this scaffold
would be of great interest.

Here, as a continuation of our interest in aerobic multistep
electron transfer NHC catalysis,>”
synthesis of dihydropyranones.

Initial screening was focused on identifying reaction conditions
compatible with open reaction vessels and wet solvents, using the
synthesis of dihydropyranone 6 from acetylacetone 5 and cinna-
maldehyde (Table 1) as the model reaction. The screening was
performed with stoichiometric amounts of 1 and under these
constraints NHC catalyst 3, LiOAc dihydrate as a base and toluene

we present an asymmetric

Table 1 Optimisation of aerobic multistep electron transfer NHC
catalysis?

S Mes
Ph g
4 3, L|OAc*2H20 0

9 +Q ETM, ETM' P
solvent, temp P |
6 |

Entry Temp. (°C) Time (h) ETM' (eq.) ETM (eq.) Yield (%) ee (%)

1 r.t 46 8 (0.02) 1(0.1) 29 94
2 r.t 48 8 (0.02) 7 (0.1) 58 ND
3 r.t 72 FePc (0.02) 7 (0.1) 62 95
4 r.t 48 FePc (0.02) 1 (0.1) 62 95
5 40 22 FePc (0.02) 1 (0.1) 69 95
6" it 48 FePc (0.02) 1 (0.1) 0 —
7¢ r.t 48 FePC (0.02) — 6 ND
8° r.t 48 — 1 (0.1) 7 ND
9° r.t 48 — — 0 —
109 rt 48 FePC (0.02) 1 (0.1) 17 ND
11° 40 25 FePc (0.04) 1 (0.02) 79 94

2 o 0O

MeO OMe N/

_N/CO\N,—

IEE L

“ The reactions were performed in open reaction vessels at the indi-
cated temperature (see table) in toluene with cinnamaldehyde 3 (1 eq.),
acetylacetone 4 (3 eq.), 3 (0.1 eq.), LiOAc-2H,O (0.65 eq) ETM (see
table), ETM’ (see table). ” The reaction was conducted in an atmo-
sphere of pure 0,. ¢ Yield was determined with NMR against internal
standard. “ Reaction conducted under an atmosphere of nitrogen. ©
Sequential addition of FePc see ESI for details. ND = not determined.
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as the reaction solvent proved to be vital for generating
reactions with high yield and ee (see ESI for details). We
then tested whether the enantioselective synthesis of dihydro-
pyranones would be compatible with a coupled system of
electron transfer mediators (Table 1), enabling the use of aerial
0, as the terminal oxidant. With the ETM/ETM’ combination
bis(salicylideniminato-3-propyl)methylaminocobalt(u) (8) and
1, the reaction delivered 6, albeit at poor yield with 94% ee
(entry 1). Changing the quinone from 1 to 7 improved the yield
(58%, entry 2). A small improvement was achieved when using
iron(u) phthalocyanine (FePc) and 7 as the ETM couple and
dihydropyranone 6 could be isolated in 62% after 72 h (entry 3).
The reaction time could be shortened by using couple 1 and
FePc as ETMs, yielding 6 at 62% yield with 95% ee after 48 h.
Heating the reaction at 40 °C was key to shortening the reaction
times to acceptable levels (25 h, entry 5). Interestingly, the
reaction conducted in an atmosphere of pure O, did not render
any product (entry 6). A reasonable explanation could be that an
excessive concentration of O, promoted the inactivation of the
FePc. This inactivation could be due to formation of the oxygen-
bridged FePc dimer, which is catalytically inactive under our
reaction conditions.”® This result prompted us to investigate
whether the FePc was stable during the course of the reaction.
Following 1 and its reduced phenolic form on GCMS revealed
that after approximately 3 h, only the reduced form of 1 was
present in the reaction mixture. This could be a direct result of
the formation of the catalytically inactive dimer species. The
argument is strengthened by the fact that an additional portion
of FePc reforms the oxidised form of 1. Consequently, the
optimal result was achieved with sequential addition of FePc
and 6 could be isolated in 79% yield with 94% ee (entry 11).
Moreover, the background oxidation was probed by system-
atically eliminating each of the involved redox species (Table 2).
Without quinone 1 or FePc the reactions perform poorly
(entries 7 and 8). With no ETMs the reaction completely shuts
down (entry 9), and without any O, present, only small amounts
of product can be isolated (17%, entry 10).

Having identified our optimal reaction conditions, the scope
of the reaction was examined (Table 2). The reaction performs
well for a wide range of cinnamaldehydes in combination
with acetylacetone as the nucleophile, and the corresponding
dihydropyranones can be isolated in generally high yields with
ee values of 81-94%. For example, p-chloro-cinnamaldehyde can
be converted to the corresponding dihydropyranone 9 in 80%
yield and 91% ee. Aliphatic aldehydes are also viable reaction
partners with this strategy and 14 was isolated in 65% yield and
83% ee. Ketoesters as the nucleophilic reaction partner are also
permitted by the reaction, giving high to excellent yields of the
corresponding dihydropyranones (61-86% yield; 85-95% ee,
entries 15-22). For example, ethyl 3-oxobutanoate can be reacted
with furan containing o,B-unsaturated aldehyde to give lactone
19 61% yield and 90% ee. Moreover, methyl 3-oxobutanoate
reacts with cinnamaldehyde to deliver the annulated product 20
in 79% yield and 95% ee. Asymmetrical aryl ketones are also
efficient nucleophiles in this reaction and dihydropyranone 23
can be obtained in 67% combined yield in a 93 : 7 regioisomeric

This journal is © The Royal Society of Chemistry 2016
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Table 2 Substrate scope®®

S (o]
R "o 3,1, FePc, o
+ LiOAc dihydrate
M Air, toluene 40 °C R = R
Re Ri 07 "R,

©§©§©?

9 80% yield 10 76% yield 11 91% yield
91%ee 85% ee 81% ee

M©§©§ Q

12 65% yield 13 73% yield 14 65% yield
90% ee o 90% ee 83% ee
i OEt MeO : iik /@ é\
15 86% yield 16 79% yield 17 54% yield
90% ee 85% ee 87% ee

Qi} @$©

20 79% yleld
95% ee

18 63% yield
90% ee

o o

2173% yleld
92% ee

19 61% yield
90% ee

22 74% yield
86% ee

23° 67% yield
93:7rr., 87% ee

“ The reactions were performed in open reaction vessels at 40 °C in
toluene (2 mL) with catalyst 3 (0.1 eq.), o, p-unsaturated aldehyde (1 eq.),
13dlcarbonyl (3 eq.), LiOAc-2H,O (1 eq.) FePc (0.006 eq.) and 2
(0.2 eq) Isolated yields after purification with silica gel chromato-

graphy. ¢ Major isomer combined yield r.r. determined by "H NMR of
the crude reaction mixture.

ratio and 87% ee of the major isomer. Encouraged by the efficiency
and selectivity of the system, we examined whether the dihydro-
pyranones could be functionalised in a tractable manner. In this
respect, a transesterification would be of particular importance, as
the products of such reaction are difficult to form via direct
Michael addition of acetylacetone to cinnamates.”> Accordingly,
dihydropyranone 6 was subjected to an NHC/base-catalysed
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Scheme 2 Transesterification of dihydropyranones to methyl ester 24.

\ +|
\/N\ 10 mol%
Methanol
© DBU 10 mol%

94% ee

1. A -FePCreq A 1/20,

~ FePcyy - ™~ H;0

Scheme 3 Catalytic cycle.

transesterification with methanol, achieving 95% yield of ester
24 with maintained optical purity (Scheme 2).

The catalytic cycle starts with deprotonation of the chiral
triazolium salt to generate NHC 25 (Scheme 3). The NHC adds
to the o,B-unsaturated aldehyde 26 to produce homoenolate 27.
The homoenolate is oxidised to the unsaturated acyl azolium 28 by
O,, via a multistep electron transfer, mediated by the systems of
ETMs. In the selectivity determining step 1,3-keto compound 30
adds to the acyl azolium in a 1,4-fashion producing intermediate
31.%>%7°% Tautomerisation followed by cyclisation delivers the
product 33 and regenerates the NHC.

In summary, we have developed an aerobic enantioselective
synthesis of dihydropyranones relying on multistep electron
transfer. We show that the homoenolate, derived from
a,B-unsaturated aldehydes and a chiral catalyst, can be oxidised
to the acyl azolium, by air, utilising a system of ETMs. The
oxidation of the homoenolate is selective; consequently, no
excess of aldehyde is required to compensate for the formation
of carboxylic acid that normally accompanies aerobic oxidative
NHC catalysis. Furthermore, the procedure demonstrates that
stoichiometric use of high molecular weight oxidants such as
the Kharasch oxidant (1) is not necessary in order to access
important chemical processes in this field.

This work was generously supported by the Swedish
Research Council VR and Formas.
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