ChemComm

COMMUNICATION

Cite this: *Chem. Commun.,* 2016, 52, 9781

Received 24th May 2016, Accepted 6th July 2016

Alignment of paired molecules of C_{60} within a hexagonal platform networked through hydrogen-bonds†

Ichiro Hisaki, $*$ ^a Shoichi Nakagawa,^a Hiroyasu Sato^b and Norimitsu Tohnai^a

DOI: 10.1039/c6cc04310k

www.rsc.org/chemcomm

We demonstrate, for the first time, that a hydrogen-bonded lowdensity organic framework can be applied as a platform to achieve periodic alignment of paired molecules of C_{60} , which is the smallest example of a finite-numbered cluster of C_{60} . The framework is a layered assembly of a hydrogen-bonded 2D hexagonal network (LA-H-HexNet) composed of dodecadehydrotribenzo[18]annulene derivatives. COMMUNICATION

COMMUNICATI

Dimensionally-controlled assemblies of functional π -conjugated molecules are of substantial interest from optical and electronic viewpoints. In particular, those of fullerene (C_{60}) derivatives have been intensively studied because of their specific optoelectronic properties such as a significant electron accepting ability originating in the spherical π -system.^{1,2}

Crystalline lattices are a potential platform to achieve controlled arrangements of C_{60} molecules. To date, molecularly-isolated arrangements (Fig. 1a)³ and one-dimensionally (1-D) (Fig. 1b)^{2d,4} or two-dimensionally $(2-D)$ (Fig. 1c)⁵ aligned infinite structures of C_{60} have been reported in various crystalline frameworks. On the other hand, isolated arrangements of finite-numbered clusters of C_{60} molecules are still challenging to construct due to the lack of a general methodology, although seven examples have been reported for an isolated-dimer structure of C_{60} (Fig. 1d), which is the smallest example of a finite-numbered cluster. $6,7$

In this study, we propose that a hydrogen-bonded low density framework can be applied as a platform to construct an isolated arrangement of finite-numbered clusters of C_{60} molecules. Previously, we have reported that C_3 -symmetric cyclic planar π -conjugated molecules with three 4,4'-dicarboxy-o-terphenyl moieties can form hydrogen-bonded 2D hexagonal network (H-HexNet) structures with multiple voids and that the H-HexNet sheets

Fig. 1 Schematic representation of dimensionally-controlled alignments of C_{60} . (a) Molecularly-isolated, (b) one-dimensional, (c) two-dimensional, and (d) finite-number-isolated arrangements.

are stacked without interpenetration to give low-density layered assemblies of H-HexNets (LA-H-HexNets).⁸ In particular, a H-HexNet of dodecadehydrotribenzo[18]annulene derivative T18 (Fig. 2)^{8a,c} can provide a space suitable for aligning C_{60} molecules.

T18 was synthesised using our reported method 8a and was initially crystallized via slow evaporation of a mixed solution of o -dichlorobenzene ($oDCB$) and N , N -dimethylformamide (DMF) at 50 °C to yield $P\overline{1}$ crystal T18-oDCB as shown in Fig. 3a–c. \ddagger

Fig. 2 Multi-porous, hydrogen-bonded hexagonal network (H-HexNet) sheet composed of T18. The sheet contains void-I, which is surrounded by the phenylene triangle (PhT) motif, void-II with the largest non-regular hexagonal space, and void-III intrinsically-generated in molecule T18. Void-II has a space large enough to accommodate three C_{60} molecules.

^a Department of Material and Life Science, Graduate School of Engineering,

Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

^b Rigaku Corporation, Matsubara-cho 3-9-12, Akishima, Tokyo 196-8666, Japan † Electronic supplementary information (ESI) available: Experimental details, CSD searches. CCDC 1481305, 1481306 and 1487277. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6cc04310k

Fig. 3 Crystal structures of LA-H-HexNets (a–c) T18-oDCB, (d–f) T18-C₆₀-1 and (q–i) T18-C₆₀-2. (a, d and q) Hydrogen-bonded phenylene triangle motifs. (b, e and h) Stacking manners of three layers of H-HexNet frameworks. (c, f and i) Arrangements of oDCB or C₆₀ molecules within the LA-H-HexNets. oDCB molecules filling the void spaces in (f) and (i) are omitted for clarity. Colours: red, light cyan, and blue (T18); orange (DMF); light green (C_{60} or oDCB in an upper layer); green (C_{60} or oDCB in a lower layer)

T18-oDCB assembles into a H-HexNet framework by forming a so-called phenylene triangle (PhT) motif, in which one pair of carboxy dimers is truncated by DMF. The HexNet sheets are stacked in a XX['] manner without interpenetration, where the adjacent layers X and X' are related by an inversion center, affording a LA-H-HexNet structure. In the center of triangular void-I, oDCB molecules are located, indicating that oDCB may act as a template to stabilize the PhT motif.

Subsequently, crystallization of T18 was performed under the above mentioned conditions in the presence of C_{60} , yielding two types of LA-H-HexNet crystals including C_{60} molecules (T18-C₆₀-1 and T18-C₆₀-2), as shown in Fig. 3d–i. \ddagger These are formed concomitantly and a condition for the selective preparation of either of the two forms has not been established yet in spite of our great efforts. The final convergence factors of these crystals, such as relatively high R values, are mostly predetermined by the nature of the crystals showing large triclinic cells and extensive disorder involving chlorine atoms.

 $\overline{P1}$ crystal T18-C₆₀-1 consists of T18, C₆₀, and *oDCB* in a ratio of 1 : 1 : 4. T18 molecules assemble into a H-HexNet framework by forming a PhT motif with three hydrogen-bonded dimers of carboxyphenyl groups, one of which exhibits geometrical frustration⁸ (Fig. 3d), and the H-HexNet sheet is stacked to give a LA-H-HexNet structure (Fig. 3e). Within the H-HexNet layer, C_{60} molecules are located in two positions: one molecule labelled A $(C_{60}A)$ is in contact with the rim of a PhT (void-I); the others ($C_{60}B$ or $C_{60}C$) are at the corners of non-regular hexagonal spaces (void-II) (Fig. 3f). In both cases, interactions between the H-HexNet framework and C_{60} molecules are van der Waals forces such as $\pi \cdot \cdot \pi$ and CH $\cdot \cdot \pi$ contacts. In Table 1, intermolecular distances between the centres of adjacent C_{60} molecules (L) are listed. In crystal T18- C_{60} -1, C_{60} molecules are molecularly isolated. For example, the distances L for $C_{60}A-C_{60}B$ and $C_{60}A-C_{60}C$ are 13.2 Å and 14.9 Å, respectively.

 $P\overline{1}$ crystal T18-C₆₀-2 consists of T18, DMF, C₆₀, and *o*DCB in a ratio of $1:2:1:4$. The crystal density of T18-C₆₀-2 is slightly higher (1.518 vs. 1.481 g^{-1} cm⁻³) and C₆₀ is rotationally less disordered than in T18- C_{60} -1. One of the hydrogen-bonded dimers in the PhT motif of $T18-C_{60}$ -2 is completely dissociated, and each of the carboxy groups forms a heterodimer with a DMF molecule (Fig. 3g), although the H-HexNet framework

 $a^a L$ denotes the distance between the centroids of two C₆₀ molecules.

Fig. 4 Bi-layered rhombic frames of (a) $T18-C_{60}-1$ and (b) $T18-C_{60}-2$ with C_{60} and oDCB molecules. (inset) Schematic representations of two overlapped T18 cores, in which black dots and yellow arrows indicate centroids of the T18 core and the slipping distances of the core, respectively.

itself is retained owing to the other two homodimers. The H-HexNet sheets are again stacked in a XX' manner, affording a LA-H-HexNet framework as in the case of the former two (Fig. 3h). Interestingly, void-II in $T18-C_{60}$ -2 accommodates two C_{60} molecules (C_{60} A and C_{60} B) at its corners and the resulting dimeric array of C_{60} is isolated from the adjacent dimers by the H-HexNet framework (Fig. 3i). The distance (L_1) between the nearest two molecules (C₆₀A and C₆₀B) is 11.2 Å and that (L_2) for the second nearest two molecules ($C_{60}A$ and $C_{60}E$) is 15.12 Å. This is regarded as the smallest system of an infinite-numberisolated array of C_{60} .

To conduct a more detailed comparison of these two structures, we next focused on the bi-layer of the rhombic framework, which is a motif of the H-HexNet sheet (Fig. 4). The two adjacent rhombic frameworks are stacked in an inverted manner, giving three partitioned voids: one central space and two side spaces. In T18-C₆₀-1, each of the side spaces is occupied by one C₆₀ molecule and the central one accommodates oDCB molecules (Fig. 4a), although they are disordered within it. In $T18-C_{60}$ -2, on the other hand, each of the side spaces is filled with three oDCB molecules and the central one is filled with two C_{60} molecules (Fig. 4b). It is not trivial that the width of the central space of T18- C_{60} -2 is expanded by slipping the rhombic frameworks by 2.2 ŧ compared with those of **T18-C**₆₀-1 to accommodate bulky C_{60} molecules (inset in Fig. 4). In addition, the existence of hydrogen-bonded DMF molecules contributes to subtle structural tuning to achieve the present molecular arrangements.

The isolated C_{60} pair observed in the present system is a unique type of C_{60} array. Indeed, a survey of the Cambridge Structural Database (CSD) revealed that, among the structureavailable 200 registries of C_{60} containing crystals, seven crystal structures contained an isolated dimer of a neutral parent C_{60} molecule as summarised in Table 2. Crystals referred to by the Ref Codes BIBVUE,^{6b} LIZSIX,^{6c} and VAJYIP^{6a} have crystalline lattices composed of porphyrin arrays connected through van der Waals interactions. Notably, in the case of BIBVUE, a C_{60} dimer with intermolecular distance L_1 = 9.95 Å is well isolated from the adjacent dimers (L_2 = 14.23 Å, L_{12} = 4.29 Å). In DAYXAE, 6e FUMBIZ, 6d NIFXUV, 6f and NIFYAC, 6f C₆₀ molecules form 1:1 host-guest complexes with a bowl-shaped or tripodal receptor, and the complexes are arranged through van der Waals contacts. Although the present C_{60} pairs have relatively long intermolecular distances (*i.e.*, $L_1 = 11.2$ Å), the pairs are well separated from adjacent pairs (L_2 = 15.1 Å and L_{12} = 4.0 Å). It should be noted that it is almost impossible to predict and design an arrangement of C_{60} molecules in a crystalline lattice constructed by non-directional van der Waals interactions, although a sophisticated C_{60} -isolated pair has been achieved. The present system is the first example of an isolated C_{60} dimeric pair within a well-defined, hydrogen-bonded, low density framework.

In conclusion, we adopted a low-density layered assembly of a hydrogen-bonded hexagonal network (LA-H-HexNets) of dodecadehydrotribenzo[18]annulene derivatives T18 to align

Crystal/RefCode ^a	Host compound	$L_1{}^b/\text{\AA}$	L_2^c/\AA	$dL_{12}^{\quad d}/\AA$	Type of framework	Ref.
$T18-C_{60} - 2$	T18	11.15	15.12	3.97	HB 2D lattice ^{e}	This work
BIBVUE	Porphyrin array	9.94	14.23	4.29	vdW lattice J	6b
LIZSIX	Porphyrin array	10.21	12.51	2.30	vdW lattice J	6c
VAJYIP	Zn porphyrin dimer	9.93	13.37	3.43	vdW lattice J	6a
DAYXAE	Bowl shaped π -system	9.94	13.07	3.13	H/G complex ^g	6e
FUMBIZ	Tripodal anthracene system	9.76	11.70	1.94	H/G complex ^g	6d
NIFXUV	Calix[5] arene derivative	10.18	11.08	0.90	H/G complex ^g	6f
NIFYAC	Calix[5] arene derivative	10.17	11.20	1.03	H/G complex ^g	6f

Table 2 Structural features of crystals with isolated C_{60} dimers

 a Crystals denoted by RefCodes were extracted by a CSD search. b L₁ denotes the intermolecular distance between the centroids of the nearest two C_{60} molecules. ^c L_2 denotes the intermolecular distance between the centroids of the second nearest two C_{60} molecules. ^d L_{12} denotes differences between L_1 and L_2 . ^e HB 2D lattice denotes a 2D lattice connected by a hydrogen bonded network. ^f vdW lattice denotes a lattice constructed through van der Waals contacts. g H/G complex denotes that C_{60} and a host compound form a 1:1 complex, which subsequently constructs crystals through van der Waals contacts.

 C_{60} , yielding two types of C_{60} included crystals: T18- C_{60} -1 and T18- C_{60} -2. In the latter, an alignment of an isolated molecular pair of C_{60} partitioned by 2D hexagonal frameworks was achieved. This arrangement is the smallest example of a finite-numbered cluster of C_{60} . These results imply that the present LA-H-HexNet can be applied as a platform to align functional molecules, aimed at developing for example, artificial photosynthetic systems.⁹ Selective preparation of T18-C₆₀-1 and T18-C₆₀-2 and the subsequent investigation of their optical and electronic properties are currently underway.

This work was supported by a Grant-in-Aid for Scientific Research (C) (JPT15K04591) and for Scientific Research on Innovative Areas: π -System Configuration (JP15H00998) from MEXT Japan. We would like to thank Prof. Hidehiro Sakurai, Osaka University, for NMR measurements and Prof. Mikiji Miyata, Osaka University, for fruitful discussions. Finally, we would like to thank the referrers for their important and constructive comments, which led to the improvement of the manuscript. Crystallographic data were partly collected using synchrotron radiation at the BL38B1 and BL02B2 in the SPring-8 with the approval of JASRI (Proposal No. 2014B1976, 2015B1397, and 2015B1685).

Notes and references

 \ddagger Crystal data for **T18-oDCB:** $(C_{72}H_{36}O_{12})$ -3 $(C_{6}H_{4}Cl_{2})$ - $(C_{3}H_{7}N)$, F_{w} = 1607.08, $a = 12.0893(3)$ Å, $b = 17.1939(4)$ Å, $c = 24.6711(6)$ Å, $\alpha =$ $104.880(2)^\circ$, $\beta = 90.0510(19)^\circ$, $\gamma = 98.3470(19)^\circ$, $V = 4899.8(2)$ Å³, $T = 213$ K, triclinic, space group $P\overline{1}$, $Z = 2$, 30849 collected, 15945 unique ($R_{\text{int}} = 0.052$) reflections, the final R1 and w R_2 values 0.1254 $(I > 2.0\sigma(I))$ and 0.4149 (all data), respectively. Crystal data for T18-C₆₀-1: $(\rm{C}_{72}\rm{H}_{36}\rm{O}_{12})$ ·(C₆₀)·4(C₆H₄Cl₂), $F_{\rm w}$ = 2400.74, a = 13.8208(4) Å, b = 17.4812(6) Å, $c = 24.2884(9)$ Å, $\alpha = 76.082(3)^\circ$, $\beta = 87.204(3)^\circ$, $\gamma =$ 70.991(3)^o, $V = 5382.5(3)$ \mathring{A}^3 , $T = 100$ K, triclinic, space group \overline{PI} , $Z = 2$, 90205 collected, 28131 unique $(R_{int} = 0.102)$ reflections, the final R1 and wR₂ values 0.1497 ($I > 2.0\sigma(I)$) and 0.4352 (all data), respectively. Crystal data for **T18-C₆₀-2:** $\rm (C_{72}H_{36}O_{12})$ ·(C₆₀)·2(C₃H₇NO)·4(C₆H₄Cl₂), $F_{\rm w}$ = 2547.93, $a = 16.2768(7)$ Å, $b = 16.3003(7)$ Å, $c = 23.6077(8)$ Å, $\alpha = 94.242(3)^\circ$, $\beta =$ 5.588(3)°, $\gamma = 115.579(4)$ °, $V = 5575.6(4)$ Å³, $T = 100$ K, triclinic, space group $\overline{P1}$, $Z = 2$, 77 670 collected, 20 249 unique ($R_{int} = 0.0984$) reflections, thes final R1 and wR₂ values 0.1414 ($I > 2.0\sigma(I)$) and 0.4453 (all data), respectively. CCDC numbers: T18- o DCB (CCDC 1487277), T18-C $_{60}$ -1 (CCDC 1481306) and **T18-C₆₀-2** (CCDC 1481305). Communication Websort of Licence articles. THE Capacity and the common Com

§ Distances between the centroids and the molecular planes of the two overlapped T18 cores are 7.9 Å and 3.7 Å, respectively, for T18-C₆₀-1 and 10.1 Å and 4.0 Å, respectively, for T18- C_{60} -2. Based on these distances, the slipping distances of the two overlapped T18 cores A and B can be estimated as 8.7 Å for T18-C₆₀-1 and 10.9 Å for T18-C₆₀-2.

- 1 (a) D. M. Guldi, F. Zerbetto, V. Georgakilas and M. Prato, Acc. Chem. $Res.$, 2005, 38, 38-43; (b) S. S. Babu, H. Möhwald and T. Nakanishi, Chem. Soc. Rev., 2010, 39, 4021-4035; (c) F. Giacalone and N. Martín, Adv. Mater., 2010, 22, 4220–4248.
- 2 (a) S. Zhou, C. Burger, B. Chu, M. Sawamura, N. Nagahama, M. Toganoh, U. E. Hackler, H. Isobe and E. Nakamura, Science, 2001, 291, 1944–1947; (b) M. Sawamura, K. Kawai, Y. Matsuo, K. Kanie, T. Kato and E. Nakamura, Nature, 2002, 419, 702–705; (c) Y. Yamamoto, G. Zhang, W. Jin, T. Fukushima, N. Ishii, A. Saeki, S. Seki, S. Tagawa, T. Minari, K. Tsukagoshi and T. Aida, Proc. Natl. Acad. Sci. U. S. A., 2009, 106, 21051–21056; (d) H. Nobukuni, Y. Shimazaki, H. Uno, Y. Naruta, K. Ohkubo, T. Kojima, S. Fukuzumi, S. Seki, H. Sakai, T. Hasobe and F. Tani, Chem. – Eur. J., 2010, 16, 11611–11623.
- 3 D. Canevet, E. M. Pérez and N. Martín, Angew. Chem., Int. Ed., 2011, 50, 9248–9259.
- 4 (a) L. J. Barbour, G. W. Orr and J. L. Atwood, Chem. Commun., 1998, 1901–1902; (b) A. L. Litvinov, D. V. Konarev, A. Y. Kovalevsky, I. S. Neretin, Y. L. Slovokhotov, P. Coppens and R. N. Lyubovskaya, $CrystEngComm$, 2002, 4, 618–622; (c) A. Sygula, F. R. Fronczek, R. Sygula, P. W. Rabideau and M. M. Olmstead, J. Am. Chem. Soc., 2007, 129, 3842–3843; (d) C. Pariya, C. R. Sparrow, C.-K. Back, G. Sandi, F. R. Fronczek and A. W. Maverick, Angew. Chem., Int. Ed., 2007, 46, 6305–6308; (e) J. Kobayashi, Y. Domoto and T. Kawashima, Chem. Commun., 2009, 6186–6188.
- 5 (a) E. M. Veen, P. M. Postma, H. T. Jonkman, A. L. Spek and B. L. Feringa, Chem. Commun., 1999, 1709–1710; (b) D. V. Konarev, A. Y. Kovalevsky, D. V. Lopatin, A. V. Umrikhin, E. I. Yudanova, P. Coppens, R. N. Lyubovskaya and G. Saito, Dalton Trans., 2005, 1821–1825; (c) D. V. Konarev, S. S. Khasanov, A. Y. Kovalevsky, D. V. Lopatin, V. V. Rodaev, G. Saito, B. Nafradi, L. Forro and R. N. Lyubovskaya, Cryst. Growth Des., 2008, 8, 1161–1172; (d) S.-X. Fa, L.-X. Wang, D.-X. Wang, L. Zhao and M.-X. Wang, J. Org. Chem., 2014, 79, 3559–3571.
- 6 (a) A. L. Litvinov, D. V. Konarev, A. Y. Kovalevsky, P. Coppens and R. N. Lyubovskaya, CrystEngComm, 2003, 5, 137–139; (b) D. V. Konarev, A. L. Litvinov, I. S. Neretin, N. V. Drichko, Y. L. Slovokhotov, R. N. Lyubovskaya, J. A. K. Howard and D. S. Yufit, Cryst. Growth Des., 2004, 4, 643–646; (c) L. H. Tong, J.-L. Wietor, W. Clegg, P. R. Raithby, S. I. Pascu and J. K. M. Sanders, Chem. – Eur. J., 2008, 14, 3035–3044; (d) J. Kobayashi, Y. Domoto and T. Kawashima, Chem. Lett., 2010, 39, 134–135; (e) B. T. King, M. M. Olmstead, K. K. Baldridge, B. Kumar, A. L. Balch and J. A. Gharamaleki, Chem. Commun., 2012, 48, 9882–9884; (f) T. Haino, M. Yanase and Y. Fukazawa, Tetrahedron Lett., 1997, 38, 3739–3742.
- 7 Covalently connected arrays of C_{60} are also known, see; J. L. Segura and N. Martín, Chem. Soc. Rev., 2000, 29, 13-25.
- 8 (a) I. Hisaki, S. Nakagawa, N. Tohnai and M. Miyata, Angew. Chem., Int. Ed., 2015, 54, 3008; (b) I. Hisaki, N. Ikenaka, N. Tohnai and M. Miyata, Chem. Commun., 2016, 52, 300–303; (c) I. Hisaki, S. Nakagawa, N. Ikenaka, Y. Imamura, M. Katouda, M. Tashiro, H. Tsuchida, T. Ogoshi, H. Sato, N. Tohnai and M. Miyata, J. Am. Chem. Soc., 2016, 138, 6617–6628.
- 9 T. Hasegawa, K. Ohkubo, I. Hisaki, M. Miyata, N. Tohnai and S. Fukuzumi, Chem. Commun., 2016, 52, 7928–7931.