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A versatile enzyme immobilization strategy for thin film continuous
flow processing is reported. Here, non-covalent and glutaraldehyde
bioconjugation are used to immobilize enzymes on the surfaces of
borosilicate reactors. This approach requires only ng of protein per
reactor tube, with the stock protein solution readily recycled to
sequentially coat >10 reactors. Confining reagents to thin films
during immobilization reduced the amount of protein, piranha-
cleaning solution, and other reagents by ~96%. Through this
technique, there was no loss of catalytic activity over 10 h processing.
The results reported here combines the benefits of thin film flow
processing with the mild conditions of biocatalysis.

Nature builds diverse and complex natural products through
assembly line biosynthesis. Polyketide synthases for example,
are multi-domain proteins that perform iterative processes to
synthesize a large range of secondary metabolites."* Continuous
flow has emerged as an analogous, in vitro process, for synthe-
sizing compounds through multistep processes.

In the laboratory, enzymes can perform a wide range of
transformations including reductions,** oxidations,>® cyclization,”®
aziridinations® and nitration reactions."® Improving the perfor-
mance of these enzymes typically relies on directed evolution**>
and computational design.">'* These widely used techniques
can improve reaction rates and enzyme promiscuity to accept
non-natural substrates. Although such approaches increase the
utility and adoption of biocatalyzed transformations, scaling up
enzyme-catalyzed reactions can be challenging.

Translating reactions into continuous flow can increase reac-
tion yields and safety,'>'® aid multistep transformations,"”'® and
decrease human effort and waste.'®*° Furthermore, enzymes
in synthetic pathways can improve sustainability metrics by
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avoiding hazardous solvents and toxic metals. Combining the
benefits of continuous flow and biocatalysis offers numerous
advantages such as processing with immobilized enzymes and
rapid scale-up. Continuous flow biocatalysis has thus increas-
ingly become a focus of many laboratories, as shown in a few
examples.?* 724

Immobilizing enzymes can increase their industrial viability
by creating reusable biocatalysts with potentially improved
reactivity, purity, specificity, selectivity, thermal stability and
pH tolerance.”~*° Given this importance, many immobilization
strategies have been described, including attachment to magnetic
nanoparticles and nanomaterials,>"*> supports through antibody-
specific epitopes and crosslinking,*® and also entrapment within
a polymer network.>® Glutaraldehyde crosslinking was chosen
here due to its simplicity, commercial availability, and success in
previous immobilization studies.***°

Recently, our laboratories have focused on utilizing thin
films to mediate protein folding,?” biocatalysis*® and molecular
assembly line processes.*® This involves processing in a vortex
fluidic device (VFD) which confines reagents to a ~250 uM
thin film. Here, micromixing, shear stress and mechanical
vibrations?®*' can operate upon reagents to increase reaction
yields and efficiencies. Processing in a single VFD with a 20 mm
external diameter reactor can achieve flow rates up to 20 mL min ™",
Larger scale processing is possible by applying multiple VFDs.
In pursuing new multistep transformations, we have recently
embarked on exploring thin film continuous flow biocatalysis.
Future experiments, using enzymes alone, or in conjunction
with organic reagents will require immobilization of minute
quantities of protein for efficient continuous flow reactors.

Unlike other continuous flow systems, the VFD reactor is
made from borosilicate glass. This material can simplify bio-
conjugation, as explored systematically here. APTES (3-aminopropyl
triethoxysilane) was coupled to the reactor surface to create a layer
of nucleophilic amines (Fig. 1a). This APTES modified reactor was
then used for rapid covalent and non-covalent immobilization.
Non-covalent immobilization can be achieved though surface-
exposed functionalities on the protein interacting with the
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Fig.1 Enzyme immobilization onto the surface of the VFD reactor.
(a) First, the surface of the sample tube is coated with APTES (3-aminopropyl
triethoxysilane) to generate a high concentration of surface-bound amines; a
simplified depiction of this surface coating is shown here. (b) B-Glucosidase
is added directly to the APTES-coated sample tube for non-covalent
immobilization. (c) After derivatization of the APTES layer with glutaralde-
hyde, B-glucosidase is attached in this simplified structure of the linker and
cross-link. (d) The imine-glutaraldehyde is reduced with NaBHsCN. (e) The
immobilization efficiency was tested by VFD processing in the presence of
the B-glucosidase substrate, 4-nitrophenyl B-b-glucopyranoside. (f) The
sample tube can be regenerated through rapid treatment with a thin film
of piranha solution. Some of the reactions in this manuscript were per-
formed in continuous flow, further information on the reactor setup has
been previously reported.®

APTES layer through salt bridges and hydrogen bonds (Fig. 1b).
In contrast, covalent immobilizations used surface-exposed lysine
sidechains (also thiols, phenols and imidazoles®®) on the protein
to form imine and amine bonds with a glutaraldehyde-modified
APTES linker (Fig. 1c and d). The structure of the glutaraldehyde
linker and resultant cross-link has been simplified in Fig. 1;
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in aqueous solution, for example, many different forms of
glutaraldehyde can exist.**®

Coating the reactor with APTES required optimizing a three-
step process. First, treatment with piranha solution exposes
high concentrations of silinols on the reactor surface. Although
the reactor can be filled with piranha solution (50 mL), confining
3 mL to a thin film for one min offers the same cleaning
efficiency, whilst reducing the volume of this highly hazardous
fluid by 94%. After washing and drying, the reactor surface is
then derivatized with a dilute APTES solution (79.5 mM, 60 pL in
3 mL MeOH). Again, confining reagents to a thin film reduced
the quantities of MeOH and APTES required by 94%. Lastly,
the APTES-modified surface is heated to 160 °C to drive the
condensation reaction to completion (Fig. 1a).

Non-covalent immobilization is sometimes preferred to
covalent immobilization as introducing random covalent bonds
can distort enzymes’ structures.*® For testing a large number of
non-covalent immobilization variables, a colorimetric enzyme-
substrate assay was used, PB-glucosidase and 4-nitrophenyl
B-p-glucopyranoside, respectively. This assay offers high through-
put conditions (5 min per reaction), an effective quench solution,
and stability to vortexing conditions (Fig. 2d).>®

B-Glucosidase and buffer salt concentrations play an integral
role in non-covalent immobilization efficiency and activity. Vary-
ing both of these variables simultaneously generated a contour
plot (Fig. 2a). A B-glucosidase concentration of 0.3 mg mL ™" was
optimal, with variation either side of this concentration decreas-
ing immobilization efficiency. Furthermore, confining the protein
solution to a thin film for immobilization reduced the volume of
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Fig. 2 Non-covalent immobilization using B-glucosidase and 4-nitrophenyl B-p-glucopyranoside for optimization. (a) The enzyme and buffer salt
concentration were varied during the immobilization step. The contour plot reveals that a 0.3 mg mL™ enzyme concentration in a 60 mM NaCl PBS
buffer is optimal for high substrate conversion. (b) Decreased catalytic activity due to enzyme leaching is depicted in this contour plot. Thus, higher salt
concentrations are revealed as beneficial for immobilization longevity. (c) Varying the pH of the attachment buffer established optimal immobilization in
PBS at pH 8.0. The deviation from the trend at pH 5.0 is due to the isoelectric point of B-glucosidase. (d) For all optimization experiments, a B-glucosidase

and 4-nitrophenyl B-p-glucopyranoside (10 mM, 1.50 mL) system was

used. B-Glucosidase hydrolyses the substrate, releasing p-nitrophenol

(Amax 405 nm) and B-b-glucopyranoside. Each assay was performed in the VFD for five min, and each reactor was assayed six times. Two separate
reactors were used per data point, and the error is a standard deviation around the mean (n = 12).
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protein solution used from 50 to 3 mL, ie. a reduction of 94%
(15 mg to 0.9 mg). Additionally, 60 mM NacCl in PBS was found to
be optimal, but taking into account rate loss over time revealed
that 150 mM NaCl in PBS is superior, with no decrease in
substrate transformation rate over 30 min (Fig. 2b). The higher
salt concentration during adsorption could increase the strength
of the enzyme-APTES interaction.*

Next we next examined the conditions required for covalent
immobilization. Covalent immobilization can increase
enzymes’ stability greatly through the addition of short spacers
off the reactor surface.”” Reacting glutaraldehyde with the
APTES-coated reactor, followed by the sequential addition of
B-glucosidase solution afforded an imine linker for immobiliza-
tion (Fig. 1c). Furthermore, this imine can be reduced to the
amine with NaBH;CN solution (Fig. 1d).*>** Notably, lysine
residues in the active site are typically uninvolved in catalysis,
and this immobilization strategy is therefore unlikely to perturb
enzyme function.>® Once again, these steps were performed in
the thin film, resulting in a 96% reduction in quantity of buffer
and reagents required.

Switching to covalent immobilization increased the yields of
conjugated enzyme with a concomitant increase in the rates
of substrate conversion. Although a slight increase in enzyme
immobilization efficiency and reaction rate results from switch-
ing to covalent immobilization, the reduction of imine to amine
provides a dramatic improvement. This reduction prevents hydro-
lysis of the imine, thus increasing the concentration of protein on
the surface of the reactor tube (Fig. 3a). To test the stability of
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these immobilization strategies, each immobilized enzyme was
subjected to a continuous flow reaction at 1.0 mL min™"; all
immobilizations demonstrated excellent stability, with no loss of
activity after 10 h of processing recorded with the amine linker
(Fig. 3a).

Our second requirement for this immobilization strategy
was to make it general. Given that proteins have a hydrophilic
surface, most enzymes have a surface-exposed lysine residue for
immobilization. As small quantities of protein are used in this
immobilization strategy (0.9 mg), we were able to explore
phosphodiesterase, a poorly overexpressing recombinant protein.
Immobilizing phosphodiesterase and a commercially available
alkaline phosphatase via amine-glutaraldehyde immobilization
(Fig. 1c) resulted in stable levels of substrate conversion for 10 h
in continuous flow (1 mL min~", Fig. 3b).

The final criterion for this immobilization method was to
increase immobilization efficiency. This process already uses a
low quantity of protein, but, to address efficiency further, it
would be useful to know how much protein is on the surface
of the reactor. Two complementary experiments revealed that
15.4 to 69.8 ng of B-glucosidase are present on the surface of the
reactor after covalent immobilization (Fig. S1 and S2, ESIY).
This surprising result opened up the possibility to recycle the
protein stock solution (0.3 mg mL™"). Indeed, recycling the
stock solution of B-glucosidase allowed the coating of 12 reactor
tubes with no observable decrease in substrate conversion
between the first tube and the last (Fig. 3c). We were unable to
identify why recycling the enzyme solution increased substrate
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Fig. 3 The conditions optimized here are general for a range of proteins. The protein solutions used in the immobilization step can be recycled to coat
more than ten sample tubes, with the coated sample tubes still maintaining catalytic activity for weeks. (a) Switching from non-covalent to covalent
attachments increased substrate conversion levels dramatically. (b) Applying the symmetrical amine-glutaraldehyde cross linker optimized for
B-glucosidase to alkaline phosphatase and phosphodiesterase establishes the generality of the method, with all three proteins having good stability
over 10 h of processing. (c) The B-glucosidase solution (3 mL, 0.3 mg mL™) used in the immobilization step can be recycled to coat more than ten
sample tubes, with the first sample tube having the same substrate transformation rate as the last. We anticipate that this solution could coat tens of
sample tubes given the small amount of protein used in each immobilization. (d) Storing the enzyme-immobilized tubes devoid of buffer allowed >20%
catalytic activity after one month. The rates displayed above are the average rates as described in Fig. 2 (n = 12). The data in (a) and (b) were from

continuous flow experiments with a flow rate of 1.0 mL min~.
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conversion levels for sample tubes 2-8. This trend subsides with
additional sample tubes, and we believe that it is an experi-
mental artifact.

Lastly, sample tube storage was investigated, which was
deemed important given that sample tubes are often transported
to other laboratories. Surprisingly, a dry sample tube bearing
surface bound f-glucosidase provided reasonable substrate
conversion after one month of storage (4 °C storage, 19 uM min ™"
conversion, Fig. 3d). Presumably the decrease in substrate
conversion results from a combination of protein leaching
and unfolding.

In conclusion, a rapid and general technique for protein
immobilization onto a thin film continuous flow reactor has
been developed. Importantly, using thin films for reagent
confinement reduced the volume of protein solution, piranha
solution, APTES, MeOH, glutaraldehyde, NaBH;CN and a range
of buffers by an average of 95%. The ability to use a small
amount of protein (900 pg) to coat > 10 sample tubes provides a
general strategy to increase the efficiency of enzyme-mediated
transformations in continuous flow. Incorporating biocatalysts
into multistep processes offers the potential to create complex
molecules using nature’s machinery. The findings reported
here will facilitate biocatalysts by allowing low expressing
proteins to be used in complex substrate transformations such
as natural products and pharmaceutical ingredients.
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