

 Cite this: *Chem. Commun.*, 2016, 52, 6601

 Received 21st February 2016,
 Accepted 11th April 2016

DOI: 10.1039/c6cc01572g

www.rsc.org/chemcomm

A new reaction mode for bicyclo[1.1.0]tetraphosphabutanes is reported. The C=S and C=N bonds of phenyl isothiocyanate reversibly insert into a P–P bond of $[(\text{CpNi}(\text{IMes}))_2(\mu\text{-}\eta^1\text{-}\eta^1\text{-P}_4)]$ ($\mathbf{1}^{\text{Mes}}$, IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazolin-2-ylidene), forming isomers **2a and **2b**. X-ray crystallography and $^{31}\text{P}\{^1\text{H}\}$ NMR spectroscopy revealed similar bicyclo[3.1.0]heterohexane structures for these compounds.**

Developing new, targeted and selective methods for the functionalisation of the P_4 molecule remains a topical challenge despite the extensive research efforts carried out in the past.^{1,2} Recent reports have focused on the use of nucleophilic carbanions and carbenes,^{3,4} insertion reactions of p-block elements, *e.g.* phosphonium cations⁵ and the use of main group element or transition metal-based radicals.^{6,7} The latter approach often gives rise to bicyclo[1.1.0]tetraphosphabutanes **A**, which may be seen as potential intermediates on the way to a stepwise P_4 degradation sequence (Scheme 1a). While various ‘ P_4 butterfly’ compounds of type **A** are known, it is interesting to note that their reactivity has only been explored to a small extent (Scheme 1b).^{1,6–9} Previous studies mainly focused on iron complexes.^{1d,7a,c,9–11} As reported by Scherer and Scheer, thermolysis or photolysis of $[(\text{Cp}^R\text{Fe}(\text{CO}))_2(\mu\text{-}\eta^1\text{:}\eta^1\text{-P}_4)]$ ($\text{Cp}^R = \text{C}_5\text{H}_2\text{-1,2,4-}t\text{Bu}_3$, $\text{C}_5\text{H}_2\text{-1,2,4-}t\text{Bu}_3$, $\text{C}_9\text{H}_5\text{-1,3-}t\text{Bu}_2$ and C_5iPr_5) affords mixtures of polyphosphido complexes.^{7a,c} Reactions with (phospha)alkynes evoked the P_3/P_1 fragmentation of the bicyclo[1.1.0]tetraphosphabutane diyl fragment, forming phosphide, phospholide and diphosphacyclobutadiene components.^{9,10} Further studies revealed that the ‘ P_4 butterfly’ may be protonated reversibly and coordinates as a chelate ligand to copper(i).¹¹ Here, we disclose a new reaction mode for metal-substituted bicyclo[1.1.0]tetraphosphabutanes. We have found

that phenyl isothiocyanate reversibly inserts into a P–P bond of the bicyclo[1.1.0]tetraphosphabutane scaffold of the dinuclear nickel complex $[(\eta^5\text{-Cp})\text{Ni}(\text{IMes})_2(\mu\text{-}\eta^1\text{:}\eta^1\text{-P}_4)]$ ($\mathbf{1}^{\text{Mes}}$, Scheme 1c).^{7b} This unprecedented reaction affords the isomers **2a** and **2b**, which display a bicyclo[3.1.0]heterohexane skeleton. We describe the single-crystal X-ray structures and $^{31}\text{P}\{^1\text{H}\}$ NMR data of these

Scheme 1 (a) Formation of bicyclo[1.1.0]tetraphosphabutanes amenable for further transformations; (b) selected reactions of iron-substituted bicyclo[1.1.0]tetraphosphabutanes; $\text{Cp}^R = \text{C}_5\text{H}_2\text{-1,2,4-}t\text{Bu}_3$, $\text{C}_5\text{H}_2\text{-1,2,4-}t\text{Bu}_3$, $\text{C}_9\text{H}_5\text{-1,3-}t\text{Bu}_2$, C_5iPr_5 , $\text{R}^1 = \text{R}^2 = \text{Me, Ph}$; $\text{R}^1 = \text{H}$, $\text{R}^2 = \text{Ph, }t\text{Bu, SiMe}_3$, $\text{CO}_2\text{Me/Et}$, $\text{R}^3 = t\text{Bu, C}(\text{CH}_2)_5\text{Me}$; (c) synthesis of $\mathbf{1}^{\text{Dipp}}$ and $\mathbf{1}^{\text{Mes}}$ and reactivity toward phenyl isothiocyanate.^{6–10}

^a University of Regensburg, Institute of Inorganic Chemistry, 93040 Regensburg, Germany. E-mail: robert.wolf@ur.de

^b Department of Chemistry and Pharmaceutical Sciences, VU University Amsterdam, De Boelelaan 1083, 1081 HV Amsterdam, The Netherlands

[†] Electronic supplementary information (ESI) available. CCDC 1446071–1446073. For ESI and crystallographic data in CIF or other electronic format see DOI: 10.1039/c6cc01572g

new complexes and analyse the possible nature of additional reaction products using DFT calculations.

We recently synthesised the first nickel-substituted bicyclo[1.1.0]tetraphosphabutane, $[(\eta^5\text{-Cp})\text{Ni}(\text{IDipp})_2(\mu\text{-}\eta^1\text{-}\eta^1\text{-P}_4)]$ (**1^{Dipp}**, IDipp = 1,3-bis(2,6-diisopropylphenyl)imidazolin-2-ylidene).^{7b} This complex is formed in a quantitative reaction from two equivalents $[(\eta^5\text{-Cp})\text{Ni}(\text{IDipp})]$ and P_4 (Scheme 1c). Subsequent work showed that the slightly less encumbered mesityl-substituted complex $[(\eta^5\text{-Cp})\text{Ni}(\text{IMes})_2(\mu\text{-}\eta^1\text{-}\eta^1\text{-P}_4)]$ (**1^{Mes}**) is obtained in an analogous fashion. **1^{Mes}** was isolated as dark red air-sensitive crystals in 71% yield (Scheme 1c) and shows a better solubility than **1^{Dipp}**, dissolving well in benzene, toluene, diethyl ether and tetrahydrofuran (ESI[†]).

In order to probe the reactivity of **1^{Dipp}** and **1^{Mes}**, we investigated reactions with heteroallenes. ADMX spin systems were observed by ^{31}P NMR spectroscopy with CS_2 (10 equiv.), suggesting an insertion into a P-P bond, but the products could not be isolated (ESI[†]). Isolable products were obtained with phenyl isothiocyanate, however. Monitoring the reaction of **1^{Mes}** and PhNCS in $[\text{D}_8]\text{THF}$ (Fig. 1) revealed that 7 equiv. PhNCS were necessary for full conversion of **1^{Mes}** after four hours, while a large amount of **1^{Mes}** (55%) remained in the reaction mixture with one equiv. PhNCS after one day (Fig. S10, ESI[†]). Two main products **2a** and **2b** (ADMX spin systems) and one minor species **2c** were detected (approximate ratio **2a** : **2b** : **2c** 75 : 20 : 5).[‡] The simultaneous formation of **2a**, **2b** and **2c** commences below 0 °C according to a VT NMR study ($[\text{D}_8]\text{THF}$, Fig. S8, ESI[†]). Prolonged reaction times and heating of the solution resulted in essentially the same product ratio, although the signal to noise ratio of the spectra decreased over time. In contrast, the $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum of the reaction of **1^{Dipp}** with a large excess of PhNCS in $[\text{D}_8]\text{THF}$ after two days at room temperature showed signals of a species similar to **2b** (15%, ADMX spin system), **1^{Dipp}** (50%) and P_4 (35%) (Fig. S9, ESI[†]).

Complex **2a** can be isolated as an analytically pure, dark brown solid in 31% yield by crystallising the crude product twice from toluene/n-hexane (ESI[†]). Crystallisation of the crude product from diethyl ether and recrystallization from toluene/n-hexane affords pure, crystalline **2b** in 16% isolated yield. Single-crystal XRD for **2a** (Fig. 2, top) revealed an unusual nickel-substituted bicyclo[3.1.0]-2-thia-1,4,5,6-tetraphosphahexane

Fig. 2 Solid-state molecular structures of **2a** (top) and **2b** (bottom). The hydrogen atoms are omitted for clarity. Thermal ellipsoids are drawn at 40% level. Selected bond lengths (Å) and angles (°) for **2a**: P1–C1 1.860(4), P4–S1 2.1257(13), P1–P2 2.1818(14), P2–P3 2.2182(15), P2–P4 2.2222(14), P3–P4 2.1935(15), C1–S1 1.794(4), C1–N1 1.278(6), Ni1–P1 2.2036(13), Ni2–P3 2.1906(11), P1–P2–P4 102.89(5), P2–P4–S1 102.86(6), P4–S1–C1 104.82(14), S1–C1–P1 122.3(2), C1–P1–P2 102.88(14), P3–P2–P4 59.20(5), P1–C1–N1 116.4(3), S1–C1–N1 121.3(2); for **2b**: P1–C1 1.828(3), P4–N1 1.785(3), P1–P2 2.2157(11), P2–P4 2.1969(10), P2–P3 2.2233(10), P3–P4 2.206(1), C1–N1 1.359(4), C1–S1 1.678(3), Ni1–P1 2.2188(9), Ni2–P3 2.2192(9), P1–P2–P4 95.28(4), P2–P4–N1 99.75(9), P4–N1–C1 124.9(2), N1–C1–P1 118.6(2), C1–P1–P2 100.48(3), P3–P2–P4 59.88(3), P1–C1–S1 117.68(18), N1–C1–S1 123.6(2).

Fig. 1 Synthesis of **2a** and **2b** (top), and $^{31}\text{P}\{^1\text{H}\}$ NMR spectrum ($[\text{D}_8]\text{THF}$) of the reaction of PhNCS and **1^{Mes}** (7 : 1) at room temperature after four hours; ● = **2a**, ■ = **2b**, ▲ = **2c** (bottom).

moiety (P1–C1 1.860(4) Å, P4–S1 2.1257(13) Å) with an exocyclic imino function. The C1–N1 (1.278(6) Å) and S1–C1 (1.794(4) Å) bonds of **2a** are elongated compared to free aryl isothiocyanates.¹² The P–P distances (2.1818(14)–2.2222(14) Å) are in the range of single bonds.⁷ The five-membered CP_3S heterocycle (P1–P2–P4–S1–C1) is almost flat ($\sum_{\text{angles}} = 535.8^\circ$) and orthogonal ($89.60(7)^\circ$) to the plane formed by P2, P3 and P4. The scaffold of **2a** is analogous to that of 2,3,4,6-tetra-*tert*-butylbicyclo[3.1.0]hexaphosphane synthesised by Baudler *et al.*¹³

The molecular structure of the regio isomer **2b** (Fig. 2, bottom) features a flat CNP_3 heterocycle ($\sum_{\text{angles}} = 539.0^\circ$) with a thioketone function (C1–S1 1.678(3) Å) and single bonds

between P1–C1 (1.828(3) Å) and P4–N1 (1.785(3) Å). The P–P distances in **2b** (2.1969(10)–2.2233(10) Å) are similar to those of **2a**. The CNP₃ ring forms an acute dihedral angle of 79.58(5)° with the P2–P3–P4 plane.

The ³¹P{¹H} NMR spectrum of **2a** ([D₈]THF, room temperature) features four broad multiplets at –150.1, –96.4, –75.0 and 32.1 ppm consistent with four chemically different P atoms. The signals are broad at room temperature (average half-width $\tau_{\text{FWHM}} = 565$ Hz); they become sharper when the temperature is decreased to –80 °C (av. $\tau_{\text{FWHM}} = 35$ Hz). Experimental and fitted ³¹P{¹H} NMR spectra in [D₈]THF at –80 °C along with the assignment of the chemical shifts and coupling constants are shown in Fig. 3. The resonance at –151.8 ppm is assigned to P_A connected to three P atoms based on the observation of three large ¹J(P,P)-coupling constants for this multiplet (¹J(P_{APD}) = –178 Hz, ¹J(P_{APM}) = –185 Hz and ¹J(P_{APX}) = –374 Hz). The P atoms coordinated to nickel ($\delta(P_D) = –105.5$ ppm; $\delta(P_X) = 27.8$ ppm) show a common large ²J(P,P) coupling (²J(P_D,P_X) = 82 Hz), which may arise from an interaction of the lone pairs due to the conformational constraints of the bicyclo[3.1.0]heterohexane skeleton.¹³

Complex **2b** gives rise to four slightly broad ³¹P{¹H} NMR resonances at –182.1, –104.5, 4.5 and 50.1 ppm in [D₈]THF at

Fig. 3 ³¹P{¹H} NMR spectra of **2a** (top) and **2b** (bottom, 161.98 MHz, [D₈]THF, 193 K); **2a** (ADMX spin system): $\delta_A = –151.8$ ppm, $\delta_D = –105.5$ ppm, $\delta_M = –78.0$ ppm, $\delta_X = 27.8$ ppm, ¹J(P_{APD}) = –178 Hz, ¹J(P_{APM}) = –185 Hz, ¹J(P_{APX}) = –374 Hz, ¹J(P_DP_M) = –238 Hz, ²J(P_DP_X) = 82 Hz, ²J(P_MP_X) = 9 Hz; **2b** (ADMX spin system): $\delta_A = –180.5$ ppm, $\delta_D = –109.1$ ppm, $\delta_M = 12$ ppm, $\delta_X = 48.2$ ppm, ¹J(P_{APD}) = –193 Hz, ¹J(P_{APM}) = –209 Hz, ¹J(P_{APX}) = –282 Hz, ¹J(P_DP_M) = –237 Hz, ²J(P_DP_X) = 57 Hz, ²J(P_MP_X) = 10 Hz; expansions (inset) show the experimental (up) and fitted spectra (down). The signals assigned to **2b** are labeled with an asterisk.

Fig. 4 Calculated, relative Gibbs free energies (kcal mol^{–1}) of **1^{Ph}**, **2a^{Ph}** and **2b^{Ph}**. The relative Gibbs free energies refer to **1^{Ph}** + PhNCS (kcal mol^{–1}).

room temperature. The line width decreased from an average of $\tau_{\text{FWHM}} = 33$ Hz at room temperature to $\tau_{\text{FWHM}} = 23$ Hz upon cooling to –80 °C. The chemical shifts and coupling constants of **2b** lie in a similar range as observed for **2a** (Fig. 3, bottom) in agreement with the similar structure motif.

³¹P{¹H} NMR studies indicate that the formation of **2a**, **2b** and **2c** is reversible; *i.e.* the products slowly equilibrate with the starting material **1^{Mes}** in solution (ESI†). A mixture of **2a** (89%), **1^{Mes}** (7%), **2c** (4%) and **2b** (traces) was detected upon storing a [D₈]THF solution of pure **2a** in an NMR tube at room temperature for two days, while a 65:10:5:20 mixture (**2a**:**2b**:**2c**:**1^{Mes}**) was present after one week.§ Additional multiplets of unidentified minor species can be observed upon prolonged storage (Fig. S11, ESI†). **2b** behaves similarly (Fig. S12, ESI†). IR monitoring of the decomposition of **2a** ([D₈]THF, 60 °C, 13.5 hours) shows the formation of free PhNCS (Fig. S13, ESI†).

DFT calculations (ωB97X-D/6-311G(d,p) level)¹⁴ were performed to gain additional insight into the thermodynamics of the reaction. The optimized structures of the truncated model complexes **1^{Ph}**, **2a^{Ph}** and **2b^{Ph}**, where the Mes substituents were replaced by phenyl groups for computational efficiency, are in good agreement with the experimental structures (Fig. 4). The formation of **2a^{Ph}** and **2b^{Ph}** is exergonic, and the thermodynamic product of the reaction appears to be **2b^{Ph}** (–15.2 kcal mol^{–1} with respect to the starting materials), while **2a^{Ph}** (–11.3 kcal mol^{–1}) is a kinetic product.¶

In conclusion, the reaction of **1^{Mes}** with PhNCS affords the novel complexes **2a** and **2b** with an unusual bicyclo[3.1.0]heterohexane skeleton. To our knowledge, this represents the first example of an insertion of a heteroallene into a P–P bond of a cyclopolypyrophane. In future work, it will be of interest to investigate whether similar reactions with polar multiple bonds offer a general route toward “functionalized” polyphosphanes.¹⁵ Efficient preparative methods exist for a range of bicyclo[1.1.0]tetraphosphabutanes,^{1,6–9} therefore, such transformations may provide a fruitful avenue to the stepwise and selective degradation of the P₄ molecule.

We thank B. Sc. Thomas Maier for experimental assistance. Funding by the Deutsche Forschungsgemeinschaft is gratefully acknowledged.

Notes and references

‡ ³¹P{¹H} NMR data of **2c** ([D₈]THF, A₂MX spin system): $\delta = –321.2$ (dd, 2P, P_A, ¹J(P_{APM}) = –178 Hz, ¹J(P_{APX}) = –188 Hz, –141.5 (dt, 1P, P_M, ²J(P_MP_X) = 208 Hz), –85.8 (dt, 1P, P_X) ppm.

§ The ¹H NMR spectrum of a freshly prepared [D₈]THF solution of pure crystals of **2a** stored for one week at room temperature in an Ar-filled glove box also showed a mixture containing **2a**, **2b** and **1^{Mes}** in a 94.5:0.5:5 ratio.

The structure and the mechanism of formation of the minor product **2c** (A_2MX spin system, *vide supra*) presently remains unclear. Five potential candidates were identified by our computations (Fig. S14, ESI†). These calculated isomers are adducts of the starting material with PhNCS ($2c^{Add1}$ and $2c^{Add2}$) or result from the insertion of the C=S or C≡N double bonds into the Ni–P bond ((E)- $2c^{Ins1}$, (Z)- $2c^{Ins1}$ and $2c^{Ins2}$).¹⁶ Each of them has an energy significantly higher than that of **2a^{Ph}** and **2b^{Ph}**.

- 1 Reviews: (a) B. M. Cossairt, N. A. Piro and C. C. Cummins, *Chem. Rev.*, 2010, **110**, 4164; (b) M. Caporali, L. Gonsalvi, A. Rossin and M. Peruzzini, *Chem. Rev.*, 2010, **110**, 4178; (c) M. Peruzzini, I. de los Rios, A. Romerosa and F. Vizza, *Eur. J. Inorg. Chem.*, 2001, 593; (d) M. Peruzzini, R. R. Abdreimova, Y. Budnikova, A. Romerosa, O. J. Scherer and H. Sitzmann, *J. Organomet. Chem.*, 2004, **689**, 4319; (e) M. Peruzzini, L. Gonsalvi and A. Romerosa, *Chem. Soc. Rev.*, 2005, **34**, 1038.
- 2 Selected publications on transformations of transition metal phosphide complexes derived from P_4 in one step: (a) P. Barbaro, C. Bazzicalupi, M. Peruzzini, S. Seniori Costantini and P. Stoppioni, *Angew. Chem., Int. Ed.*, 2012, **51**, 8628; (b) E. Mädl, M. V. Butovskii, G. Balázs, E. V. Peresypkina, A. V. Virovets, M. Seidl and M. Scheer, *Angew. Chem., Int. Ed.*, 2014, **53**, 7643.
- 3 (a) W. T. K. Chan, F. García, A. D. Hopkins, L. C. Martin, M. McPartlin and D. S. Wright, *Angew. Chem., Int. Ed.*, 2007, **46**, 3084; (b) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg and K. Lammertsma, *Angew. Chem., Int. Ed.*, 2014, **53**, 12836; (c) M. Arrowsmith, M. S. Hill, A. L. Johnson, G. Kociok-Köhn and M. F. Mahon, *Angew. Chem., Int. Ed.*, 2015, **54**, 7882; (d) J. E. Borger, A. W. Ehlers, M. Lutz, J. C. Slootweg and K. Lammertsma, *Angew. Chem., Int. Ed.*, 2015, **55**, 613.
- 4 (a) J. D. Masuda, W. W. Schoeller, B. Donnadieu and G. Bertrand, *Angew. Chem., Int. Ed.*, 2007, **46**, 7052; (b) O. Back, G. Kuchenbeiser, B. Donnadieu and G. Bertrand, *Angew. Chem., Int. Ed.*, 2009, **48**, 5530.
- 5 Selected publications on the insertion of p-block elements into the P–P bonds of P_4 : (a) Y. Xiong, S. Yao, M. Brym and M. Driess, *Angew. Chem., Int. Ed.*, 2007, **46**, 4511; (b) J. J. Weigand, M. Holthausen and R. Fröhlich, *Angew. Chem., Int. Ed.*, 2009, **48**, 295; (c) M. H. Holthausen and J. J. Weigand, *J. Am. Chem. Soc.*, 2009, **131**, 14210; (d) G. Prabusankar, A. Doddi, C. Gemel, M. Winter and R. A. Fischer, *Inorg. Chem.*, 2010, **49**, 7976; (e) M. H. Holthausen and J. J. Weigand, *Chem. Soc. Rev.*, 2014, **43**, 6639.
- 6 (a) J.-P. Bezombes, P. B. Hitchcock, M. F. Lappert and J. E. Nycz, *Dalton Trans.*, 2004, 499; (b) B. M. Cossairt and C. C. Cummins, *New J. Chem.*, 2010, **34**, 1533; (c) S. Khan, R. Michel, J. M. Dieterich, R. A. Mata, H. W. Roesky, J.-P. Demers, A. Lange and D. Stalke, *J. Am. Chem. Soc.*, 2011, **133**, 17889; (d) N. A. Giffin, A. D. Hendsbee, T. L. Roemmele, M. D. Lumsden, C. C. Pye and J. D. Masuda, *Inorg. Chem.*, 2012, **51**, 11837; (e) S. Heinl, S. Reisinger, C. Schwarzmaier, M. Bodensteiner and M. Scheer, *Angew. Chem., Int. Ed.*, 2014, **53**, 7639.
- 7 (a) O. J. Scherer, T. Hilt and G. Wolmershäuser, *Organometallics*, 1998, **17**, 4110; (b) S. Pelties, D. Herrmann, B. de Bruin, F. Hartl and R. Wolf, *Chem. Commun.*, 2014, **50**, 7014; (c) S. Heinl and M. Scheer, *Chem. Sci.*, 2014, **5**, 3221; (d) C. Schwarzmaier, A. Y. Timoshkin, G. Balázs and M. Scheer, *Angew. Chem., Int. Ed.*, 2014, **53**, 9077; (e) D. W. Agnew, C. E. Moore, A. L. Rheingold and J. S. Figueiroa, *Angew. Chem., Int. Ed.*, 2015, **54**, 12673.
- 8 Selected main group element-substituted “butterfly P_4 ” compounds with an E_2P_4 core: (a) E. Niecke, R. Rüger and B. Krebs, *Angew. Chem., Int. Ed. Engl.*, 1982, **21**, 544; (b) R. Riedel, H.-D. Hausen and E. Fluck, *Angew. Chem., Int. Ed. Engl.*, 1985, **24**, 1056; (c) S. L. Hinchley, C. A. Morrison, D. W. H. Rankin, C. L. B. Macdonald, R. J. Wiacek, A. Voigt, A. H. Cowley, M. F. Lappert, G. Gunderson, J. A. C. Clyburne and P. P. Power, *J. Am. Chem. Soc.*, 2001, **123**, 9045.
- 9 (a) O. J. Scherer, T. Hilt and G. Wolmershäuser, *Angew. Chem., Int. Ed.*, 2000, **39**, 1425; (b) C. Eichhorn, PhD thesis, Kaiserslautern, 2003; (c) S. Deng, C. Schwarzmaier, C. Eichhorn, O. J. Scherer, G. Wolmershäuser, M. Zabel and M. Scheer, *Chem. Commun.*, 2008, 4064.
- 10 M. Scheer, S. Deng, O. J. Scherer and M. Sierka, *Angew. Chem., Int. Ed.*, 2005, **44**, 3755.
- 11 C. Schwarzmaier, S. Heinl, G. Balázs and M. Scheer, *Angew. Chem., Int. Ed.*, 2015, **54**, 13116.
- 12 S. Biswas, S. Haldar, P. K. Mandal, K. Goubitz, H. Schenk and R. Dabrowski, *Cryst. Res. Technol.*, 2007, **42**, 1029.
- 13 (a) M. Baudler, Y. Aktalay, K.-F. Tebbe and T. Heinlein, *Angew. Chem., Int. Ed. Engl.*, 1981, **20**, 967; in this context see also: (b) M. Baudler, *Angew. Chem., Int. Ed. Engl.*, 1982, **21**, 492.
- 14 DFT calculations were performed using Gaussian09; see ESI† for further details.
- 15 (a) A. R. Jupp and J. M. Goicoechea, *Angew. Chem., Int. Ed.*, 2013, **52**, 10064; (b) R. S. P. Turberville and J. M. Goicoechea, *Chem. Commun.*, 2012, **48**, 6100; (c) R. S. P. Turberville, A. R. Jupp, P. S. B. McCullough, D. Ergögmen and J. M. Goicoechea, *Organometallics*, 2013, **32**, 2234.
- 16 Selected examples for the insertion of isothiocyanates into transition metal-phosphorus bonds: (a) U. Segerer and E. Hey-Hawkins, *Polyhedron*, 1997, **16**, 2537; (b) U. Segerer, J. Sieler and E. Hey-Hawkins, *Organometallics*, 2000, **19**, 2445; (c) A. Antiñolo, S. García-Yuste, A. Otero and R. Reguillo-Carmona, *Eur. J. Inorg. Chem.*, 2009, 539; (d) W. Yi, J. Zhang, L. Hong, Z. Chen and X. Zhou, *Organometallics*, 2011, **30**, 5809.

