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Chiral-at-metal iridium complex for efficient
enantioselective transfer hydrogenation of
ketones†

Cheng Tian,a Lei Gong*a and Eric Meggers*ab

A bis-cyclometalated iridium(III) complex with metal-centered chirality

catalyzes the enantioselective transfer hydrogenation of ketones with

high enantioselectivities at low catalyst loadings down to 0.002 mol%.

Importantly, the rate of catalysis and enantioselectivity are markedly

improved in the presence of a pyrazole co-ligand. The reaction is

proposed to proceed via an iridium-hydride intermediate exploiting

metal–ligand cooperativity (bifunctional catalysis).

Transition metal catalyzed asymmetric transfer hydrogenation
(ATH) has developed into a popular method for the generation
of non-racemic chiral alcohols and amines using isopropanol,
formic acid/triethylamine or sodium formate as convenient and
inexpensive hydrogen sources.1 Since Noyori’s seminal discovery of
highly enantioselective ATH catalysts based on ruthenium(II) half
sandwich complexes containing monotosylated 1,2-diamines,2

transition metals such as Ru(II),3 Os(II),4 Ir(III),5 Rh(III),6 and Fe(II)7

have been combined with a large variety of different chiral ligands
to achieve high turnover numbers (TON) and turnover frequencies
(TOF) for different substrate classes.8 Here we report a unique
catalyst that relies on metal-centered chirality using exclusively
achiral ligands.9

We recently developed a novel class of chiral Lewis acid
catalysts based on octahedral chiral-only-at-metal iridium(III) and
rhodium(III) complexes, in which the octahedral metal center is
coordinated irreversibly by two cyclometalating bidentate ligands
in a propeller-type fashion, complemented by two exchange-
labile acetonitriles.10–17 In these catalysts, metal-centered chirality
(metal centrochirality) is the only source of chirality. We were
wondering if such complexes are suitable for catalyzing ATH and
we used the reduction of acetophenone as our initial model
reaction (1a - 2a, Fig. 1).

Using ammonium formate as the hydrogen source, the
rhodium complex L-RhO (1 mol%) catalyzed the reduction of
acetophenone only sluggishly, providing just 16% conversion
and 69% ee after 24 hours at 60 1C, whereas the higher

Fig. 1 Initial experiments and screening of ligand additives. Conversion deter-
mined by 1H-NMR and enantioselectivity by HPLC on a chiral stationary phase.
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congener L-IrO (1 mol%) gave better results with 90% conver-
sion after 24 hours and 61% ee. Replacing the benzoxazole
ligands (L-IrO) against benzothiazole (L-IrS) further improved
the outcome reaching 91% conversion after 22 hours with 68% ee.
We therefore chose L-IrS as the catalyst of choice and next
investigated the effect of additional monodentate ligands on the
catalysis. The results are shown in Fig. 1. Whereas some ligands
such as nBu3P, 2,6-diaminopyridine or imidazole suppressed the
catalytic activity, others such as tBu3P resulted in a slight improve-
ment of the enantioselectivity. To our delight, 3,5-dimethylpyrazole
markedly improved the catalytic activity and enantioselectivity.
With a reduced catalyst loading of just 0.2 mol%, 3 hours reaction
time resulted in a conversion of 53% with 96% ee. Replacing the
methyl group at the 5-position with a phenyl moiety further
improved the results with the best compromise out of reaction
rate and enantioselectivity achieved with 5-(4-methoxyphenyl)-
3-methyl-1H-pyrazole.

We used the combination of L-IrS (0.2–1.0 mol%) and the
best pyrazole additive (10 mol%) for investigating the substrate
scope (1a–x) under optimized conditions in THF/H2O (1 : 1) as
the solvent. Fig. 2 reveals that the ATH reaction of acetophenones
with electron donating or withdrawing substitutents within the
phenyl moiety provided both high yields and good enantioselec-
tivities (products 2a–d,f,g) with an exception of the ortho-methyl
substituted substrate (product 2e, 51% ee). Typically, electron
withdrawing groups were slightly less beneficial with regard to
enantioselectivity, which might be due to some contribution
from uncatalyzed background reaction. Other aromatic ketones
containing a naphthyl moiety (product 2h), heteroaromatic ring
(products 2i–n), larger aliphatic groups (products 2o–q), or an
additional ester functionality (product 2r), as well as a cyclic
ketone (product 2s) were all well converted. Diaryl ketones also
provided satisfactory results (products 2t,u). As for dialkyl
ketones bearing two primary alkyl chains, for example affording
the alcohols 2v and 2w, high yields (90–94%) while low ee values
(9% and 30% ee, respectively) were achieved. However, a sub-
strate with one bulky secondary alkyl substituent afforded the
desired alcohol 2x with 93% yield and 94% ee within 15 hours,
suggesting that aliphatic ketones could also work nicely for
selected cases. In addition, it is worth to mention that the
reaction can be scaled up. For example, 1.0 g of phenyl(o-tolyl)-
methanone produced 1.0 g of its corresponding alcohol 2t (yield
99%) with 97% ee in presence of 0.5 mol% catalyst.‡

Next, we chose 2-acetyl benzothiophene for testing catalytic
performance of the L-IrS/monodentate pyrazole system at lower
catalyst loadings (1n - 2n). As illustrated in Table 1, the catalyst
loading could be reduced to 0.005 mol% (S/C = 20 000) while still
keeping a satisfactory reaction time of 108 hours for complete
conversion at 60 1C without affecting the enantioselectivity
(entries 1–5). A further reduction to 0.002 mol% catalyst led to a
slight drop in enantioselectivity value (96.6% ee) while a signifi-
cantly lower reaction rate prevented full conversion (entry 6).

Mechanistically, we propose that the precatalyst L-IrS bearing
labile acetonitriles undergoes fast ligand exchange with one
pyrazole molecule, followed by reaction with ammonium formate
to generate an active iridium hydride species. With assistance of

the ancillary pyrazole ligand, the subsequent concerted transfer of
a hydride to the carbonyl carbon and a proton to the carbonyl
oxygen leads to formation of the chiral secondary alcohol. The
effective asymmetric induction can be explained by less steric

Fig. 2 Substrate scope with prochiral ketones.
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hindrance in the favored transition state as well as additional p–p
stacking between the aromatic ring of the substrate and one
cyclometalating benzothiazoline moiety of the iridium complex
(Fig. 3, left side). The high catalytic efficiency is in parts attributed
to the rigid structure of the catalyst and intermediate limiting the
degree of conformational flexibility, thereby providing entropic
advantages during catalysis. The mechanism is consistent with an
observed R-configuration of the formed chiral alcohol assigned by
comparison of optical rotations with published examples.8e,18

Additionally, the importance of the ancillary pyrazole ligand with
the crucial role of the N–H group is supported by the sluggish
results achieved with closely related additive ligands which lack this
N–H, such as 1,4-dimethyl-1H-pyrazole or 3,5-dimethylisoxazole
(Fig. 1).19 A crystal structure of 5-(4-methoxyphenyl)-3-methyl-1H-
pyrazole coordinated to the bis-cyclometalated iridium complex
confirms that the pyrazole prefers a conformation in which the
N–H group is in a perfect position for the proposed bifunctional
catalysis (Fig. 4).20

In conclusion, we here reported a highly efficient asymmetric
transfer hydrogenation for ketones catalyzed by a bis-cyclometalated

chiral-at-metal iridium(III) complex in the presence of an addi-
tional pyrazole ligand. The reaction is proposed to proceed
through an iridium-hydride intermediate exploiting metal–
ligand cooperativity involving the coordinated pyrazole ligand.
A variety of aryl ketones and even one aliphatic ketone are well
tolerated in the ATH reaction by affording the secondary
alcohols with good to excellent enantioselectivities at catalyst
loadings down to 0.002 mol%. Applications to other substrate
classes such as imines are ongoing in our laboratory.

We thank the National Natural Science Foundation of
P. R. China (grant no. 21272192, 21472154 and 21572184), the
Program for Changjiang Scholars and Innovative Research Team
of P. R. China (PCSIRT), the National Thousand Talents Program
of P. R. China, the Fundamental Research Funds for the Central
Universities (grant no. 20720160027), and the 985 Program of the
Chemistry and Chemical Engineering disciplines of Xiamen
University.
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(o-tolyl)methanone (1t, 1.00 g, 5.10 mmol) was added. The reaction
solution was stirred at 40 1C for 30 h, cooled down to room temperature
and then dried under high vacuum. The residue was purified by flash
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D = +6.8 (c 1.0, CHCl3).
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4 0.01 60 48 Quant. 98.4
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Fig. 3 Proposed transition states through the association of the substrate
with a pyrazole-coordinated iridium hydride intermediate explaining the
observed enantioselectivities.

Fig. 4 Crystal structure of an iridium chlorido complex with coordinated
pyrazole ligand. ORTEP drawings with 50% thermal ellipsoids. The complex
was crystallized as a racemate but only the L-enantiomer is shown.
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