


 Cite this: *Chem. Commun.*, 2016, 52, 6178

 Received 14th January 2016,  
 Accepted 30th March 2016

DOI: 10.1039/c6cc00359a

[www.rsc.org/chemcomm](http://www.rsc.org/chemcomm)

**Photocatalytic oxidation of iron(II) complexes by dioxygen occurred using the organic photocatalysts, 9-mesityl-10-methylacridinium ions ( $\text{Acr}^+ \text{-Mes}$ ) and 2-phenyl-4-(1-naphthyl) quinolinium ions ( $\text{QuPh}^+ \text{-NA}$ ), in the presence of triflic acid in acetonitrile under visible light irradiation. The electron-transfer state of  $\text{Acr}^+ \text{-Mes}$  produced upon photo-excitation oxidized the iron(II) complexes, whereas it reduced dioxygen with protons to produce iron(III) complexes and  $\text{H}_2\text{O}_2$ .**

Metal complexes are usually oxidized by inorganic oxidants such as cerium ammonium nitrate and lead dioxide.<sup>1–5</sup> In such cases, stoichiometric amounts of inorganic oxidants are required to obtain oxidized metal complexes, producing inorganic wastes which cause environmental problems. The ideal oxidant, which is environmentally benign, is dioxygen ( $\text{O}_2$ ), producing only hydrogen peroxide or water as the reduced product. However, the oxidation of metal complexes by  $\text{O}_2$  is often endergonic even in the presence of an acid. Thus, an appropriate photocatalyst is required for the oxidation of metal complexes by  $\text{O}_2$  in the presence of an acid. Ruthenium(II) complexes, such as  $[\text{Ru}(\text{bpy})_3]^{2+}$  ( $\text{bpy} = 2,2'$ -bipyridine) are known to be oxidized by  $\text{O}_2$  in the presence of an acid to yield the corresponding Ru(III) complexes.<sup>6,7</sup> On the other hand, organic photocatalysts have merited increasing attention for a variety of oxidation reactions.<sup>8–14</sup> However, there has been no report on photocatalytic oxidation of metal complexes by  $\text{O}_2$  using organic photocatalysts.

We report herein the photocatalytic oxidation of iron(II) complexes by  $\text{O}_2$  using 9-mesityl-10-methylacridinium ions ( $\text{Acr}^+ \text{-Mes}$ )<sup>15</sup> and 2-phenyl-4-(1-naphthyl)quinolinium ions ( $\text{QuPh}^+ \text{-NA}$ )<sup>16</sup> as

<sup>a</sup> Department of Material and Life Science, Graduate School of Engineering, Osaka University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Suita, Osaka 565-0871, Japan. E-mail: [oookubo@chem.eng.osaka-u.ac.jp](mailto:oookubo@chem.eng.osaka-u.ac.jp); Fax: +81-6-6879-7370

<sup>b</sup> Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Korea. E-mail: [fukuzumi@chem.eng.osaka-u.ac.jp](mailto:fukuzumi@chem.eng.osaka-u.ac.jp)

<sup>c</sup> Faculty of Science and Technology, Meijo University, ALCA and SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan

† Electronic supplementary information (ESI) available: Experimental and kinetic details. See DOI: 10.1039/c6cc00359a

## Photocatalytic oxidation of iron(II) complexes by dioxygen using 9-mesityl-10-methylacridinium ions†

 Takeshi Tsudaka,<sup>a</sup> Kei Ohkubo<sup>\*ab</sup> and Shunichi Fukuzumi<sup>\*abc</sup>


Fig. 1 Visible absorption change in photocatalytic oxidation of  $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+} \text{-PF}_6^-$  (2.0 mM) by  $\text{O}_2$  in  $\text{O}_2$ -saturated MeCN in the presence of  $[\text{Acr}^+ \text{-Mes}] \text{-ClO}_4^-$  (0.20 mM) and HOTf (0.10 M) at 298 K under visible light irradiation using a xenon lamp with a cut filter ( $\lambda < 390$  nm).

organic photocatalysts in the presence of triflic acid (HOTf) in acetonitrile (MeCN) under visible light irradiation [eqn (1)]. Visible light irradiation of  $\text{O}_2$ -saturated acetonitrile is shown in Fig. 1, where the absorption band at 520 nm due to  $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+}$  decreased, accompanied by the increase in absorption at 650 nm due to  $[\text{Fe}^{\text{III}}(\text{bpy})_3]^{3+}$ .  $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+}$  was not oxidized without  $\text{Acr}^+ \text{-Mes}$  under irradiation (Fig. S1 and S2 in the ESI†). The reduced product of  $\text{O}_2$  was  $\text{H}_2\text{O}_2$ , which was detected by spectral titration with the use of the oxo[5,10,15,20-tetra(4-pyridyl)porphyrinato]titanium(IV) complex (see the Experimental section in the ESI†).<sup>17</sup>



The photocatalytic oxidation of other iron(II) complexes by O<sub>2</sub> was examined in the presence of HOTf in O<sub>2</sub>-saturated MeCN (Fig. S3–S6 in the ESI<sup>†</sup>). The quantum yields of formation of iron(III) complexes were determined using a ferrioxalate actinometer (see Fig. S7–S9 and the Experimental section in the ESI<sup>†</sup>).<sup>18</sup> The quantum yields ( $\Phi$ ) of photocatalytic oxidation of iron(II) complexes by O<sub>2</sub> in the presence of HOTf in MeCN are listed in Table 1 together with the concentrations of iron(II) complexes, HOTf and O<sub>2</sub>, the one-electron oxidation potentials of iron(II) complexes ( $E_{\text{ox}}$ )<sup>19</sup> and the free energy change of the oxidation ( $\Delta G_{\text{ox}}$ ). The  $\Delta G_{\text{ox}}$  values were evaluated from the  $E_{\text{ox}}$  values and the  $E_{\text{red}}$  value of O<sub>2</sub> in the presence of an acid in MeCN (0.75 V vs. SCE) [eqn (2)].<sup>20</sup>

$$\Delta G_{\text{ox}} = -2e(E_{\text{red}} - E_{\text{ox}}) \quad (2)$$

Judging from the  $\Delta G_{\text{ox}}$  values, the photocatalytic oxidation of [Fe<sup>II</sup>(Clphen)<sub>3</sub>]<sup>2+</sup>, [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup> and [Fe<sup>II</sup>(Me<sub>2</sub>bpy)<sub>3</sub>]<sup>2+</sup> is endergonic, whereas that of Fe<sup>II</sup>(BrC<sub>5</sub>H<sub>4</sub>)<sub>2</sub> and Fe<sup>II</sup>(BrC<sub>5</sub>H<sub>4</sub>)(C<sub>5</sub>H<sub>5</sub>) is exergonic. The  $\Phi$  values increased with the decreasing  $E_{\text{ox}}$  values of iron(II) complexes as the free energy change of the reaction in eqn (1) decreased to be thermodynamically more favourable. Dependence of  $\Phi$  on concentrations of [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>, HOTf and O<sub>2</sub> is shown in Fig. 2 (parts a, b and c, respectively). The  $\Phi$  value became constant with the increasing concentrations of [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>, HOTf and O<sub>2</sub>, respectively. The photocatalytic oxidation of iron(II) complexes is enhanced by using QuPh<sup>+</sup>-NA instead of Acr<sup>+</sup>-Mes as shown in Table 1. (Fig. S10–S14 in the ESI<sup>†</sup>).

Nanosecond laser flash photolysis measurements were performed in order to clarify the catalytic mechanism for photocatalytic oxidation of iron(II) complexes by O<sub>2</sub> using Acr<sup>+</sup>-Mes in the presence of HOTf in MeCN. Transient absorption spectra were taken after the nanosecond laser excitation at 355 nm of a deaerated MeCN solution of Acr<sup>+</sup>-Mes in the absence and presence of [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub> as shown in Fig. 3. The transient absorption band at 490 nm is due to the electron-transfer state of Acr<sup>+</sup>-Mes. In the presence of [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup> the absorption at 490 nm decayed more rapidly and the decay rate increased with the increasing concentration of [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>. The decay rate obeyed pseudo-first-order kinetics and the pseudo-first order rate constant increased linearly with the increasing concentration of [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>. From the slope the rate constant ( $k_{\text{ox}}$ ) of electron transfer from [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup> to the electron-transfer state of Acr<sup>+</sup>-Mes was determined to be



Fig. 2 Dependence of  $\Phi$  on concentrations of (a) [Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>, (b) HOTf and (c) O<sub>2</sub>. Standard conditions: [Acr<sup>+</sup>-Mes](ClO<sub>4</sub><sup>-</sup>) = 1.0 mM; [[Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>] = 2.0 mM; [HOTf] = 0.15 M; [O<sub>2</sub>] = 2.6 mM; dehydrated MeCN (0.40 mL); cell path length 0.1 cm; excitation wavelength: 420 nm.

$3.7 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$  as shown in the inset of Fig. 3. Similarly the  $k_{\text{ox}}$  values of other iron(II) complexes were determined (see Fig. S15–S23 in the ESI<sup>†</sup>) as listed in Table 2 together with the  $E_{\text{ox}}$  values. The  $k_{\text{ox}}$  value increases with the decreasing  $E_{\text{ox}}$  values. In the presence of O<sub>2</sub>, electron transfer from the electron-transfer state of Acr<sup>+</sup>-Mes to O<sub>2</sub> is known to occur with a rate constant of  $6.8 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$ .<sup>21</sup> The rate constant of electron transfer from the electron-transfer state of QuPh<sup>+</sup>-NA to O<sub>2</sub> was determined to be  $6.3 \times 10^8 \text{ M}^{-1} \text{ s}^{-1}$  (see Fig. S24 in the ESI<sup>†</sup>). Thus, the photocatalytic oxidation of iron(II) complexes (Fe<sup>II</sup>) by O<sub>2</sub> in the presence of HOTf proceeds as shown in Scheme 1. Photoexcitation of Acr<sup>+</sup>-Mes results in the formation of the electron-transfer state of Acr<sup>+</sup>-Mes, which oxidizes iron(II) complexes to iron(III) complexes and reduces O<sub>2</sub> with protons to produce HO<sub>2</sub><sup>•</sup>, which disproportionates to yield H<sub>2</sub>O<sub>2</sub>.

In conclusion, iron(II) complexes are oxidized to iron(III) complexes by O<sub>2</sub> using Acr<sup>+</sup>-Mes as an organic photocatalyst in the presence of HOTf in MeCN under visible light irradiation *via* electron-transfer oxidation of iron(II) complexes and reduction of

Table 1 Product and quantum yields ( $\Phi$ ) of iron(III) complexes for photocatalytic oxidation of iron(II) complexes by O<sub>2</sub> in the presence of HOTf together with the one-electron oxidation potentials of iron(II) complexes ( $E_{\text{ox}}$ ) and the free energy change of the oxidation ( $\Delta G_{\text{ox}}$ )

| Entry          | Fe <sup>II</sup> complex                                                            | $E_{\text{ox}}$ vs. SCE <sup>a</sup> , V | $\Delta G_{\text{ox}}$ , eV | Acr <sup>+</sup> -Mes yield <sup>d</sup> , % | TON  | $\Phi^f$ , % | QuPh <sup>+</sup> -NA yield <sup>e</sup> , % | TON | $\Phi^f$ , % |
|----------------|-------------------------------------------------------------------------------------|------------------------------------------|-----------------------------|----------------------------------------------|------|--------------|----------------------------------------------|-----|--------------|
| 1 <sup>b</sup> | [Fe <sup>II</sup> (Clphen) <sub>3</sub> ] <sup>2+</sup>                             | 1.20                                     | 0.90                        | 5                                            | 0.25 | 0.11         | 30                                           | 1.5 | 0.34         |
| 2 <sup>b</sup> | [Fe <sup>II</sup> (bpy) <sub>3</sub> ] <sup>2+</sup>                                | 1.06                                     | 0.62                        | 42                                           | 4.2  | 0.32         | 32                                           | 3.5 | 0.73         |
| 3 <sup>b</sup> | [Fe <sup>II</sup> (Me <sub>2</sub> bpy) <sub>3</sub> ] <sup>2+</sup>                | 0.88                                     | 0.26                        | 22                                           | 2.1  | 1.6          | 30                                           | 3.0 | 5.2          |
| 4 <sup>c</sup> | Fe <sup>II</sup> (BrC <sub>5</sub> H <sub>4</sub> ) <sub>2</sub>                    | 0.72                                     | -0.06                       | 81                                           | 4.1  | 7.2          | 87                                           | 4.2 | 13           |
| 5 <sup>c</sup> | Fe <sup>II</sup> (BrC <sub>5</sub> H <sub>4</sub> )(C <sub>5</sub> H <sub>5</sub> ) | 0.53                                     | -0.44                       | 81                                           | 4.1  | 19           | 60                                           | 3.0 | 26           |

Clphen = 5-chloro-1,10-phenanthroline, bpy = 2,2'-bipyridine, Me<sub>2</sub>bpy = 4,4'-dimethyl-2,2'-bipyridine, BrC<sub>5</sub>H<sub>4</sub> = bromocyclopentadienyl, C<sub>5</sub>H<sub>5</sub> = cyclopentadienyl, reaction conditions: [photocatalyst] = 0.20 mM; [HOTf] = 0.10 M; [[Fe<sup>II</sup>(Clphen)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>] = 1.0 mM, [[Fe<sup>II</sup>(bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>] = 2.0 mM, [[Fe<sup>II</sup>(Me<sub>2</sub>bpy)<sub>3</sub>]<sup>2+</sup>(PF<sub>6</sub><sup>-</sup>)<sub>2</sub>] = 2.0 mM, [Fe<sup>II</sup>(BrC<sub>5</sub>H<sub>4</sub>)<sub>2</sub>] = 1.0 mM, [Fe<sup>II</sup>(BrC<sub>5</sub>H<sub>4</sub>)(C<sub>5</sub>H<sub>5</sub>)] = 2.0 mM. <sup>a</sup> Taken from ref. 19. <sup>b</sup> MeCN (0.40 mL), cell path length 0.1 cm. <sup>c</sup> MeCN (3.0 mL), cell path length 1 cm. <sup>d</sup> Photoirradiation ( $\lambda > 390$  nm). <sup>e</sup> ( $\lambda > 300$  nm). <sup>f</sup> See the Experimental section in the ESI.



Fig. 3 Transient absorption decay at 490 nm due to the electron-transfer state of  $[\text{Acr}^+ \text{-Mes}]^{+}[\text{ClO}_4^-]$  with various concentrations of  $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+}(\text{PF}_6^-)_2$ . Inset: Decay rate constant versus concentrations of  $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+}(\text{PF}_6^-)_2$ .

Table 2 Rate constants of electron transfer from iron(II) complexes to the electron-transfer state of the organic photocatalyst and the one-electron oxidation potentials of iron(II) complexes ( $E_{\text{ox}}$ )

| Entry | $\text{Fe}^{\text{II}}$ complex                                       | $E_{\text{ox}}$ vs. SCE, V | $\text{Acr}^+ \text{-Mes}$ $k_{\text{et}}$ , $\text{M}^{-1} \text{ s}^{-1}$ | $\text{QuPh}^+ \text{-NA}$ $k_{\text{et}}$ , $\text{M}^{-1} \text{ s}^{-1}$ |
|-------|-----------------------------------------------------------------------|----------------------------|-----------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 1     | $[\text{Fe}^{\text{II}}(\text{Clphen})_3]^{2+}$                       | 1.20                       | $1.4 \times 10^8$                                                           | $4.9 \times 10^8$                                                           |
| 2     | $[\text{Fe}^{\text{II}}(\text{bpy})_3]^{2+}$                          | 1.06                       | $3.7 \times 10^8$                                                           | $4.5 \times 10^8$                                                           |
| 3     | $[\text{Fe}^{\text{II}}(\text{Me}_2\text{bpy})_3]^{2+}$               | 0.88                       | $4.5 \times 10^8$                                                           | $5.8 \times 10^8$                                                           |
| 4     | $\text{Fe}^{\text{II}}(\text{BrC}_5\text{H}_4)_2$                     | 0.72                       | $7.6 \times 10^9$                                                           | $7.2 \times 10^9$                                                           |
| 5     | $\text{Fe}^{\text{II}}(\text{BrC}_5\text{H}_4)(\text{C}_5\text{H}_5)$ | 0.53                       | $8.5 \times 10^9$                                                           | $7.9 \times 10^9$                                                           |



Scheme 1 Photocatalytic cycle for oxidation of iron(II) complexes to iron(III) by  $\text{O}_2$  with  $\text{Acr}^+ \text{-Mes}$ .

$\text{O}_2$  by the electron-transfer state of  $\text{Acr}^+ \text{-Mes}$  produced upon photoexcitation of  $\text{Acr}^+ \text{-Mes}$ , respectively. The present study provides an environmentally benign approach for oxidation of metal complexes by  $\text{O}_2$  to obtain the oxidised metal complexes and hydrogen peroxide ( $\text{H}_2\text{O}_2$ ). Because there are many synthetically useful oxidation reactions using  $\text{H}_2\text{O}_2$ ,<sup>22</sup> this study has paved a new

way for photocatalytic oxidation of substrates by  $\text{O}_2$  with organic photocatalysts and iron(II) complexes.

This work was supported by Grants-in-Aid (no. 26620154 and 26288037 to K. O.) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT); ALCA and SENTAN projects from JST, Japan (to S. F.).

## Notes and references

- (a) L. Duan, A. Fischer, Y. Xu and L. Sun, *J. Am. Chem. Soc.*, 2009, **131**, 10397; (b) T. Ishizuka, S. Ohzu and T. Kojima, *Synlett*, 2014, 1667.
- (a) M. Murakami, D. Hong, T. Suenobu and S. Fukuzumi, *J. Am. Chem. Soc.*, 2011, **133**, 11605; (b) T. Kojima, K. Nakayama, K. Ikemura, T. Ogura and S. Fukuzumi, *J. Am. Chem. Soc.*, 2011, **133**, 11692.
- D. Hong, S. Mandal, Y. Yamada, Y.-M. Lee, W. Nam, A. Llobet and S. Fukuzumi, *Inorg. Chem.*, 2013, **52**, 9522–9531.
- (a) G. P. McDermott, P. Jones, N. W. Barnett, D. N. Donaldson and P. S. Francis, *Anal. Chem.*, 2011, **83**, 5453; (b) M. P. Patel, S. A. Varnum, D. Gondla, M. J. Zdilla and C. J. Martoff, *Anal. Methods*, 2014, **6**, 5818.
- (a) S. Fukuzumi, C. L. Wong and J. K. Kochi, *J. Am. Chem. Soc.*, 1980, **102**, 2928; (b) S. Fukuzumi, K. Miyamoto, T. Suenobu, E. Van Caemelbecke and K. M. Kadish, *J. Am. Chem. Soc.*, 1998, **120**, 2880–2889; (c) S. Fukuzumi, H. Miyao and T. Suenobu, *J. Phys. Chem. A*, 2005, **109**, 3285–3294.
- A. Das, V. Joshi, D. Kotkar, V. S. Pathak, V. Swayambunathan, P. V. Kamat and P. K. Ghosh, *J. Phys. Chem. A*, 2001, **105**, 6945–6954.
- S. Kato, J. Jung, T. Suenobu and S. Fukuzumi, *Energy Environ. Sci.*, 2013, **6**, 3756–3764.
- (a) M. Fagnoni, D. Dondi, D. Ravelli and A. Albini, *Chem. Rev.*, 2007, **107**, 2725; (b) D. Ravelli, M. Fagnoni and A. Albini, *Chem. Soc. Rev.*, 2013, **42**, 97.
- (a) D. A. Nicewicz and T. M. Nguyen, *ACS Catal.*, 2014, **4**, 355–360; (b) D. A. Nicewicz and D. S. Hamilton, *Synlett*, 2014, 1191–1196.
- D. Ravelli and M. Fagnoni, *ChemCatChem*, 2012, **4**, 169.
- (a) K. Ohkubo and S. Fukuzumi, *Bull. Chem. Soc. Jpn.*, 2009, **82**, 303; (b) S. Fukuzumi and K. Ohkubo, *Chem. Sci.*, 2013, **4**, 561.
- D. Ravelli, D. Dondi, M. Fagnoni and A. Albini, *Chem. Soc. Rev.*, 2009, **38**, 1999.
- (a) M. L. Marin, L. Santos-Juanes, A. Arques, A. M. Amat and M. A. Miranda, *Chem. Rev.*, 2012, **112**, 1710; (b) M. L. Marin, A. Miguel, L. Santos-Juanes, A. Arques, A. M. Amat and M. A. Miranda, *Photochem. Photobiol. Sci.*, 2007, **6**, 848.
- Y. Pan, S. Wang, C. W. Kee, E. Dubuisson, Y. Yang, K. P. Loh and C.-H. Tan, *Green Chem.*, 2011, **13**, 3341.
- (a) S. Fukuzumi, H. Kotani, K. Ohkubo, S. Ogo, N. V. Tkachenko and H. Lemmetyinen, *J. Am. Chem. Soc.*, 2004, **126**, 1600; (b) S. Fukuzumi, H. Kotani and K. Ohkubo, *Phys. Chem. Chem. Phys.*, 2008, **10**, 5159.
- (a) H. Kotani, K. Ohkubo and S. Fukuzumi, *Faraday Discuss.*, 2012, **155**, 89; (b) Y. Yamada, T. Miyahigashi, H. Kotani, K. Ohkubo and S. Fukuzumi, *J. Am. Chem. Soc.*, 2011, **133**, 16136.
- C. Matsubara, N. Kawamoto and K. Takamura, *Analyst*, 1992, **117**, 1781.
- C. G. Hatchard and C. A. Parker, *Proc. R. Soc. London, Ser. A*, 1956, **235**, 518–536.
- (a) J. Park, Y.-M. Lee, W. Nam and S. Fukuzumi, *J. Am. Chem. Soc.*, 2013, **135**, 5052; (b) H. Yoon, Y.-M. Lee, X. Wu, K.-B. Cho, R. Sarangi, W. Nam and S. Fukuzumi, *J. Am. Chem. Soc.*, 2013, **135**, 9186.
- R. Cofé and D. T. Sawyer, *Inorg. Chem.*, 1986, **25**, 2089.
- H. Kotani, K. Ohkubo and S. Fukuzumi, *J. Am. Chem. Soc.*, 2004, **126**, 15999.
- (a) A. Fingerhut, O. V. Serdyuk and S. B. Tsogoeva, *Green Chem.*, 2015, **17**, 2042; (b) Y. Zhu, Q. Wang, R. G. Cornwall and Y. Shi, *Chem. Rev.*, 2014, **114**, 8199; (c) S. Fukuzumi and K. Ohkubo, *Asian J. Org. Chem.*, 2015, **4**, 836.

