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We present a scalable synthesis of 3'-amino-3’-deoxy-2-thio-thymidine-
5’-phosphoro-2-methylimidazolide, an activated monomer that can
copy adenosine residues in nucleic acid templates rapidly without a
polymerase. The sulfur atom substitution enhances the rate of
template copying by 5-fold compared with the 3’-amino-3'-deoxy-T
monomer, while the 3’-amino monomers exhibit a 2- to 30-fold
enhancement compared with their ribonucleotide counterparts.

Nonenzymatic template-directed replication of nucleic acids has
been hypothesized to be the mechanism of information transfer
in primitive cells prior to the advent of ribozyme polymerases.
Early efforts involving high-energy nucleotide monomers such as
5’-phosphoro-2-methylimidazolides (or 2-MeImpNs) (Fig. 1, top)
showed that RNA templates consisting of C residues can be
copied by 2-MeImpG in hours to days in the presence of divalent
cations (typically Mg®").> However, no enzyme-free process has
yet been discovered that enables the rapid and efficient copying
of mixed-sequence RNA templates with activated ribonucleotide
monomers. This problem has stimulated interest in alternative
nucleic acids that might exhibit faster replication chemistry;
such polymers are of interest both with respect to the origin of
life and in the context of designing artificial life forms based on
non-biological chemistry. The most promising non-biological
nucleic acids are the phosphoramidate polymers, which are
assembled from nucleotides with an amino group on the sugar
instead of the less nucleophilic hydroxyl. N3’-P5’-linked phos-
phoramidate DNA** (3/-NP-DNA, Fig. 1, bottom) stands out as an
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Fig. 1 Template-directed polymerization of RNA (top) and 3-NP-DNA
(bottom). NB denotes nucleobase.

attractive alternative genetic model because it adopts a helical
geometry that is similar to that of A-form RNA.? A-form geometry
is the preferred conformation for the nonenzymatic template-
directed oligomerization of activated ribonucleotides®” most
likely because the A-form double helix of RNA brings the 3’-OH
group of the primer in line with the leaving group of the incoming
monomer. We have previously shown® that activated 3’-amino-
2/,3’-dideoxynucleotide monophosphates (3’-NH,-2-MeImpddNs)
(Fig. 1, bottom) rapidly polymerize on short, homopolymeric DNA,
RNA, and locked nucleic acid (LNA) templates. We also found®
that replacing 3’-amino-T with 3’-amino-2-thio-T enhances the
rate and fidelity of 3’-NP-DNA synthesis in the copying of DNA,
RNA and 3/-NP-DNA templates. However, further progress in the
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development and quantitative analysis of this system has been
hindered by lack of access to the critical substrate, the 5’-phosphoro-
imidazolide of 3’-amino-2-thio-T (3'-NH,-2-MeImp-dds®T), which
could previously be synthesized only in small quantities because of
the expensive starting material and the very low yield of the desired
product.

Here, we present a concise and scalable synthesis of 3’-amino-2-
thio-T and the corresponding 5’-phosphoro-imidazolide, 3'-NH,-2-
MeImpdds®T. We also present the first quantitative investigation
of template-copying kinetics using this activated nucleotide. Our
results show that nonenzymatic 3’-NP-DNA synthesis using the
2-thio modified 3’-amino-T phosphoro-imidazolide monomer is
significantly faster than with unmodified 3’-amino-T, and is
also considerably faster than RNA synthesis with activated U and
2-thio-U.

Our earlier attempts to establish a concise synthetic route to
3'-NH,-2-MeImpdds®T involved regioselective thio-carbonylation'
of 4-O-protected 3’-azido-3’-deoxy-thymidine. However, these
substrates afforded only deglycosylation products using Lawesson’s
reagent, an observation later reported' for 4-O-mesityl-3’,5’-O-
di(TBS)-thymidine. We then studied nucleophilic ring opening
of 2-thio-2,3’-cyclonucleosides by azides at the 3’-position, but
observed little to no conversion (by '"H NMR analysis) of the
substrates in the presence of either excess LiN; or TMSNj;
accompanied by various Lewis acids [e.g., Hg(OAc),, Er(OTf);
and Yb(O-iPr);].
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Scheme 1 Synthesis of 3’-NH,-2-Melmpdds®T. Reaction conditions:
(@) TsCL, pyr, 0 to 20 °C, 6 h, 73%; (b) DBU, EtOH, 85 °C, 24 h, 81%;
(c) DMAP (cat.), Ac0, 20 °C, 12 h, >95%; (d) H,S (gas), TMG, pyr, 0 to
20 °C, 16 h, 53%; (e) 7N NHz in MeOH, 20 °C, 92%; (f) Fmoc-OSu, Na,COs
(aqg), pyr, 0 to 20 °C, 6 h, 78%; (g) 1. POCls, 2,6-lutidine, PO(OMe)s, 3 A MS,
0to0 20 °C, 2 h; 2. 2-Me-imidazole, 2 h, 30%; (h) piperidine, DMF, 0 °C, 0.5 h,
85%. X-ray structure: H: white, C: gray, O: red, N: blue, and S: yellow.
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Our successful strategy to access 3'-NH,-2-MeImpdds®T
(Scheme 1) commenced with the 5'-tosylation'* of 3’-azido-3'-
deoxythymidine (AZT) 1.* Intramolecular displacement of the
5'-tosylate by the C2-oxyanion formed in the presence of a
Bronsted base (e.g, DBU) yielded the 2,5'-O-anhydro-cyclo-
nucleoside, and subsequent ring-opening in refluxing ethanol
afforded the 2-ethoxythymidine 3 in 59% overall yield from 1.
After converting 3 into the acetate 4, we were able to incorporate
the sulfur atom into the nucleobase using H,S in the presence of
tetramethylguanidine (TMG)"* (see Fig. S1 in the ESI for details
of the reaction setup). "H NMR analysis of an aliquot of the crude
reaction mixture after 1 hour revealed that 4 was fully consumed,
while two new species were formed: 3’-amino-2-ethoxythymidine
5 and 3’-amino-2-thio-thymidine 6, in a molar ratio of 2:1 (5/6).
The relative abundance of 6 continued to increase as the reaction
progressed [up to ca. 1:3 (5/6) after 6 hours]. We did not observe
(by either ESI or "H NMR analysis) the formation of any 3’-azido-
2-thio-thymidine, suggesting that the incorporation of sulfur was
slower than the reduction of the 3’-azide, and that 6 was likely
formed from 5. The structure of the 2-thio nucleoside 6 was
confirmed by both "H-'"H gCOSY NMR spectroscopy and X-ray
crystallography (see the ESIt). We then converted 6 into the
phosphoroimidazolide precursor 7 via 5’-deacetylation and Fmoc
protection of the 3’-amine. A one-flask 5’-O-phosphorylation and
2-methyl-imidazolide synthesis, followed by the removal of Fmoc,
provided 3/-NH,-2-MeImpdds®T in 26% overall yield from 7.

With 3’-NH,-2-MeImpdds®T in hand we proceeded to carry
out nonenzymatic primer extension experiments to quantitatively
interrogate the effect of 2-thio substitution on RNA template-copying
rates (Fig. 2). We used a primer/template complex composed of a
DNA primer strand ending in a 3'-NH,-G and a complementary
RNA template strand containing a 5'-C,A, overhang. pK, of the
protonated 3’-amine of 3’-amino-2’,3’-dideoxy-2-thio-thymidine
is 7.5 (see the ESIY), similar to that reported for 3’-amino-2’,3’-
dideoxy-T (7.7)."> 3'-NH,-2-MeImpddNs tends to undergo intra-
molecular cyclization due to the proximity of the primary 3’-amine
group to the phosphorus electrophile.® Because the half-ife (¢,,,) of
3'-NH,-2-MeImpddT is 1.2 h® and that of 3'-NH,-2-MeImpddsT is
1.3 h (see the ESIt for details) under optimized primer extension
conditions [100 mM 1-(2-hydroxyethyl)-imidazole, pH 7.5, 4 °C],
we tracked primer extension only up to a maximum of 1 h. We
determined observed rate constants k. for the first step of the
primer extension by following the loss of unreacted primer over
time (Fig. 2).

At a 10 mM initial concentration of 3'-NH,-2-MeImpddT
(Fig. 2, left), k,ps Of primer extension was 0.42 h™" (Table 1, entry 1).
Notably, 2-thio modification led to about a 5-fold rate enhancement
(Fig. 2, right), such that kg, for 10 mM 3'-NH,-2-MeImpdds®T was
1.92 h™" (Table 1, entry 2). This increase likely results from the
additional stabilization induced into the primer/template duplex
afforded by the formation of a s>T:A base pair compared to a
canonical T:A base pair,'® as well as the more 3'-endo-like sugar
puckering of 2-thio-nucleotide, which is the favoured sugar
conformation in nonenzymatic primer extension reactions."”” The
kops values for reactions containing the activated ribonucleotides™®
2-MeImpU, 2-Melmps®U and its ribo-T analog 2-MeImps>T were all
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Fig. 2 Kinetics of copying a r(A)4(C), template with 3’-NH,-2-MelmpddT
(left) and 3/-NH,-2-Melmpdds®T (right), in the presence of 100 mM
1-(2-hydroxyethyl)-imidazole, at pH 7.5 and 4 °C. Reactions were initiated
by addition of monomers and monitored by gel electrophoresis. The
triangle indicates the primer +4 product. (bottom) Natural log of the
fraction of the unreacted primer plotted against incubation time. Errors
were based on two experiments. Primer strand (DNA, 0.2 uM): 5'-(FAM)-
AGC-GTG-ACT-GAC-TGG-(NH,)-3', obtained enzymatically in ca. 85%
purity based on LC-HRMS (see the ESI{). Primer concentration was
corrected for unreactive oligonucleotide impurity. Template strand (RNA,
1 uM): 5/-CCAAAA-CCA-GUC-AGU-CAC-GCU-3’ RNA.

Table 1 Reaction kinetics measured for 10 mM T/U monomers at 4 °C
Relative

Entry Template  Monomer kobs (1) Kobs

14 1(A)4(C), 3'-NH,-2-MeImpddT 0.42 (1) 7

2° (A)4(C), 3'-NH,-2-MeImpdds®T  1.92 (2) 30

3° (A)s 2-MeImpU ND —

4P (A)s 2-MeImpsU 0.064 (1) 1

5° A 2-MeImps®T 0.22 (6) 3

“ In the presence of 100 mM 1-(2-hydroxyethyl)imidazole. ” Data obtained
from ref. 18. Reactions performed with 200 mM MgCl, at pH 7.0.

lower than the values for the activated 3’-amino nucleotides
described above (Table 1), even though these ribonucleotide
polymerizations were assayed in the presence of 200 mM Mg**
to optimize the reactivity. The rate enhancement observed for
2-MeImps”T vs. 2-MeImps®U suggests that methylation at the
5-position of 2-thiouracil leads to stronger monomer—primer
stacking. Additionally, primer extension reactions with 3’-NH,-
2-MeImpdds®T are 10-fold faster than with the corresponding
ribonucleotide, 2-MeImps®T, presumably due to the greater
nucleophilicity of the 3’-amine. Remarkably, combining the effect
of the 3’-amine and the 5-methyl groups results in an ca. 30-fold
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(Table 1, entries 2 vs. 4) faster reaction. Further physical and
kinetic characterization will be required to distinguish the
contributions of enhanced monomer binding vs. enhanced
monomer reactivity for these observations.

In conclusion, we have developed a scalable synthesis of a
2-thio modified thymidine monomer, 3'-NH,-2-MeImpdds®T.
Our synthetic route provided this highly reactive nucleotide in
sufficient amounts to perform quantitative measurements of
nonenzymatic RNA template-copying rates for the first time.
Our results show that 3'-NH,-2-MeImpdds®T can polymerize on
a DNA/RNA primer/template complex significantly faster than
any other U or T monomer that has been reported thus far.
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