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A catalytic system consisting of 5 mol% CoCl, and 10 mol% isoquinoline
allows a convenient cross-coupling of benzylic zinc reagents with
various aryl and heteroaryl bromides or chlorides leading to poly-
functionalized diaryl- and aryl-heteroaryl-methane derivatives.

Pd-Catalyzed cross-couplings between organozinc reagents and
various organic halides constitute a major C-C bond formation
methodology (Negishi cross-coupling)." Due to the high price
and toxicity of palladium, related transition metal-catalyzed
cross-couplings involving zinc organometallics and Ni-, Fe- or
Co-catalysts have been examined.> Furthermore, the use of
zinc organometallics is of special synthetic interest due to the
high functional group compatibility of zinc reagents.” Recently,
we have reported several preparation methods of benzylic zinc
halides and demonstrated that these reagents undergo smooth
Negishi cross-couplings.® Also Bedford reported that benzylic
halides undergo useful Fe-catalyzed cross-couplings with aryl-
zinc reagents.” Gosmini has shown in one-pot procedures
that arylzinc reagents generated in situ via a cobalt-catalyzed
zinc insertion undergo cross-couplings with benzyl chlorides.®
Interestingly, Ingleson has described a transition metal free
cross-coupling between relatively non-functionalized diaryl-
zincs with benzylic bromides and chlorides performed in the
absence of coordinating ethereal solvents.’

Herein, we report a practical cobalt-catalyzed cross-coupling
promoted by 10 mol% of isoquinoline between various benzylic
zinc reagents with aryl and heteroaryl bromides or chlorides
resulting in the formation of valuable diaryl- and arylheteroaryl-
methane derivatives.'® Preliminary control experiments performed
with benzylzinc chloride (1a; prepared via the oxidative insertion
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of magnesium turnings into benzyl chloride (2a) in the presence
of LiCl and ZnCl,)"' and 4-bromo-benzonitrile (3a) in a 2:1
THF : MTBE mixture'” (MTBE = methyl tert-butyl ether) show that
in the absence of transition catalysts no reaction is observed at
50 °C in 2 h (Table 1, entries 1 and 2). Also, Fe-catalysts such as
Fe(acac)s, Fe(acac), or FeCl, were inefficient (Table 1, entries 3-5)."*
However, the use of 5 mol% CoBr,, Co(acac), and CoCl, show the
formation of the desired cross-coupling product (4a) in 47-76%
GC-yield (Table 1, entries 6-8)."*

Previously reported additives like 4-fluorostyrene,"> TMEDA'® or
isoquinoline'” indicate a very positive effect of 10 mol% isoquino-
line'® leading to an isolated yield of 82% for 4a (Table 1, entry 11;
compared with entries 9 and 10). Decreasing the amount of
isoquinoline to 5 mol% reduces somewhat the yield of 4a

Table 1 Screening of catalysts for the palladium-free cross-coupling of
benzylzinc chloride (1a) with 4-bromobenzonitrile (3a)

ZnCl 3a
- %,
catalyst, additive

1a THF : MTBE = 2:1 4a
50°C,2h

Entry Catalyst (mol%) Additive (mol%) Yield®?
1 None None 0
2 None Isoquinoline (10) 0
3 Fe(acac); (5) None 0
4 Fe(acac), (5) None Traces
5 FeCl, (5) None Traces
6 CoBr; (5) None 47
7 Co(acac); (5) None 70
8 CoCl, (5) None 76
9 CoCl, (5) 4-Fluorostyrene (10) 66
10 CoCl, (5) TMEDA (10) 68
11 CoCl, (5) Isoquinoline (10) 87 (82)° (72)*
12 CoCl, (5) Isoquinoline (5) 75
13 CoCl,-2LiCl (5) Isoquinoline (10) 69
14 CoCl,-2LiCl (5) None 65

“1.1 equiv. of benzylzinc chloride (1a) was used. ” Determined by
GC-analysis with tetradecane as an internal standard. ° Isolated yield
of pure product. ¢ CoCl, with a purity of 99.999% was used.
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(Table 1, entry 12). Also, we found that the use of CoCl,-2LiCl"® was
not advantageous (Table 1, entries 13 and 14). Additionally, we have
examined the influence of the commercial origin of CoCl, as well as
its purity. Thus, CoCl, having a purity of 99.999% provides under
the same conditions (50 °C, 2 h) the diarylmethane 4a in 72% yield
(compared to 82%; see Table 1, entry 11).>**' The addition of
MTBE as a cosolvent usually decreases the amount of homo-
coupling and therefore enhances the product yield. However, large
amounts of MTBE reduce the reaction rate. We found the
solvent mixture THF : MTBE 2:1 to be optimal.*> Concerning
the need of isoquinoline as ligand, an extensive screening
showed that N-heterocycles behave best, whereas various phos-
phines did not promote the cross-coupling.>*

With these optimized conditions in hand, we studied the
reaction scope of the cross-coupling between various benzylic
zinc chlorides (1a-i) with a broad range of aryl and heteroaryl
bromides or chlorides. First, the treatment of benzylic zinc
reagents (1a,b) in the presence of 5 mol% CoCl, and 10 mol%
isoquinoline with 4-bromobenzonitrile (3a) at 50 °C within 2 to
4 h is leading to the diarylmethane derivatives 4a,b in 77-82%
(Table 2, entries 1 and 2). Furthermore, the cross-coupling of an
ortho-substituted benzylzinc chloride (1c) with 3a afforded the
desired arene (4c) in 74% yield (Table 2, entry 3). Similarly, the
two functionalized benzylic zinc reagents (1d,e) cross-coupled
with 3a giving the products 4d,e in 70-79% (Table 2, entries 4
and 5). The ester-substituted benzylzinc chloride (1f) underwent
a smooth cross-coupling with 3a leading to the functionalized
diaryl-methane 4f in 62% yield (Table 2, entry 6). Additionally,
the cross-couplings of the more electron-donating benzylic zinc
reagents (1gh) with 4-bromo-benzonitrile (3a) furnished the
arenes 4g,h in 65-82% yield (Table 2, entries 7 and 8).

The reaction scope of this cross-coupling proved to be quite
broad. Thus, 2-bromo-benzophenone (3b) underwent the cobalt-
catalyzed cross-coupling with the benzylzinc chloride (1b) yielding
to the corresponding ketone 5a in 64% yield (Table 3, entry 1).
Similarly, the coupling of ethyl 4-bromo-benzoate (3¢) with the
two benzylic zinc reagents (1e,g) led to the functionalized diaryl-
methane derivatives (5b,c) in 54-70% yield (Table 3, entries 2 and
3). Remarkably, 2-chloropyridines react well with various benzylic
zinc reagents (Table 3, entries 4-9). The cross-couplings of the
benzylzinc chlorides (1b,e) with ethyl 2-chloronicotinate (3d)
proceeded smoothly under these conditions affording the 2,3-
disubstituted pyridines (5d,e) in 60-95% yield (Table 3, entries 4
and 5). Also, 3-(ethoxycarbonyl)benzyl-zinc chloride (1f) under-
went the coupling with the 2,3-di-substituted pyridine (3d) giving
the functionalized aryl-hetero-arylmethane 5f in 68% yield
(Table 3, entry 6). Furthermore, the cross-couplings of the benzylic
zinc reagents (1d,g,i) with 2-chloro-nicotinonitrile (3e) led to the
desired benzylated pyridines (5g-i) in 67-77% yield (Table 3,
entries 7-9). Finally, the reaction of 3-fluorobenzylzinc chloride
(1d) with ethyl 5-bromofuran-2-carboxylate (3f) afforded within 3 h
the 2,5-disubstituted furan (5j) in 60% yield (Table 3, entry 10).
The use of aryl bromides bearing electron-donating substituents
led to low yields.*

Moreover, such benzylic zinc reagents undergo high yield
cross-couplings with various chloro- or bromo-N-heterocycles.
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Table 2 Isoquinoline-promoted Co-catalyzed cross-coupling of benzylic
zinc reagents (la—h) with 4-bromobenzonitrile (3a)
THF : MTBE = 2:1

@Azm
S /
FG
1a-h
50 °C, 1-18 h

FG = 4-Bu, 2-Cl, 3-F, 3-CF, 3-CO,Et, 4-OMe, 4-SMe

Br CN
3

Y

v @, |

CoCl; (5 mol%) P

. — FG CN
isoquinoline (10 mol%) 4a-h

Entry Benzylic zinc reagent® Electrophile  Product, yield”*

Br-
o™ C, U0

1
1a 3a 4a:82%, 2 h

9 By 3a Bu CN
1b 4b: 77%, 4 h

ZnCl

cl cl
1c
©AZnCI
4 r 3a
1d
CFs

ZnClI

5 3a CFy
le 4e: 70%, 2 h
oC
CN
6 3a

CO,Et

1f
/@/\an
MeO MeO CN
1g
Mes/©A

3a
4g: 82%, 2 h

ZnCl

8 3a MeS” ‘ ' “CN

1h 4h: 65%, 18 h

“1.3-1.5 equiv. of benzylic zinc reagent were used. ? Isolated yield of
pure product. ¢ Less than 15% of homo-coupling of the zinc reagent
was observed.

Thus, the reaction of 4-methoxybenzylzinc chloride (1g) with
2-bromopyrimidine (3g) and the two substituted pyridines, 2-chloro-
5-(trifluoromethyl)pyridine (3h) and 2-chloro-6-fluoro-pyridine (3i),

This journal is © The Royal Society of Chemistry 2016
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Table 3 Co-Catalyzed cross-coupling reactions of benzylic zinc reagents
with aryl and heteroaryl halides

E*
| ~N ZnCl CoCl, (5 mol%) | ~ E
7 isoquinoline (10 mol%) A
FG THF : MTBE = 2:1 FG
1b-i 50°C,1-18 h 5a-j

FG = 4-Bu, 3-F, 3-CFj3, 3-CO,Et, 4-OMe, 4-Br

Benzylic zinc

Entry reagent” Electrophile Product, yieldb *

/©/\ZnCI
Bu
1

1b

3b 5a: 64%, 4 h
2 COzEt COzEt
CF3 Fs
le 3c 5b: 54%, 18 h

O 3¢ MeO COEt

3
5c: 70%, 1 h
CO,Et CO,Et
/@Azm
4 Bu N /©AI©
1b 3d 5d: 95%, 4 h
CO,Et
©/\ZnCI
N
5 CF, 3d
le Se: 60%,2h
CO,Et
@Azm
N
6 CO,Et 3d
CO,Et
1f 5f: 68%, 18 h
CN
ZnCl ON
Cl | X | AN
7 ! N NF
F
1d 3e

5g: 67%, 3 h

CN
ZnCl
[
MeO
8 3e N =
MeO

1g 5h: 77%, 2 h
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Table 3 (continued)
e
| X" znal CoCl, (5 mol%) | ~ E
K isoquinoline (10 mol%}) . S
FG THF : MTBE = 2:1 G
1b-i 50 °C, 1-18 h 5a-j

FG = 4-Bu, 3-F, 3-CF3, 3-CO,Et, 4-OMe, 4-Br

Benzylic zinc

Entry reagent® Electrophile Product, yield”*

CN
/@Azm
S
|
Br
9 3e Br N =
Li 5i: 68%, 18 h
ZnCl Br. o o
UCOQB ©/\UCOZE1
F
1d 3f
5j: 60%, 3 h

“1.3-1.5 equiv. of benzylic zinc reagent were used. ? Isolated yield of
pure product. ¢ Less than 15% of homo-coupling of the zinc reagent

was observed.
ZnCl  CoCly (5 mol%) E
_ “obhlomole)
MeO isoquinoline (10 mol%) MeO
[
© THF : MTBE = 2:1

19 50°C,2h

N N =
o) = MeO CF3

6a: 71%; X =Br

x’l\
N __~
eO

6c:52%; X=Cl

+

6a-c

6b: 83%; X =Cl

Scheme 1 Isoquinoline-promoted cross-coupling of the benzylic zinc
reagent 1g with selected N-heterocycles (3g—i).

led rapidly (within 2 h) to the functionalized aryl-heteroarylmethanes
(6a—c) in 52-83% yield (Scheme 1).

In summary, we have reported a new practical Co-catalyzed,
isoquinoline-promoted cross-coupling of various benzylic zinc
chlorides with a range of aryl and heteroaryl bromides and
chlorides, producing polyfunctionalized diaryl- or arylhetero-
aryl-methane derivatives. This method tolerates a variety of
functional groups, such as esters, nitriles or ketones, and proceeds
smoothly at 50 °C within 1-18 h. Remarkably, the combination of
MTBE (MTBE = methyl tert-butyl ether) as co-solvent and isoquino-
line as additive led only to small amounts of homo-coupling. In
most cases, shorter reaction times and improved yields could be
obtained. Further investigations towards the synthesis and applica-
tions of benzylic organo-metallics are underway in our laboratories.
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Mechanistic studies are underway to explain these phenomena.
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