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Crystallinity-dependence of ionic conductivity in
the ion pairs of a multi-interactive anion†

Gil Ryeong Lee,a Hiroyoshi Ohtsu,a Jinyoung Koo,a Yumi Yakiyama,‡*a

Moon Jeong Park,b Daishi Inoue,c Daisuke Hashizumec and Masaki Kawano§*a

Ammonium and sodium salts (ion pairs) of a multi-interactive tri-

(4-pyridyl)hexaazaphenalenyl anion (TPHAP�) showed completely

different ion-conductive properties depending on the crystal structure.

TPHAP columnar crystals showed a high conductivity of 10�3 S cm�1

while retaining their structures even under humid conditions, whereas

TPHAP dimer crystals exhibited a conductivity of B10�5 S cm�1 with

crystallinity deterioration. The main unit structures induced by multi-

interactivity realized different water accessibility, which explains the

differences in their ion conductivity and stability against humidity.

Intermolecular interactions play critical roles in functional
materials, crystal engineering, and biological systems.1–3 In such
systems, molecules that have multi-point interactions are impor-
tant components because they can stabilize meta-stable states4,5

by decreasing a local minimum energy state to trap kinetic
states. For this purpose, we designed a multi-interactive mole-
cule, the tri(4-pyridyl)hexaazaphenalenyl anion (TPHAP�) which
has multi-point interaction sites composed of nine nitrogen
atoms in the same p-plane.6 Using this molecule, we trapped a
kinetic coordination network composed of the TPHAP ligand6a

and prepared diverse coordination networks from the same
crystallization setup by changing only solvent or additives.6b

Importantly, the potassium salt KTPHAP shows humidity-
dependent conductivity with reversible structural transformation
by hydration/dehydration.7 This result indicates that water and K+

strongly influence structural change via interaction with TPHAP�.
Here we report the ion conducting properties of two new

TPHAP� salts, ion pairs of NH4TPHAP and NaTPHAP, which
were isolated as two kinds of phases; highly water-stable phase A
and phase B which can readily deteriorate under high humidity.
At 95% RH, the A-phases were more conductive than the B-phases
by two orders of magnitude. The existence of different crystalline
phases indicates that we can prepare various structures by exploiting
the multi-interactive nature of TPHAP�. These properties in both
phases can be explained by considering the main structural unit,
which is a 1-D column or a dimer of the TPHAP ion pair. Water
accessibility strongly affects their water-stable crystallinity and the
ion conductivity.

We obtained two crystalline phases of both NH4TPHAP and
NaTPHAP with clearly different features: one phase keeps high
crystallinity (denoted by NH4 (or Na) TPHAP-A) under humid
conditions; the other has a low crystallinity (NH4 (or Na)
TPHAP-B). NH4TPHAP-A single crystals were obtained by slow
recrystallization from dilute MeOH solution; NH4TPHAP-B
single crystals were obtained by quick recrystallization from
concentrated MeOH solution. NaTPHAP-A crystalline powder was
obtained by vapour diffusion using MeOH solution and ethyl
acetate; NaTPHAP-B single crystals were obtained using the same
method with more ethyl acetate vapour in a smaller crystal-
lization vial than in the case of the NaTPHAP-A crystal (Fig. S1,
ESI†). This sensitivity of crystallization to conditions indicates
that TPHAP� can respond to very small change in environment
effects by forming completely different structures.5,6

The crystal structures of NH4TPHAP-A and NaTPHAP-A were
solved by single-crystal X-ray analysis and by ab initio X-ray powder
diffraction (XRPD) analysis (ESI†),8 respectively (Fig. 1). Both phases
are stable under air and have the same structural features; owing to
the highly symmetrical structure of TPHAP�, they are spread onto
a 2-D layer in the hexagonal shape with the formation of pores
surrounded by six pyridine rings (Fig. 1a and c, red-dotted line).
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Both NH4TPHAP-A and NaTPHAP-A form p–p stacking columns at
hexaazaphenalene (HAP) skeletons9 along the b- and the c-axes
with the distances of 3.39 Å and 3.34 Å, respectively (Fig. 1b and d).
The remaining open spaces are occupied by counter cations
(NH4

+, Na+) and severely-disordered water molecules. Two
disordered NH4

+ in NH4TPHAP-A loosely bind TPHAP� by hydrogen
bonding (H-bonding) interactions; N1A(NH4

+)� � �N(pyridine):
2.891(2) Å; N2A(NH4

+)� � �N(HAP): 2.990(4)–3.485(4) Å (Fig. S2, ESI†).
Similarly, the structure of NaTPHAP-A has disordered Na+

and loose binding; the Na+� � �N(HAP) distance is in the range
3.0(3)–3.6(2) Å (Fig. S3, ESI†). In contrast, both of the single
crystals of NH4TPHAP-B and NaTPHAP-B consist of dimer units
of TPHAP� which are bound by counter cations (Fig. 1e–h). In
the crystal structure of NH4TPHAP-B, which is the isostructure

of KTPHAP, all dimer units bridged by NH4
+ are strongly

connected by NH4
+ (N(NH4

+)� � �N(HAP) and the bond distance
is in the range 2.987(1)–3.189(1) Å) (Fig. 1e and f and Fig. S4,
ESI†).7 This tight binding protects the crystal from disruption
by interaction with air and escape of water from the system.
In contrast, in single crystals of NaTPHAP-B, the dimers are
formed by dipole–dipole interactions and simple p–p stacking
between TPHAP�s. Furthermore, interaction between the dimers
is too weak to maintain crystallinity. Therefore, its crystallinity
drastically decreases in air because of MeOH escape (Fig. S5, ESI†).

The ion conductivities of these materials were significantly
correlated with the initial structure and atmospheric humidity
(Fig. 2). We used ac impedance spectroscopy to measure the
conductivity of compressed pellets of each crystal under various
relative humidities (RH). The conductivities of all materials
increased by more than 2 orders of magnitude as humidity became
higher. These observations clearly indicate that water adsorption
accelerates ion conduction. In addition, the conductivity measure-
ment under deuterated water conditions (95% RH, 30 1C) gave
similar conductivities (NH4TPHAP-A; 3.0 � 10�3 S cm�1,
NaTPHAP-A; 9.8 � 10�4 S cm�1, NH4TPHAP-B; 2.2 �
10�5 S cm�1, NaTPHAP-B; 1.3 � 10�5 S cm�1, ESI†) to those
which were measured under normal water conditions. These
results indicate that the main charge carrier is not proton.
Therefore, the possible mechanism of ion conduction in these
systems was based on the migration of Na+ and NH4

+. Their
migration can be accelerated by water adsorption which reduces
the interaction between the ions and the framework. A-phases
showed drastic conductivity changes from negligible (insulating) at
50% RH to 10�3 S cm�1 at 95% RH. These high conductivities are
comparable to cation-exchanged Nafion.10 Na+ ions are less mobile
(5.19 � 10�8 m2 s�1 V�1) than NH4

+ ions (7.63� 10�8 m2 s�1 V�1)
in water.11 However, NaTPHAP-A showed a higher conductivity
(5.9 � 10�3 S cm�1) than NH4TPHAP-A at 95% RH, though the
crystal types have similar molecular packing. This is reasonable
because larger interaction energy of Na+ with water enabled

Fig. 1 Initial crystal structures. (a) Overview of the NH4TPHAP-A structure;
b-axis projection, (b) Infinite p–p stacking of NH4TPHAP-A, (c) overview
of the NaTPHAP-A structure; c-axis projection, (d) infinite p–p stacking
of NaTPHAP-A, (e) overview of NH4TPHAP-B structure, (f) dimer unit of
NH4TPHAP-B, (g) overview of the NaTPHAP-B structure, (h) dimer unit of
NaTPHAP-B. Hydrogen and crystal solvents are omitted for clarity. Colour
code: C, grey; N, blue; Na+; yellow sphere, NH4

+; blue sphere.

Fig. 2 Ionic conductivity s of different crystalline phases of NaTPHAP and
NH4TPHAP measured at 30 1C versus relative humidity. Note that the highest
ionic conductivity values in NaTPHAP-A and NaTPHAP-B. (Detailed values are
described in Table S1, ESI†).
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easier water adsorption than NH4
+.12 In addition, the conduc-

tivity of NH4TPHAP-A increased abnormally under 95% RH;
this result is due to both the stronger stabilization effect by
coulombic interaction of NH4

+� � �N (HAP or pyridine) (Tables S3
and S4, ESI†) and the weaker interaction energy of NH4

+ with
water than the Na+ system, which prevented the effective migra-
tion of NH4

+ within the system. In contrast, TPHAP-dimer-based
NH4TPHAP-B and NaTPHAP-B crystals showed lower conduc-
tivities r3.2 � 10�5 S cm�1 at 95% RH.

We examined XRPD patterns under humid conditions to
investigate the hydration effect against the crystal structures
and their conductivities (Fig. 3). NH4TPHAP-A and NaTPHAP-A
remained crystalline even at 95% RH, as does KTPHAP.7 To our
surprise, none of the A-phases showed significant pattern change.
In contrast, the crystallinity of NH4TPHAP-B and NaTPHAP-B
decayed during hydration at 95% RH and 30 1C for 12 h. These
different responses of crystallinity to hydration can be explained
by their initial crystal structure, especially the p–p stacking
columnar structure or the dimer structure.

A-phases have a stable columnar structure of TPHAP and
each column is loosely bound by counter ions; the result is a
well-packed structure. This structural feature prevents water
solvation which severely degrades the crystallinity. Instead,

water can enter only those spaces in the crystals in which the
cations are disordered but maintain interactions with TPHAP�

((Na+ or NH4
+)� � �N(HAP)) even though their binding energies

can be reduced. As a result, at 95% RH, the diffusion rate of the
counter cations increases so the ion conductivity becomes high.
In contrast, TPHAP dimer-based B-phase crystals include more
free space than do the A-phase, and provide more opportunity
for water adsorption. Therefore, water adsorption causes the
deterioration of initially ordered structures. However, the lower
conductivity values of B-phase crystals than those of A-phase
ones seem to be inconsistent because water adsorption can
increase the diffusion rates of the cations which are linearly
related to conductivity.13 The most reasonable explanation for this
contradiction is the high stability of the TPHAP� and cation pair.
Indeed, the complex can be clearly observed in the CS-ESI-MS
spectrum using MeOH.6b This strong coulombic interaction
impedes diffusion of the counter cations in water. An additional
possibility is suggested by the slight increase of full width at half
maximum with no change in intensity of XRPD patterns, indicating
formation of finer powder by hydration. In fact, we confirmed the
decrease of the particle size using an optical microscope. The
observation suggests that a grain boundary effect may be opera-
tional: that water adsorption occurs mainly on the crystalline surface,
so the grain boundary provides an effective conduction path.

In summary, we exploited the multi-interactive character of
TPHAP� to prepare two crystalline phases of NH4TPHAP and of
NaTPHAP. The crystallinity and structural features of ion pairs were
closely related to their conductivity. The A-phases with infinite p–p
stacking structure resisted degradation by high humidity condi-
tions and have high conductivity. However, TPHAP-dimer based
B-phases lost their crystallinity by hydration and showed low con-
ductivity. This work emphasizes the importance of molecular
interactions in the design of hydrous ionic conducting systems.
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national cooperation program (No. 2014K2A2A4001500) managed
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at the Pohang Accelerator Laboratory (Beamline 2D) supported
by POSTECH. This work was approved by SPring-8 (Proposals
2014B1022).

Notes and references
1 Supramolecular Chemistry, ed. J. W. Steed and J. L. Atwood, Wiley,

UK, 2nd edn, 2009.
2 (a) D. Stock, A. G. W. Lesile and J. E. Walker, Science, 1999, 286,

1700–1705; (b) N. Ban, P. Nissen, J. Hansen, P. B. Moore and T. A.
Steitz, Science, 2000, 289, 905–920; (c) N. H. Joh, A. Min, S. Faham,
J. P. Whitelegge, D. Yang, V. L. Woods, Jr. and J. U. Bowie, Nature,
2008, 453, 1266–1270; (d) D. M. Rosenbaum, S. G. F. Rasmussen and
B. K. Kobilka, Nature, 2009, 459, 356–363.

3 G. D. Desiraju, Angew. Chem., Int. Ed., 2007, 46, 8342–8356.
4 (a) M. M. Gromiha and S. Selevaraj, Prog. Biophys. Mol. Biol.,

2004, 86, 235–277; (b) M. Chaplin, Nat. Rev. Mol. Cell Biol., 2006,
7, 861–866.

5 (a) M. Kawano, T. Haneda, D. Hashizume, F. Izumi and M. Fujita,
Angew. Chem., Int. Ed., 2008, 47, 1269–1271; (b) J. Martı́-Rujas and
M. Kawano, Acc. Chem. Res., 2013, 46, 493–505; (c) H. Kitagawa, H. Ohtsu
and M. Kawano, Angew. Chem., Int. Ed., 2013, 52, 12395–12399.

Fig. 3 XRPD patterns. Simulated pattern from the single crystal structure
(dotted), initial powder (black) and hydrated powder (blue). (a) Experi-
mental setting of XRPD measurement, (b) NH4TPHAP-A, (c) NaTPHAP-A,
(d) NH4TPHAP-B, (e) NaTPHAP-B.

ChemComm Communication

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Fe

br
ua

ry
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 4
:3

5:
02

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5cc10136k


This journal is©The Royal Society of Chemistry 2016 Chem. Commun., 2016, 52, 3962--3965 | 3965

6 (a) Y. Yakiyama, A. Ueda, Y. Morita and M. Kawano, Chem. Commun.,
2012, 48, 10651–10653; (b) T. Kojima, T. Yamada, Y. Yakiyama,
E. Ishikawa, Y. Morita, M. Ebihara and M. Kawano, CrystEngComm,
2014, 16, 6335–6344; (c) Y. Yakiyama, T. Kojima and M. Kawano,
Crystal Engineering of Coordination Networks Using Multi-Interactive
Ligands, in Advances in Organic Crystal Chemistry: Comprehensive
Reviews 2015, ed. R. Tamura and M. Miyata, Springer, Tokyo, 2015,
pp. 223–240.

7 Y. Yakiyama, G. R. Lee, S. Y. Kim, Y. Matsushita, Y. Morita, M. J. Park
and M. Kawano, Chem. Commun., 2015, 51, 6828–6831.

8 (a) M. Takata, B. Umeda, E. Noshibori, M. Sakata, Y. Saito, M. Ohno
and H. Shinohara, Nature, 1995, 377, 46–49; (b) S. Pagola, P. W.
Stephens, D. S. Bohle, A. D. Kosar and S. K. Madsen, Nature, 2000,
404, 307–310; (c) IUCr Monographs on Crystallography 13, ed. W. I. F.
David, D. Shankland, L. B. McCusker and C. Baerlocher, Oxford
University Press, Oxford, UK, 2002.

9 (a) S. Suzuki, Y. Morita, K. Fukui, K. Sato, D. Shiomi, T. Takui and
K. Nakasuji, Inorg. Chem., 2005, 44, 8197–8199; (b) S. Suzuki,
K. Fukui, A. Fuyuhiro, K. Sato, T. Takui, K. Nakasuji and Y. Morita,
Org. Lett., 2010, 12, 5036–5039.

10 T. Okada, H. Satou, M. Okuno and M. Yuasa, J. Phys. Chem. B, 2002,
106, 1267–1273.

11 (a) Tables of physical and chemical constants, ed. G. W. C. Kaye and
T. H. Laby, Longman, London, UK, 1973; (b) R. A. Robinson and
R. H. Srokes, Electrolyte solutions, Butterworth, London, UK, 1959.

12 A. G. Volkov, S. Paula and D. W. Deamer, Bioelectrochem. Bioenerg.,
1997, 42, 153–160.

13 Diffusion constant D can be described as D = skT/Cz2e2. Here s is
ion conductivity, k is Boltzmann constant, C is carier concentration,
z is ion valency and e is elementary charge. See, Modern Electro
Chemistry vol 1: Ionics, ed. J. O. Bockris and A. K. N. Reddy, Springer,
2nd edn, 1998.

Communication ChemComm

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Fe

br
ua

ry
 2

01
6.

 D
ow

nl
oa

de
d 

on
 7

/3
0/

20
25

 4
:3

5:
02

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/c5cc10136k



