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The SQM/COSMO filter: reliable native pose
identification based on the quantum-mechanical
description of protein–ligand interactions and
implicit COSMO solvation†

Adam Pecina,‡a René Meier,‡b Jindřich Fanfrlı́k,a Martin Lepšı́k,a Jan Řezáč,a

Pavel Hobza*ac and Carsten Baldauf*d

Current virtual screening tools are fast, but reliable scoring is elusive.

Here, we present the ‘SQM/COSMO filter’, a novel scoring function

featuring a quantitative semiempirical quantum mechanical (SQM)

description of all types of noncovalent interactions coupled

with implicit COSMO solvation. We show unequivocally that it

outperforms eight widely used scoring functions. The accuracy

and chemical generality of the SQM/COSMO filter make it a perfect

tool for late stages of virtual screening.

Despite the enormous advances in method development for
structure-based in silico drug design, reliable predictions of the
structures (docking) and affinities (scoring) of protein–ligand
(P–L) complexes still remain an unsolved task.1 A plethora of
scoring functions (SFs) have been devised by utilising experi-
mental data for regression analyses, by constructing knowledge-
based potentials, or based on physical laws.2,3 As none of the SFs
is general enough to perform equally strongly for a diverse set of
P–L complexes, utilising several SFs at once (consensus scoring)
holds promise.4 Regression analysis and knowledge-based
approaches to scoring are trained on a set of P–L complexes
and rely on variable master equation terms. Their validity is
limited to complexes similar to the training set. In principle,
this problem has been overcome in physics-based methods.
Because of computational cost, preference has been given to
molecular mechanics (MM) methods, such as the combination
of MM interaction energies with implicit solvation free energy
terms (generalised Born, GB, or Poisson–Boltzmann, PB) to

estimate affinities.2 Additionally, the wide coverage of organic
chemical space in the GAFF (general AMBER force field)5 has
made the parameterisation of ligands for MM straightforward.
However, an explicit description of quantum mechanical (QM)
effects in P–L interactions, such as charge transfer, polarisa-
tion, covalent-bond formation or s-hole bonding, was missing.
QM methods, which describe these effects qualitatively better
than the energy functions used in MM-based SFs, were thus
introduced into computational drug design.6,7 Recent develop-
ments in QM methods and algorithms as well as the availability
of a powerful computing infrastructure have paved the way to
apply them for P–L complexes in numerous setups: linear scaling or
efficient parallelisation of semi-empirical QM (SQM) methods,7–10

QM/MM,7,8,11,12 DFT-D3 on truncated P–L complexes13 or various
fragmentation methods.11,14 Specifically, AM1, RM1, PM6 or DF–TB
SQM methods have been used7–9,12,15 as such or with empirical
corrections for dispersion, hydrogen- and halogen-bonding16 to
describe the P–L noncovalent interactions. Merz et al. pioneered
this area by introducing a QM-based SF (QMScore), a combi-
nation of the AM1 SQM method with an empirical dispersion (D)
and the PB implicit solvent [eqn (1)].17 The method was useful for
describing metalloprotein–ligand binding, but further corrections
were needed, especially for a quantitative treatment of dispersion
and hydrogen bonding.10

Score = DEint + DDGsolv + DG0wconf � TDS (1)

The above equation is a general physics-based SF. The terms
are the gas-phase interaction energy (DEint), the change of
solvation free energy upon complex formation (DDGsolv), the
change of conformational ‘free’ energy (DG0wconf) and the change
of entropy upon ligand binding (�TDS).

Our approach is systematic. Using accurate calculations in
small model systems as a benchmark, we developed corrections
for SQM methods that provide reliable and accurate description
of a wide range of noncovalent interactions including disper-
sion, hydrogen- and halogen-bonding.16 Coupled with the
PM6 SQM method,18 the resulting PM6-D3H4X approach is
applicable to a wide chemical space and does not require any
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system-specific parameterisation. We use it here to calculate the
DEint term. Subsequently, we compared MM-based (PB or GB) and
QM-based (COSMO19 or SMD) implicit solvent models and found
the latter group to be more accurate.20 These are therefore used for
the DDGsolv term. These two dominant terms, DEint and DDGsolv, are
at the heart of our SQM-based SF.15 We have demonstrated its
generality in various noncovalent P–L complexes, such as aldose
reductase or carbonic anhydrase and moreover extended it to treat
covalent inhibitor binding (ref. 15, 21 and 22).

In this work, we adapt our SQM-based SF to make it usable
in virtual screening on the basis of our previous experience. By
taking the two dominant terms only, DEint and DDGsolv, we define
the ‘SQM/COSMO filter’ energy. Its performance is tested here
against eight widely used SFs. GlideScore XP (GlideXP),23 PLANTS
PLP (PLP),24 AutoDock Vina (Vina),25 Chemscore (CS),26 Goldscore
(GS)27 and ChemPLP24 are empirical, regression-based functions
which use different terms to describe vdW contacts, lipophilic
surface coverage, hydrogen bonding, ligand strain, and desolvation.
The Astex Statistical Potential (ASP)28 is a knowledge-based
potential. The classical physics-based AMBER/GB SF combines
the ff03-GAFF MM force fields with the GB implicit solvent.5,29

The goal is ‘cognate docking’,30 i.e. the ability to identify
sharply the known native X-ray P–L binding pose from a set of
decoy structures generated by docking (Fig. 1). To understand
our results in detail, we have not opted for treating them in a
statistical manner31 as in the pose decoy test sets available.32

Instead we cautiously selected four unrelated difficult-to-handle
P–L systems, which comply with strict criteria for the selection of
crystallographic structures for docking (details in the ESI†).33

These systems are acetylcholine esterase (AChE, PDB: 1E66),34

TNF-a converting enzyme (TACE, PDB: 3B92),35 aldose reductase
(AR, PDB: 2IKJ)36 and HIV-1 protease (HIV PR; PDB: 1NH0).37 For
the latter, the protonation of the active site is inferred from ultra-
high resolution X-ray crystallography. Based on these P–L crystal
structures, we have created a set of non-redundant poses (2865
in total) by docking with four popular docking programs (Glide,
PLANTS, AutoDock Vina and GOLD) coupled to seven widely
used SFs23–28 (Fig. 1, Table S2, ESI†).

All the poses were re-scored by all nine SFs. For the seven
regression- and knowledge-based SFs, we used the recommended
protocols. For the two physics-based SFs, only hydrogen atoms
and close contacts were relaxed by the AMBER/GB method. RMSD
values of the poses relative to the crystal were measured (details in
S1.6, ESI†). The scores were normalised and are shown relative to
the score of the crystal pose.

The identification of the X-ray pose as the minimum-free-
energy structure is an unambiguous criterion for the perfor-
mance of any SF. The ideal behaviour of such a score vs. RMSD
curve (Fig. 2) is characterised by the positive values of energies
for the decoy poses. Small deviations (negative energies for very
small RMSD values) are acceptable and might be explained by
inaccuracies of the crystal structure. These conditions are met
by the SQM/COSMO filter, unlike the other SFs (Fig. 2). The
numbers of false-positive solutions as well as the maximum
RMSD (RMSDmax) from the X-ray pose within a defined interval
of the normalised score quantify the virtually ideal behaviour of
the SQM/COSMO filter in comparison to the other SFs.

The number of false-positives is lowest for the SQM/COSMO
filter, even zero for three P–L systems (Table 1). CS and ASP
perform slightly worse. AMBER/GB performs satisfyingly well
for three systems but yields 171 false-positives for TACE.
For AChE, all the SFs perform satisfyingly well. For AR and
HIV PR, GlideXP generates the highest number of false-positive
solutions and also shape-wise the free energy landscape looks
ill-defined (Fig. 2). In the case of AR, a plateau of negative
relative scores is observed for GlideXP. The hardest case is the
TACE metalloprotein. Here, all the SFs produce false-positive
solutions but to a different extent. The SQM/COSMO filter
performs best, followed by CS. This example in particular shows
the strength of an electronic-structure theory description of P–L
binding. The presence of the metal cation in this protein and
the associated charge-transfer effects between the ligand and
the cation are not adequately described by classical force-fields

Fig. 2 The plots of normalised scores against RMSD values for all four P–L
systems.

Fig. 1 The ligand poses generated by the four docking programs. Ligand
poses are color-coded by RMSD.
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or statistical potentials, but they are well represented by the
SQM/COSMO filter.

The second criterion, RMSDmax, is shown for the interval of
the normalised relative scores below 5 (Table 2). The SQM/
COSMO filter shows the lowest RMSDmax of 0.88 Å on average.
CS follows with 1.28 Å on average. ASP and AMBER/GB satisfy
the conditions of an averaged RMSDmax up to 2 Å. AMBER/GB,
however, fails in the difficult case of TACE with RMSDmax of
4.76 Å. Analogous analyses at greater intervals have revealed a
similar ordering of the SFs (Table S4, ESI†).

The SQM/COSMO filter enables us not only to recognise the
correct binding pose (RMSD below 2 Å) but also to go beyond
this limit and evaluate even small changes in the geometry of
the ligand binding.

The price for such a high accuracy is the increased computa-
tional time requirements. The SQM/COSMO filter is ca. 100-times
slower than the statistics- and knowledge-based SFs and about
10-times slower than the classical physics-based AMBER/GB.
However, compared to the standard SQM-based SF, it is ca. 100-times
faster. The speed can be further enhanced by parallelisation.

To summarise, we have pushed the limits of the accuracy of
SFs to judge the energetics of P–L noncovalent interactions.
Based on our development and the extensive experience with
SQM-based scoring functions,3,21 the SQM/COSMO filter has
been introduced. It features two dominant terms to describe
P–L interaction, namely the DEint term at the PM6-D3H4X level
for gas-phase noncovalent interactions and the DDGsolv term at
the COSMO level for implicit solvation. We showed previously that
both these methods are very accurate at a reasonable speed.16,20

The SQM/COSMO energy is calculated in four unrelated P–L
complexes. The SQM/COSMO filter is compared to eight widely
used SFs, which are statistics-, knowledge- or force-field-based.
The SQM/COSMO scheme exhibits a superior performance as

judged by two criteria, the number of false positives and
RMSDmax. In contrast to standard SFs, no fitting against data
sets has been involved. Furthermore, it offers generality and
comparability across the chemical space and no system-specific
parameterisations have to be performed. The time require-
ments allow for calculations of thousands of docking poses
as we have demonstrated in this pilot study. We propose the
SQM/COSMO filter as a tool for accurate medium-throughput
refinement in later stages of virtual screening or as a reference
method for judging the performance of other scoring functions.
The proof of concept that reliable QM calculations can now be
performed for tens of thousands of large biochemical entities
opens a way to progress in closely related disciplines such as
materials design.
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the financial support of the Czech Science Foundation (grant
number P208/12/G016). The authors acknowledge the support by
the project L01305 of the Ministry of Education, Youth and
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Computing (ZIH) at TU Dresden.
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