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Glycan heterogeneity on gold nanoparticles
increases lectin discrimination capacity in
label-free multiplexed bioassays†

Lucienne Otten,a,b Denise Vlachou,a Sarah-Jane Richards*a,b and
Matthew I. Gibsona,b

The development of new analytical tools as point-of-care biosensors is crucial to combat the spread of

infectious diseases, especially in the context of drug-resistant organisms, or to detect biological warfare

agents. Glycan/lectin interactions drive a wide range of recognition and signal transduction processes

within nature and are often the first site of adhesion/recognition during infection making them appealing

targets for biosensors. Glycosylated gold nanoparticles have been developed that change colour from red

to blue upon interaction with carbohydrate-binding proteins and may find use as biosensors, but are

limited by the inherent promiscuity of some of these interactions. Here we mimic the natural hetero-

geneity of cell-surface glycans by displaying mixed monolayers of glycans on the surface of gold nano-

particles. These are then used in a multiplexed, label-free bioassay to create ‘barcodes’ which describe

the lectin based on its binding profile. The increased information content encoded by using complex

mixtures of a few sugars, rather than increased numbers of different sugars makes this approach both

scalable and accessible. These nanoparticles show increased lectin identification power at a range of

lectin concentrations, relative to single-channel sensors. It was also found that some information about

the concentration of the lectins can be extracted, all from just a simple colour change, taking this techno-

logy closer to being a realistic biosensor.

Introduction

Protein–carbohydrate interactions are crucial for many biologi-
cal processes including both passive and innate immunity,
cell–cell communication, protein folding and fertilsation.1

Their prevelance in essential processes means they are
exploited by pathogens in their initial adhesion step prior to
infection. Carbohydrate-binding proteins (known as lectins)
mediate these adhesion steps. Lectin binding is determined by
a combination of factors including carbohydrate branching,
stereochemistry, and chemical functionality.2,3 Despite their
role in signalling, these binding events tend to be weak (Kd =
103–106 M−1). This is circumvented in nature by the presen-
tation of multiple copies of the target carbohydrate which
gives rise to an increase in binding affinity that is greater than
the linear sum of the binding to the individual carbohydrates
(known as the ‘cluster glycoside effect’).4–6 This increased

binding affinity due to multivalency has been widely exploited
to create synthetic glycomimetics, such as glycopolymers,7–12

glycoparticles13–16 and glyco-surfaces.17 However, many lectins
show highly specific binding to oligosaccharides but show
much more promiscuous binding characteristics on a mono-
and disaccharide level18 meaning a balance must be struck
between synthetic accessibility and observed specificity when
integrating these into materials.

Interactions between lectins on the host cell surface and
carbohydrate epitopes on the microbe/virus/toxin can initiate
infection. For example, ricin is a toxic lectin that presents a
potential security threat. It is a lethal, type 2 ribosome-inacti-
vating protein found in the castor bean plant Ricinus commu-
nis. It is an A–B toxin whereby its B-chain adheres to terminal
galactose residues on mammalian cell surfaces, facilitating the
delivery of the toxic A-chain into the cytosol of the cell. The
A-chain catalyses the hydrolytic cleavage of a single base from
eukaryotic ribosomal RNA, leading to a shutdown in protein
synthesis and ultimately cell death.19 Ricin is several thousand
times more toxic to man than cyanide, with the median lethal
dose (LD50) for an adult estimated to be around 22 µg per kg
of body weight (<1.8 mg for an average adult). Therefore,
rapid detection of various lectin types is required, not only for
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diagnosis but also for developing effective therapeutics.
However, glycans are inherently complex and it is observed
that lectins are capable of binding a range of related carbo-
hydrate structures to varying extents, further complicating the
challenge of assigning protein–carbohydrate interactions.20

Carbohydrate microarrays have been developed to aid in the
identification of protein–carbohydrate interactions as new
drug targets,21–24 however, they are difficult to construct and
require a protein-labelling step which results in heterogeneity,
synthetic complexity and is not a truly native assay.25 Therefore
the development of fast, label-free, easy and inexpensive
sensors for the analysis of carbohydrate–protein interactions is
highly desirable.

Glyconanoparticles, with multivalent presentation of the
glycans, are rapidly emerging as biosensors, in imaging and in
therapeutics26 and are thus a good biomimetic model of carbo-
hydrate presentation at the cell surface. Gold nanoparticles
(AuNPs) exhibit characteristic optical properties that are
dependant on surface plasmon resonance, which arises due to
collective oscillations of the conduction electrons. Mono-
disperse AuNPs between 10 and 80 nm appear red in colour,
but as the interparticle distance decreases coupling between
the dipole–dipole interactions between the plasmons of neigh-
bouring particles leads to a broadening and a shift to longer
wavelengths of the surface plasmon absorption band, resulting
in the AuNPs appearing blue. The colourimetric change can be
detected spectrophotometrically and visually27 and has been
used to probe biomolecules such as proteins,28,29 peptides,30

antibodies,31–36 and DNA37,38 without needing labelled pro-
teins. The architecture of the presentation of the glycans on
the particle surface has a huge impact on the output of these
assays. Otsuka et al. found that, for 9 nm particles bearing
lactose residues, more than 20% lactose was required for
aggregation to occur in the presence of Ricinus communis
agglutinin (RCA120).

39 Schofield et al.40 described AuNPs stabil-
ised with 9-mercapto-3,6-diaoxaoctyl-β-D-galactoside and a
thiolated triethylene glycol derivative as a dilutant to investi-
gate the effect of carbohydrate surface coverage. Interestingly,
it was found that a 70% coverage of galactose was optimum for
RCA120 detection, they also noted that a short linker between
the particle and the pendant galactose gave greater aggrega-
tion, however, the longer chain gave a more stable sensing
system. The same was carried out for Concanavalin A (Con A),
it was found that 100% carbohydrate coverage was optimum
for this protein.

The above examples show that controlling glycan presen-
tation can significantly improve specificity and affinity.
However, to discriminate between a large number of lectins
with similar specificities either complex glycans, or multi-
plexed assays are often needed. Jayawardena et al.41,42 used a
range of glycosylated nanoparticles to distinguish between a
range of plant lectins, by using linear discriminant analysis
(LDA). This method enables multiplexed data (e.g. like a
barcode) to be used as a training matrix to enable prediction
of unknown samples, and has been widely used by Rotello
et al. for non-carbohydrate interactions.43 Gibson et al. have

demonstrated that LDA can be used to distinguish between
lectins18,44 and bacteria45 with very similar binding specifici-
ties using a minimal number of sugars. However, the key
challenge in any sensor is to function across a range of
concentrations of analyte (i.e. representative of a real system)
and potentially give a concentration output, which has not
been achieved thus far for lectins. To achieve this with LDA a
larger set up of sensory inputs is required and this could be
achieved through the use of glycoAuNPs with mixed surface
densities, this would add information without increasing the
number of glycans (i.e. less synthesis required) needed for
classification.

Here, glycoAuNPs with heterogeneous coatings of just two
monosaccharides are employed to provide discrimination
between a small panel of legume lectins using linear discrimi-
nant analysis at a range of lectin concentrations. It is shown
that the additional complexity introduced by these surfaces
increases discrimination power without the need for complex
and expensive oligosaccharides. At higher lectin concentration,
lectin concentration can also be extracted as well as lectin
identity.

Results and discussion

Inspired by the glycocalyx on cell surfaces, which are hetero-
geneous, the effect of carbohydrate density on lectin–carbo-
hydrate interaction was determined. Previous studies have
shown that by lowering the carbohydrate density on a multi-
valent scaffold can increase the affinity to the target
lectin.11,14,40,46,47 GlycoAuNPs were prepared using an opti-
mised polymer coating method developed recently by Richards
et al.16 that produces particles that are stable at physiological
salt concentration but still result in fast lectin detection,
Scheme 1. First, N-hydroxyethyl acrylamide (HEA) was polymer-
ised to a degree of polymerisation (DP) of 20 using reversible
addition–fragmentation chain transfer (RAFT) polymerisation
mediated by a pentafluorophenol α-terminated RAFT agent
(Scheme 1A). Then functionalised using 2-amino-2-deoxy-
sugars. Functionalisation was confirmed by 19F NMR which
showed the complete loss of the PFP end group upon addition
of the 2-amino-2-deoxy-sugar (ESI†). The carbohydrate-functio-
nalised polymers were subsequently conjugated onto pre-
formed 60 nm AuNPs using the ω-terminal thiol from the
RAFT agent (Scheme 1B). Successful polymer coating was
demonstrated by XPS analysis (ESI†). Eleven glycoAuNP combi-
nations were prepared, ranging from 100% galactosamine
(GalNH2) to 100% mannosamine (ManNH2) in steps of 10%.
The post-polymerisation route employed means that all the
polymers have the same initial chain length distribution and
therefore reduced the variability between particle types, but
allows versatile end-group functionalisation to make libraries
of a variety of particles with differing carbohydrate densities.

A serial dilution of each lectin, concavanalin A (Con A),
soybean agglutinin (SBA) and Ricinus communis agglutinin
(RCA120 – a model for ricin) were incubated with each
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glycoAuNP type for 30 minutes and the absorbance spectra
measured. A 30 minute incubation period was deemed
optimum as previously this interaction has shown to reach
steady state after 15 minutes.16 Upon aggregation of the par-
ticles a colour change from red to blue is clearly seen (an
example 96 well plate is shown in Fig. 1A). This change is
noted in the UV-vis spectra as a decrease in absorbance at λmax

and an increase at 700 nm. Dose-dependant binding isotherms
for each lectin–glycoAuNP were constructed (Fig. 1B). It should
be noted that obtaining this level of data (33 different sets of
isotherms) using conventional methods, such as surface
plasmon resonance (SPR), isothermal titration calorimetry
(ITC) or NMR etc. would take a lot of resources and be extre-
mely time consuming, relative to the method presented here.

From plotting the Hill functions of each lectin–glycoAuNP
combination, the apparent dissociation constants (Kd app)
could be extracted (Table 1). The selectivity of each lectin
towards each monosaccharide was as to be expected and
agreed well with microarray data from the Consortium for
Functional Glycomics (CFG) database.47 For example, SBA is
N-acetylgalactosamine specific and shows the highest affinity
to galactosamine functional particles and Con A is mannose
specific and shows the highest affinity for mannosamine func-
tional particles. Fig. 1B shows that below 30% galactosamine
content (70%–100% mannosamine) no affinity for SBA is
observed. As the galactosamine content is progressively
increased above this amount the affinity increases until 70%
galactosamine content where no futher increase in affinity is
observed. For RCA120 at least 70% galactosamine incorporation
is required, whereas inclusion of galactosamine is tolerated to

a much greater extent with Con A. Control experiments with
BSA (a non-carbohydrate binding protein), and an alcohol ter-
minated-polymer coated nanoparticle with the panel of lectins
showed no colour or spectral changes confirming that this was
a specific interaction not just colloidal instability. These obser-
vations highlight that complex heterogeneous glyco-surfaces
are a powerful tool to modulate affinity and selectivity, in a
manner far more accessible than the total synthesis of
complex glycans and hence can be used as the basis of our
biosensor.

Identification of lectins

Due to lower specificities of lectins towards monosaccharides,
it is not always easy to differentiate between lectins when
using single sugars sensors, as two different lectins could give
a response to the same sugar.18 There is also the challenge of
differentiating lectins of unknown concentration, with higher
concentrations (in our experience) giving better discrimination
than lower. To address this, statistical techniques such as
linear discriminant analysis (LDA, vide infra) can be used to
classify analytes with much higher accuracy. Fig. 2 shows a
heat map, to present the binding data of the three lectins used
here to all 11 nanoparticles as a function of lectin concen-
tration. Blue represents aggregation and pink represents no
change in colour (i.e. what is seen visually with the nano-
particles). For each lectin there is a clear ‘barcode’ where the
relative response of the collection of nanoparticles is unique
to that lectin, but is itself, not easy to use as a tool and
analyte identification by comparison to this would be highly
challenging.

Scheme 1 Synthetic route to glycosylated gold nanoparticles: (A) polymerisation of N-hydroxyethyl acrylamide using a pentafluorophenyl func-
tional RAFT agent (B) post-polymerisation of pHEA with amino-sugars and immobilisation of carbohydrate terminal polymers onto preformed
60 nm gold nanoparticles.
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LDA is a powerful machine learning algorithm-based tech-
nique that can improve the accuracy of classification of
samples to their original groups. It takes an original data set
as a training matrix and then generates a model where the
variation within the groups (in this case the lectins) is mini-
mised and the variation between groups is maximised in order
to achieve the best separation between groups. This then
increases the accuracy with which unknown samples can be
classified. Production of an LDA model using only the binding

profiles of the lectins to 100% mannosamine and 100%
galactosamine particles showed significant overlap between
RCA120 and SBA which would be expected due to their similar
binding specificities (Fig. 3A), which in this format would
limit application as a sensor and justifying the need for larger
training data sets.

This model was then assessed for predictive accuracy in a
‘leave-one-out’ manner, in this case samples were left out of
the model at random in an iterative process and then the
model that was produced was used to classify the left out
samples. Despite the overlap between RCA120 and SBA, the
model was still able to correctly reassign samples to their
lectin classes (in a concentration independent manner) with
an accuracy of 68%. The greatest accuracy observed was in the
classification of Con A samples and the lowest was that of
RCA120 with less than half of the samples being correctly
classified (Fig. 3B). Furthermore, when this model was used to
classify samples based on both lectin class and concentration,
it showed a significantly reduced accuracy of 17%. The model
was generally better at predicting lectins at higher concen-
trations and failed to correctly classify any of the lectins at the
two lowest concentrations. This serves to highlight the need
for larger data sets, to discriminate between more complex
analytes, which was investigated in the next steps.

Fig. 1 Analysis of lectin–glycoAuNP interactions. (A) Photograph of 96-well plate (background removed) with 11 different glycosylated gold nano-
particles from 100% mannosamine functionality to 100% galactose functionality after incubation with a serial dilution of SBA. Dose-dependent
binding isotherms of each glycoAuNP with (B) SBA (C) RCA120 (D) Con A.

Table 1 Apparent dissociation constant (Kd app) in nM for each
glycoAuNP and lectin combination determined by Abs700

Gal : Man ratio (%) SBA RCA120 Con A

100 : 0 31.3 203.7 576.2
90 : 10 24.2 223.2 381.2
80 : 20 25.7 259.8 404.5
70 : 30 34.9 275.5 347.4
60 : 40 53.7 466.7 356.6
50 : 50 43.6 673.7 339.3
40 : 60 63.6 556.7 243.9
30 : 70 81.2 N/A 215.8
20 : 80 95.6 N/A 183.2
10 : 90 118.3 N/A 180.2
0 : 100 N/A N/A 173.4
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Fig. 2 Heatmap showing changes in binding between the lectins at varying concentrations (0–1 μM) to the particles, where blue indicates binding
and pink indicates no binding.

Fig. 3 (A) The LDA model generated to discriminate between Con A, RCA120 and SBA using binding to only 100% mannose and 100% galactose par-
ticles. In the model each point represents a sample of that lectin and the ellipse represents one standard deviation from the average. (B) Correct
reassignment percentages of each lectin.
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To improve the resolution of the assay, the binding profiles
were increased to include binding to all the heterogenous (i.e.
mixed sugar) particles and the resulting LDA model produced
gave clearly much better separation between all of the lectin
classes (Fig. 4A). The model showed an increased prediction
accuracy and was able to classify samples based on lectin class
with an accuracy of 83%. Although little improvement was
seen in the classification of Con A samples, the model showed
an increase in classification of both SBA and RCA120 samples
(Fig. 4B). Crucially, the greatest improvement was seen in the
classification of samples based on both their lectin and their
concentration. The model incorporating all binding data was
able to correctly classify both concentration and lectin with an
accuracy of 46% (Fig. 4C). Whilst the greatest discrimination
was observed at the highest lectin concentrations, as lectins
showed good resolution from each other at higher concen-
trations (Fig. 4D), this model was able to classify some
samples correctly even at the lowest lectin concentration. This
highlights the true potential of this approach in increasing dis-
criminatory power of a system without increasing the complex-
ity or number of the glycans interrogated as it allowed the

identification of lectin class and concentration with an accu-
racy of 46% and identification of lectin class (independent of
sample concentration) with an accuracy of 83% which would
be useful for point of care detection of toxins, for example.

Conclusions

In this study, we have evaluated the use of simple, ratiometric
glycosylated gold nanoparticles as low-cost biosensors for
lectins and toxin such as ricin. Gold nanoparticles with mix-
tures of 2 monosaccharides (galactosamine and mannos-
amine) were employed to generate a label-free assay, which
responds to lectin binding by a colour change of red to blue.
Generation of the mixed surfaces was combined with a power-
ful statistical analysis tool (linear discriminant analysis) to
generate a model that allowed classification of samples in a
concentration-independent way. Addition of mixed surface
binding to the model vastly improved the classification of
lectins and allowed classification of samples in a concen-
tration-independent manner with an accuracy of 83%. Taken

Fig. 4 (A) The LDA model generated to discriminate between each lectin, Con A, RCA120 and SBA. In the model each point represents a sample of
that lectin and the ellipse represents one standard deviation from the average. (B) Correct reassignment percentages of each lectin. (C) The LDA
model produced to discriminate between both lectin and concentration. Each points represents a sample of that lectin binding to all of the nano-
particles and the ellipse represents one standard deviation from the average response. (D) The LDA model produced for only those samples where
the lectin concentration was >100 nM.
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together, this work shows that glycan heterogeneity is a power-
ful, but synthetically easy, tool to increase complexity and
hence increase the discriminatory power of glycan based lectin
identification. This will find use in low cost, point of care bio-
sensors, particularly for toxin detection and identification.

Experimental section
Materials

All chemicals were used as supplied unless otherwise stated.
Acetone, dichloromethane, toluene, methanol, diethyl ether
were purchased from Fischer Scientific at laboratory grade.
Dodecane thiol (≥98%), potassium phosphate tribasic (≥98%),
carbon disulfide (99%), N-hydroxethyl acrylamide (97%), 4,4′-
azobis(4-cyanovaleric acid) (98%), mesitylene (reagent grade),
N-(3-dimethylaminopropyl)-N′-ethylcarbodiimide hydrochloride
(≥98%) were all purchased from Sigma-Aldrich. 2-Bromo-2-
methylpropionic acid (98%), 4-(dimethylamino)pyridine
(99%), pentafluorophenol (99%), triethylamine (99%) were
purchased from Acros. Microtitre plates were purchased from
Greiner Bio-one. 10 mmol HEPES buffer containing 0.05 M
NaCl, 0.1 mM CaCl2 and 0.01 mM MnCl2 (pH 7.5, HEPES) was
prepared in 200 mL of milliQ water (with a resistance >
19 mOhms). 60 nm gold nanoparticles were obtained from BBI
solutions. Concanavalin A and soybean agglutinin and
Ricinus communis agglutinin-120 were purchased from Vector Labs.

Physical and analytical methods

NMR spectra were recorded on Bruker DPX-300 and DPX-400
spectrometers for 1H NMR (400 MHz) and 13C NMR
(125 MHz). Chemical shifts are reported in ppm relative to the
deuterated solvent resonances and spectra analysed with
WIN-NMR software. GPC (DMF) was performed on a Varian
390-LC MDS system equipped with a PL-AS RT/MT auto-
sampler, a PL-gel 3 μm (50 × 7.5 mm) guard column, two PL-gel
5 μm (300 × 7.5 mm) mixed-D columns equipped with a differ-
ential refractive index, using DMF (with 1 mg per mL LiBr) as
the eluent with a flow rate of 1.0 mL min−1 at 50 °C. Narrow
molecular weight PMMA standards (200–1.0 × 106 g mol−1)
were used for calibration using a second order polynomial fit.
Infrared absorption spectra were recorded on a Bruker
VECTOR-22 FTIR spectrometer using a Golden Gate diamond
attenuated total reflection cell. Absorbance measurements
were recorded on a BioTek Synergy™ multidetection micro-
plate reader using Gen5 1.11 multiple data collection and ana-
lysis software.

Methods

End group modification of PFP-polyhydroxyethylacrylamide
using 2-amino-2-deoxy-sugars. PFP-pHEA (100 mg,
0.035 mmol), 2-amino-2-deoxy-sugar (3 mg, 5 eq.) were dis-
solved in 5 mL DMF. The reaction was stirred at 50 °C for 16 h.
The polymer was precipitated into diethyl ether from methanol
three times and dried under vacuum. IR indicated loss of
CvO stretch corresponding to the PFP ester. Mn (theoretical) =

2600 g mol−1, Mn (SEC, DMF) = 3700 g mol−1, Mw (SEC, DMF) =
4300 g mol−1, Mw/Mn (SEC, DMF) = 1.16.

Gold nanoparticle functionalisation using a carbohydrate
terminated pHEA. 100 μL of 10 mg per mL polymer solution
was added to 1 mL of 60 nm particles. Left for 30 minutes at
room temperature and centrifuged to remove any unattached
polymer and resuspended in water. Presence of polymer
coating confirmed by XPS. Particle size determined by absorb-
ance λSPR = 536 nm (60 nm) and DLS (65 nm).

Lectin induced aggregation studies by absorbance. A 0.1 mg
per mL stock solution of the lectin was made in 10 nM HEPES
buffer with 0.05 M NaCl, 0.1 mM CaCl2 and 0.01 mM MnCl2.
25 μL serial dilution was made up in the same buffer in a low
volume 96-well micro-titre plate. 25 μL of the glycoAuNP were
added to each well. After 30 minutes an absorbance spectrum
was recorded from 450 nm–700 nm with 10 nm intervals.

Linear discriminant analysis. A training matrix was prepared
with every lectin binding to every particle type in triplicate.
This was then subjected to a cross-validation step to ensure
that any model produced was not over fitted (ESI†) before
being subjected to classical linear discriminant analysis using
the ‘dapc’ function in the adegenet package (version 1.4-2)48 in
the open source statistical package R (version 3.1.3).
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