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The importance of lag time extension in
determining bacterial resistance to antibiotics†

Bing Li,a,b Yong Qiu,*a Hanchang Shia and Huabing Yin*b

It is widely appreciated that widespread antibiotic resistance has significantly reduced the utility of today’s

antibiotics. Many antibiotics now fail to cure infectious diseases, although they are classified as effective

bactericidal agents based on antibiotic susceptibility tests. Here, via kinetic growth assays, we evaluated

the effects of 12 commonly used antibiotics on the lag phase of a range of pure environmental isolates

and of sludge bacterial communities with a high diversity. We show that an extended lag phase offers bac-

teria survival advantages and promotes regrowth upon the removal of antibiotics. By utilizing both lag

phase extension and IC50, the killing efficiency of an antibiotic on a strain or a community can be easily

revealed. Interestingly, for several strains of relevance to endemic nosocomial infections (e.g. Acineto-

bacter sp. and Pseudomonas aeruginosa) and the diverse sludge communities, tetracycline and quinolone

antibiotics are most likely to be resisted via extended lag phase. This discovery is significant from a clinical

point view since underestimation of bacteria resistance can lead to the recurrence of diseases.

Introduction

In recent decades, the widespread antibiotic resistance in both
clinical settings and the natural environments has signifi-
cantly reduced the utility of today’s antibiotics.1–3 New mecha-
nisms of resistance constantly emerge, imposing significant
challenges not only for the development of new antibiotics but
also in the evaluation of antibiotic effectiveness in practice.4

Currently, minimum inhibition concentrations (MICs, i.e. the
lowest concentration of an antimicrobial that inhibits visible
growth of a microorganism) are the gold standards in deter-
mining the susceptibilities of bacteria to drugs.5–7 Although
MICs indicate the inhibition of bacterial growth, they provide
limited information about resistant mechanisms.

In growth studies, the lag phase is the delay in growth when
bacteria adapt to new environments.8 It represents the earliest

stage of the bacterial growth cycle and is inherent to bacterial
kinetics. The lag phase is believed to be involved in fighting
pathogens,9,10 and can be influenced by many factors.11

However, it is poorly understood due to the low metabolic rate
of cells10,12 and the small amounts of material available for
analyses. Consequently the understanding of antibiotic effects
on the lag phase is limited.6,7 Recently, the work from Bala-
ban’s group shed new light on the roles of the lag phase in the
bacteria’s fight against antibiotics. It was found that changes
in the lag-time in order to develop tolerance was the first
change made by bacteria in response to antibiotic stresses.13

This ‘tolerance by lag’ allows bacteria to survive under high
antibiotic concentrations, and may facilitate the subsequent
evolution of antibiotic resistance.13 Using kinetic growth
assays, Theophel et al. also showed that the duration of lag
phases could be a more meaningful indicator of dose-depen-
dent antibiotic inhibition.14 These phenomena suggest that
the lag phase is a key stage in developing strategies to resist
killing by antibiotics, therefore an in-depth understanding of
how antimicrobial agents affect the lag phase is essential for
reliable evaluation of bacterial resistance.

Here, we developed a new approach, employing both lag
time (λ) and the maximum specific growth rate (μ) to evaluate
bacterial response from the onset of antibiotic stresses. Using
this method, we evaluated the effects of 12 commonly used
antibiotics on isolates of several key environmental strains and
on bacterial communities extracted from activated sludge from
different wastewater treatment plants (WWTPs). The sludge
bacterial communities represent elegant real-world systems
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with high diversity.15 These bacterial communities are consist-
ently under various antibiotic stresses16,17 and their compo-
sition varies with their geographical origin.18–23

To allow quantitative evaluation of the effects of antibiotics
on lag phase, we introduce a term – “lag time extension” (LE)
(LE = λc/λ0, where λc and λ0 are the lag times at the antibiotic
concentration C and 0 respectively). Kinetic growth assays were
employed to evaluate both λ and μ in a dose-dependent
manner. Both parameters can be derived from growth curves
using well-established mathematical models.24–26 By screening
the dynamic responses of 8 individual strains and 2 bacterial
communities from different municipal WWTPs to the chosen
antibiotics, the roles of extended lag phase in against anti-
biotic stress are demonstrated. The combination of both LE
and μ not only enables reliable evaluation of the efficacies of
antibiotics but also provides insights into possible mecha-
nisms for a microorganism in developing tolerance and resist-
ance to a drug.

Experimental section
Bacterial strains

Pure strains. Eight strains were purchased from several
Culture Collection centres (Table 1). They were selected due to
both their abundance in the environment and in activated
sludge, and their roles in carbon oxidation, nitrogen and phos-
phorous cycles (Table 1). Escherichia coli (ATCC 25922) was
chosen as the control strain to validate the experimental
reliability in comparison to the published data by the Clinical
and Laboratory Standard Institute.

Bacterial communities extracted from activated sludge. The
activated sludge samples were taken from two WWTPs, one in
Beijing (denoted as BJ-WWTPs) and another in Wuxi (denoted
as WX-WWTPs), representing WWTPs in the North and the
South of China respectively. The BJ-WWTPs apply the anaero-
bic–anoxic–oxic (AAO) process, whereas the WX-WWTPs use an
Orbal oxidation ditch. The activated sludge samples were first
mashed in a high-speed tissue mill (Bilon JJ-2, Shanghai Bilon
Company, China) by intermittent crushing for 5 min in every
10 min within one hour. The resultant mixture was kept in a

refrigerator at 4 °C for sedimentation. After 12 hours, the
supernatant was collected and filtered through a quantitative
filter paper, giving rise to a mixed bacterial community in the
filtrate (denoted as the bacterial community). Following that,
200 μL of the filtrate was added into a flask containing 20 mL
of synthesized wastewater,27 which was then incubated at
30 °C with a shaking speed of 150 rpm. After overnight
culture, bacterial suspensions were used for antibiotic
exposure experiments.

Antibiotics

12 commonly used antibiotics were selected for this study
(Table 2). They belong to 5 classes of antibiotics, namely
β-lactam, tetracycline, aminocyclitol, quinolones and macro-
lide. All the antibiotics were of >98% purity. The stock solu-
tions of each antibiotic were prepared in either deionized
water to a concentration of 1 g L−1 or in methanol to a concen-
tration of 10 g L−1,28 filtered thought a porous membrane with
0.2 μm pore size, and then stored at −20 °C. A series of concen-
trations (in the range of 0 to 100 mg L−1) were prepared by
diluting the stock solutions in broth.

Kinetic growth assays

A computerized incubator (Bioscreen C; Lab Systems, Helsinki,
Finland) was used to obtain the growth curves over a time
course.29–31 To enhance the screening throughput, plates that
contain 200 wells were used, allowing 200 assays to be carried
out simultaneously in a single experiment. Optical density
(OD600) was measured for evaluating bacterial density in sus-
pension. Prior to each experiment, bacteria were cultured in
flasks to the exponential phase (OD600 = 0.6–0.8) in appropri-
ate culture broths (ESI, Table S1†). 5 μl of bacterial suspension
and 295 μl of the culture broth either with or without anti-
biotics were added into each well. A medium shaking speed
was used for all the experiments, but temperature was adjusted
to suit different strains (ESI, Table S1†). The optical densities
of samples were recorded on-line every 15 minutes for a period
of 24 hours. For each condition, an average value from three
replicas was given. Unless denoted, error bars are standard
deviations.

Table 1 Bacterial strains used in this study

Bacterial strains Class name Sourcea Function

Escherichia coli γ-Proteobacteria ATCC 25922 Control strain
Pseudomonas aeruginosa γ-Proteobacteria CICC 20546 Carbon oxidation
Pseudomonas putida γ-Proteobacteria CICC 20541 Carbon oxidation
Acinetobacter sp. γ-Proteobacteria ACCC 11850 Carbon oxidation
Alcaligenes faecalis β-Proteobacteria ATCC 31529 Carbon oxidation
Corynebacterium glutamicum Actinobacteria ACCC 10202 Carbon oxidation
Comamonas denitifier β-Proteobacteria ATCC 700936 Denitrification
Microlunatus phosphovorus Actinobacteria ATCC 700054 Phosphorous removal

a Abbreviations: ATCC – American Type Culture Collection; ACCC – Agricultural Culture Collection of China; CICC – China Center of Industrial
Culture Collection.
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Models for growth and inhibition

Identification of a suitable model for fitting the growth curves
was carried out at first (ESI, Fig. S-1†). An excellent agreement
was found between a curve described by eqn (1)32 (the Gom-
pertz model) and the experimental data.

ln
N
N0

¼ A exp � exp
μe
A
ðλ� tÞ þ 1

h in o
ð1Þ

In eqn (1), N is the cell number at time t, and N0 is that at
the beginning (i.e. t = 0). OD600 values indirectly reflect cell
number5 and were used instead of absolute cell number N.
μ is the maximum specific growth rate (i.e. the specific growth
rate at the exponential phase). A is the maximum cell number
(or maximum OD600 value) of a cell suspension during the
experiment, and λ is the duration of the lag phase. All model
parameter estimates were obtained using the gRofit package in
the R software package.33

The inhibition rate (IR) is defined by eqn (2):

IR ¼ ðμ0 � μCÞ=μ0 ¼ 1� μC=μ0 ð2Þ
where μC is the specific growth rate at the concentration C of a
drug, and μ0 is that of a control without the drug. IC50 is the
concentration of a drug that causes 50% inhibition (i.e. IR =
0.5) and MIC refers to the minimum concentration of an anti-
biotic that gives total inhibition (i.e. IR > 0.999). Both para-
meters were derived from the inhibitory curves of IR as a
function of antibiotic concentrations (ESI, Fig. S-2†).

Lag time extension

In order to quantitatively evaluate the effects of antibiotics on
lag phase, we introduced a parameter, termed “lag time exten-
sion” (LE) that is defined in eqn (3),

LE ¼ λc=λ0 ð3Þ

where λc is the lag time of a microorganism at the concen-
tration C of a drug, and λ0 is that at a control without the drug.
In the scenario where bacterial growth is completely inhibited,
λc is regarded as infinite.

Results and discussion
Effects of antibiotics on the lag phase of pure strains

Eight pure strains as listed in Table 1 were tested under
various concentrations of the selected antibiotics. More than
1500 growth curves were obtained and all fitted using Gom-
pertz model to derive the maximum specific growth rates (μ)
and lag time (λ) (ESI, Table S2†). It was found that changes of
growth rate and lag time were not only dependent on antibiotic
doses but also on the combination of antibiotics and the bac-
terial strains. Several trends were observed and four represen-
tative trends can be illustrated using Pseudomonas putida as an
example (Fig. 1A). These include:

(1) No substantial variations in μ and λ at high antibiotic
concentrations (e.g. >100 mg L−1). This is seen, for example, in
Fig. 1A-i, where Pseudomonas putida was treated with
ampicillin.

(2) A substantial reduction in μ and increase in λ at high
antibiotic concentrations. For example, exposure to clarithro-
mycin at 100 mg L−1 led to >75% reduction in its maximum
specific growth rate and 1.9 times extension in its lag time
(Fig. 1A-ii).

(3) Strong inhibition (low values of μ) at a low antibiotic
concentration (e.g. <1 mg L−1), and prior to reaching the lethal
dose, an increase in antibiotic concentration resulting in a
rapid decrease in μ but no obvious changes in λ. This is the
case where the bacteria were treated with ciprofloxacin
(Fig. 1A-iii).

Table 2 Information for the selected antibiotics

Name Abbrev CAS Formula Sourcea Class Mode of action38

Amoxicillin AMO 26787-78-0 C16H19N3O5S·3H2O a β-Lactam Inhibit the development of bacterial cell wall by
interfering with transpeptidase enzymes
responsible for the formation of the cross linkage
between peptidoglycan strands.

Ampicillin
sodium salt

AMP 69-52-3 C16H19N3O4SNa b

Tetracycline
hydrochloride

TET 64-75-5 C22H24N2O8 a Tetracycline Bind reversibly to bacterial 30 S ribosomes and
inhibit protein synthesis.

Chlorotetracycline CHL 64-72-2 C22H23ClN2O8 a
Kanamycin sulfate KAN 25398-94-0 C18H38N4O11H2SO4 b Aminoglucoside Inhibits by binding irreversibly to receptors on

both the 30 S and 50 S subunits of bacterial
ribosomes, resulting in mal-reading of the
mRNA code

Norfloxacin NOR 70458-96-7 C16H18FN3O3 a Quinolones Inhibit the bacterial enzyme DNA gyrase that is
responsible for the supercoiling of DNA, so that
the DNA can twist in a number of chromosomal
domains and seal around an RNA core.

Enrofloxacin ENR 93106-60-6 C19H22FN3O3 a
Ofloxacin OFL 82419-36-1 C18H20FN3O4 a
Ciprofloxacin CIP 85721-33-1 C17H18FN3O3 a
Erythromycin ERY 114-0-8 C37H67NO13 b Macrolide Interfering with protein synthesis by reversibly

binding to the 50 S subunit of the ribosome.Lincomycin LIN 154-21-2 C18H34N2O6S HCl c
Clarithromycin CLA 81103-11-9 C38H69NO13 d

a a: Sigma Aldrich Chemie GmbH, b: Inalco spa milano Italy, c: Enzo life sciences, d: 3B scientific corporation.
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(4) Similar to (3); however here, an increasing antibiotic
concentration results in a rapid decrease in μ but substantial
lengthening of λ. This is the case where the bacteria were
treated with tetracycline (Fig. 1A-iv).

According to the measured MIC values, Pseudomonas putida
is resistant to both β-lactam and macrolide antibiotics, but
sensitive to both tetracycline and quinolones antibiotics when
used according to the general guidelines.34 In contrast, the
control strain Escherichia coli showed only trend (c) (Fig. 1B)

and low MIC values (<5 mg L−1) for all the chosen antibiotics,
indicating that it is susceptible to them all. It is generally
believed that the lag phase protects bacteria from antibiotics
via reduced cell growth. The results from Pseudomonas putida
and the other pure strains (Table S2†) show that extension of
lag phase was frequently employed by strains to overcome elev-
ated antibiotic stress.

This latter phenomenon highlights the potential pitfalls
when either IC50 or MIC values are used as a sole indicator in

Fig. 1 (A) The growth of Pseudomonas putida under the effect of antibiotics by (i) AMP, (ii) CLA, (iii) CIP and (iv) TET. (B) The growth of E. coli under
the effect of antibiotics by (i) AMP, (ii) CLA, (iii) CIP and (iv) TET.
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conventional antibiotic susceptibility tests. In the scenario
that the lag phase is extended beyond the defined assay period
(e.g. 20 hours), the absence of visible growth could be con-
sidered as complete inhibition. This scenario may account for
the discrepancies observed in the previously reported MIC
values of a drug for the same microorganism.14,35 Similarly, in
the case that several microorganisms have comparable MIC
values to a drug, those with substantially extended lag time
would be classified as the same resistant as those without.
Both scenarios can lead to underestimation of the bacterial
resistance. From a clinical point view, this can result in insuffi-
cient treatment and a subsequent recurrence of the disease.

Effects of antibiotics on the lag phase of bacterial
communities

Activated sludge contains abundant bacterial species. To
understand how the bacterial communities in activated sludge
respond to different classes of antibiotics, and whether the
composition of a community affects the response, two bac-
terial communities of drastically different origins (i.e. from
BJ-WWTPs and WX-WWTPs) were evaluated in the same
manner as the pure strains.

As shown in Table S3 (ESI†), no significant difference was
observed between the bacterial communities. In contrast to
pure strains, both bacterial communities showed strong resist-
ance to all antibiotics and could still grow at 100 mg L−1 con-
centration of each antibiotic. In addition, the changes in μ and
λ of the bacterial communities seem to fall into two dominant
trends. These are illustrated using the bacterial community
from a BJ-WWTP as an example (Fig. 2). One trend, as in the
case of ampicillin (Fig. 2a), shows that μ and λ remain constant
throughout the whole range (i.e. 0 to 100 mg L−1). This suggests

that the communities can effectively eliminate β-lactam anti-
biotics, possibly by a well-known hydrolysis route.36,37

Another trend is shown in the case of clarithromycin, cipro-
floxacin and tetracycline hydrochloride (Fig. 2b–d): with the
increase in the antibiotic concentration, μ reduced rapidly
(denoted as the reduction-phase) and then leveled-off (denoted
as the steady-growth phase) beyond ∼20 mg L−1. This suggests
that even high doses of potent antibiotics have limited inhibi-
tory effects on the bacterial communities. However, the lag
time consistently extended with increased antibiotic concen-
trations (Fig. 2b–d). In particular, a proportional extension of
lag time was observed during the steady-growth phase, for
example, from 115 min at 10 mg L−1 to 566 min at 100 mg L−1

for tetracycline hydrochloride (Fig. 2d). To confirm that the
observed extension did not solely result from the death of
some stains in the community, additional single cell tracking
analyses were carried out using the WX-WWTP community
and tetracycline hydrochloride, as an example (see protocol in
the ESI†). In the absence of tetracycline hydrochloride, almost
all the cells developed obvious colonies after 4 hours in
culture (ESI, Fig. S-3†). In contrast, hardly any cell growth was
observed when exposed to 100 mg L−1 tetracycline hydro-
chloride. After 10 hours in culture, obvious growth of some
cells was observed. This phenomenon agrees well with the
extension of lag time as measured by OD methods (i.e.
566 min). Taken together, these clearly show that the extension
of lag phase is an important route to tolerate severe antibiotic
stress by a bacterial community.

To further understand whether there is a correlation
between the extension of lag time and the classes of anti-
biotics, average extension values of the bacterial communities
were plotted as a function of antibiotic concentrations (Fig. 3).

Fig. 2 The growth dynamics of extracted bacterial community from activated sludge under the effect of selected antibiotics, AMP, CLA, CIP and
TET.
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Apart from β-lactam antibiotics, the lag time extended with the
increase in antibiotic concentrations. Although different
classes of antibiotics function via different inhibition mecha-
nisms,38 at the same antibiotic doses, the magnitude of the
extension is in the following order: tetracyclines (TET and
CHL) > quinolones (NOR, ENR, OFL and CIP) > aminocyclitol
(KAN) > macrolides (ERY, LIN and CLA) > β-lactam antibiotics
(AMP, AMO). It should be noted that both bacterial community
comes from completely different origins and therefore consists
of substantially different but broad spectrum of bacterial
species. Thus the order may be applied more generically to a
wide range of bacteria communities in the environment. Since
substantially extended lag phase offers great survival advan-
tages, the order indicates that the tetracyclines and quinolones
antibiotics are mostly likely to lose their efficiency on many of
environmental bacteria.

Predict bacteria resistance via the combination of MIC and
extended lag time

The phenomena observed so far clearly show that an extended
lag phase is closely associated with the potential of a strain or
a community to develop tolerance and persistence against an
antibiotic. Therefore, the combination of both MIC (or IC50)
and the lag time extension would provide invaluable infor-
mation not only on bacterial resistance but also on the killing
efficiency of a drug. Since the extension of lag time is dose
dependent, we selected extension rate of lag time at IC50 (i.e.
LEIC50

= λIC50
/λ0) as a measure for a given bacterial–antibiotic

combination.
The IC50 and LEIC50

of the combinations between eight pure
strains and two bacterial communities and twelve antibiotics

are shown in Fig. 4 and Table S4 (ESI†). Within this IC50 –

LEIC50
co-ordinate system (Fig. 4), four distinct clusters were

identified based on two boundary conditions, namely LEIC50
=

2 and IC50 = 10 mg L−1, both of which are sufficient to indicate
the occurrence of lag time extension and the resistance of a
strain to an antibiotic. These four clusters are detailed below:

(1) Cluster 1 – where LEIC50
< 2 and IC50 < 10 mg L−1;

suggesting an efficient inhibition and killing of an antibiotic
on a strain.

(2) Cluster 2 – where LEIC50
> 2 and IC50 < 10 mg L−1;

suggesting an inhibitory effect of a drug on a strain; however the
strain has high possibility to survive the antibiotic treatment.

(3) Cluster 3 – where 10 mg L−1 ≤ IC50 < 100 mg L−1; indi-
cating that a drug has negligible inhibition on a strain.

(4) Cluster 4 – where IC50 ≥ 100 mg L−1; indicating strong
resistance of a strain to an antibiotic.

It is apparent that the majority of pure strains fall within
cluster 1, indicating their susceptibility to most antibiotics.
This was further confirmed by the MIC values (i.e. <1 mg L−1

for all chosen antibiotics) (ESI, Table S4†). In contrast, all the
bacterial communities from the WWTPs fall within cluster 4,
showing their strong resistance to all antibiotics – the
phenomenon frequently observed in sludge bacterial commu-
nities where antibiotic resistant genes are often present.39,40

Via this two-dimensional mapping, bacterial strains that have
high potential to develop tolerance and persistence to certain
antibiotics are easily singled out, as those shown in cluster 2
(e.g. Fig. 2, Pseudomonas aeruginosa to ciprofloxacin, Pseudo-
monas putida to chlorotetracycline). In particular, Pseudomonas
aeruginosa, showed substantially high LEIC50

to enrofloxacin
and ciprofloxacin, indicating that the two antibiotics can’t kill

Fig. 3 The correlation between extension of lag time (λ − λ0) of activated sludge bacteria and different antibiotics. Each data is an average of
different activated sludge samples from four WWTPs. λ and λ0 are lag time under antibiotics and broth (as a control) respectively.
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Pseudomonas aeruginosa effectively. However, evaluated by
MICs alone, ciprofloxacin was classified as a highly efficient
bactericidal agent against Pseudomonas aeruginosa.41

Taken together, it is clear that both the concentration of
antibiotics and exposure time should be taken into account
when evaluating bacterial resistance to an antimicrobial agent.
Quantification of the duration of lag phase facilitates the
understanding of interactions between bacteria with anti-
biotics, allowing prediction of bacterial response at a certain
level of antibiotic exposure.

Extended lag time promotes bacteria regrowth after removal of
antibiotics

To understand to what extent an extended lag time can protect
bacteria from antibiotics, some bacteria–antibiotic combi-
nations in cluster 1 and 2 in Fig. 4 were selected for regrowth

tests. Three pairs that have similar IC50 but different extension
periods were chosen, namely Pseudomonas aeruginosa – cipro-
floxacin (i.e. LEIC50

= 30), and Pseudomonas putida – ciprofloxa-
cin (i.e. LEIC50

= 1), and Pseudomonas putida – tetracycline (i.e.
LEIC50

= 6).
As shown in Fig. 5, in comparison to the growth in broth

prior to antibiotic treatments (i.e. under 10 × MIC for
24 hours), all the bacteria treated by antibiotics showed
delayed regrowth in fresh broth, a phenomenon known as the
post-antibiotic effect.35 Interestingly, bacteria that endured a
longer lag time showed a shorter lag phase for their regrowth
in broth. In particular, Pseudomonas aeruginosa after
ciprofloxacin treatment reached the same maximum cell mass
as those prior to the treatment within 24 hours. In contrast,
regrowth was not observed during 24 hours for Pseudomonas
putida after ciprofloxacin treatment. However, for Pseudomonas

Fig. 4 Four clusters can be identified: (1) where λIC50
/λ0 < 2 and IC50 < 10 mg L−1 (bottom left); (2) where λIC50

/λ0 > 2 and IC50 < 10 mg L−1 (upper
left); (3) where 10 mg L−1 ≤ IC50 < 100 mg L−1 (mid-right); (4) where IC50 ≥ 100 mg L−1 (right). For interest of clarity, each antibiotic is color-coded.

Fig. 5 The regrowth of bacteria treated by CIP and TET for 24 h under broth: (a) Pseudomonas putida; (b) Pseudomonas aeruginosa. Figures show
the average data of three measurements, and standard deviations were all less than 5%.
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putida after tetracycline treatment regrowth occurred after
10 hours. These results confirm that the extension of lag time
is an effective means to protect bacteria from antibiotic stress.
Furthermore, it also shows that the longer the lag time the
more bacteria can survive and regrow when suitable conditions
arise.

Conclusion

Minimum inhibitory concentrations have been used as gold
standards to indicate the resistance of a microorganism to
antimicrobial agents. However, their predicative values have
been challenged by the wide spread of antibiotic resistance in
the environment.

In this study, we have illustrated a new approach to monitor
the response of bacteria from the onset of antibiotic stress,
allowing both quantitative and mechanistic evaluation of the
resistance of bacteria. By screening the time-course growth
rates of 8 key environmental strains and 2 different sludge bac-
terial communities in response to 12 common antibiotics, we
show that an extension of the lag time provides effective pro-
tection for the bacteria and promotes the regrowth of bacteria
upon the removal of antibiotics.

With this approach, it is found that two classes of anti-
biotics, namely tetracycline and quinolone antibiotics, tended
to be resisted by the majority of environmental strains via the
extension of lag time. Furthermore, several strains of close
relevance to endemic nosocomial infections,42 including
Acinetobacter sp. and Pseudomonas aeruginosa, have shown sub-
stantially extended lag times to various antibiotics that are nor-
mally considered to be highly potent. This discovery is
significant from a clinical point view. Evaluation of bacterial
resistance without consideration of extension of lag time can
lead to biased clinic decisions resulting in failed treatments.
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