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A proteomic approach for the rapid, multi-informative
and reliable identification of blood+}

E. Patel,1? P. Cicatiello,® L. Deininger,® M. R. Clench,? G. Marino,” P. Giardina,”
G. Langenburg,© A. West,® P. Marshall, V. Sears® and S. Francese*?

Blood evidence is frequently encountered at the scene of violent crimes and can provide valuable intelli-
gence in the forensic investigation of serious offences. Because many of the current enhancement
methods used by crime scene investigators are presumptive, the visualisation of blood is not always
reliable nor does it bear additional information. In the work presented here, two methods employing a
shotgun bottom up proteomic approach for the detection of blood are reported; the developed protocols
employ both an in solution digestion method and a recently proposed procedure involving immobilization
of trypsin on hydrophobin Vmh2 coated MALDI sample plate. The methods are complementary as whilst
one yields more identifiable proteins (as biomolecular signatures), the other is extremely rapid (5 minutes).
Additionally, data demonstrate the opportunity to discriminate blood provenance even when two
different blood sources are present in a mixture. This approach is also suitable for old bloodstains which
had been previously chemically enhanced, as experiments conducted on a 9-year-old bloodstain de-
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Introduction

The detection of blood in stains or fingermarks at crime
scenes can be an invaluable piece of evidence in the investi-
gation of violent crimes. Crime Scene Investigators (CSI) have
several enhancement classes of techniques available to visual-
ize the presence of blood including optical, spectroscopic and
chemical development methods.' In addition to limitations in
common to all of the three classes of methods, chemical tech-
niques are actually only presumptive methods thus occasion-
ally leading to false positives. These methods have been
extensively reviewed by Sears' and all were reported to exhibit
a lack of specificity; even haem-reactive compounds, the most
specific class of blood reagents, may give false positives as
horseradish, leather and other extracts from plant material®
show the same peroxidase activity exhibited by haem in
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posited on a ceramic tile demonstrate.

human blood. For this reason, we have previously reported a
rapid and specific Matrix Assisted Laser Desorption Ionisation
mass spectrometric method to detect blood in stains and map
this biofluid in bloodied fingermarks.® With this method, the
mass-to-charge ratio (m/z) of both haem and intact Haemo-
globin were employed to reliably confirm the presence of
blood. The method was applied to a real crime scene stain
proving successful in less than five minutes of preparation and
acquisition time. Since blood provenance is also a forensic
question of interest and as the m/z of haem would not permit
the determination of the blood source, the m/z of intact Hae-
moglobin chains were exploited to distinguish between
equine, human and bovine blood, based on the small differ-
ences in the protein amino acid sequence.’ However, although
the detection of blood at a molecular level provides much
higher specificity and reliability, intact protein analysis by
MALDI mass spectrometry suffers from mass resolution and
mass accuracy issues which may become significant, especially
if blood is mixed with other biofluids or protein sources.

The use of a bottom up proteomic approach increases the
reliability of protein identification because the mass accuracy
that can be achieved on the protein-deriving peptides is much
higher (a few parts per million). This approach would also
enable the detection of additional blood specific proteins,
besides Haemoglobin, allowing specificity and confidence
in the determination of the blood presence to be further
enhanced. The literature already contains many reports
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attempting to map the proteome of plasma and serum.
Different authors concur on the extreme complexity of these
matrices with plasma being particularly challenging due to the
wide® range of concentrations of the proteins present (span-
ning 9 orders of magnitude) and the huge heterogeneity due
to a variety of protein glycoisoforms. In 2010, Liumbruno
et al.” extensively reviewed the literature covering the mapping
of the blood proteome with all the techniques employed up to
that point in time and the corresponding number of obtained
protein identifications.” The majority of the methods
employed separation techniques (gel based or liquid chrom-
atography) hyphenated with mass spectrometry, in both on-
line and off-line approaches, employing Electrospray and
MALDI respectively as mass spectrometry techniques. Amongst
the techniques used, the combination of 2D gel electrophor-
esis and mass spectrometry was reported to be able to identify
289 plasma proteins in 2002;* cation exchange coupled to
capillary gradient reverse phase liquid chromatography com-
bined to mass spectrometry of digested peptides contributed
to the identification of 490 blood serum proteins.® These
numbers have further increased when depletion and sample
enrichment methods were preliminarily employed. In a 2005
collaborative study coordinated by HUPO involving 35 labora-
tories, up to 3020 plasma/serum proteins were identified using
a range of hyphenated techniques;’ since the start of the
HUPO project the number of identified proteins has rapidly
increased to populate a database (http:/www.plasmaproteome-
database.org/) of 10546 proteins.® None of the approaches
reported in the literature so far has involved the direct appli-
cation of MALDI MS on enzymatically digested blood. This is
understandable as in all of the previous reports the aim was
to map the entirety of the blood proteome for medical and
diagnostic purposes. However, in a forensic context, the detec-
tion of a handful of blood specific proteins via the more
reliable bottom up proteomic approach using MALDI MS
would be more than appropriate. Furthermore, in forensic
science, provided that reliability of the evidence is not compro-
mised, speed is paramount to investigations; the hyphenated
methods reported can be very labour intensive and time con-
suming, especially since some of them have employed prelimi-
nary purification to remove the most abundant proteins (e.g.
albumin and Haemoglobin). For these reasons, in our labora-
tories, we have optimized a method for the digestion of blood-
stains followed by direct MALDI MS analysis; the method
couples high mass accuracy, within the peptide mass finger-
printing stage, as well as further confirmatory analysis by
Tandem Mass Spectrometry. A classical in-solution digestion
protocol was optimized for blood stains by investigating the
optimal concentration of trypsin to employ as well as the
optimal digestion time. The performance of this method was
then critically compared to that of a second method employing
Vmh2 hydrophobin to preliminarily coat the MALDI target
plate. This protein belongs to the class I hydrophobins and it
has been demonstrated to homogeneously self-assemble on
hydrophilic or hydrophobic surfaces’ and to subsequently
strongly bind proteins, including enzymes in their active form
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such as trypsin.'® The use of Vmh2 has been recently proposed
as a lab-on-plate approach as a simple and effective desalting
method enabling decrease in the proteolysis time and increase
of the peptides signal-to-noise (S/N) for tryptic digestion."*

It was found that both methods could be successfully used
to: (i) reliably detect the presence of blood in stains, (ii) deter-
mine the blood provenance even when two different blood
sources were mixed and (iii) to identify the presence of this
biofluid in a 9-year-old sample that had been pre-treated with
acid black 1, a protein dye used for the unspecific
enhancement/visualisation of blood. As it is discussed in this
manuscript, the present data will no doubt impact on the
effectiveness of forensic practice by providing much more
reliable and informative evidence, thus empowering both
investigations (of cold cases too) and judicial debates.

Experimental

Materials

ALUGRAMSIL G/UV,5, aluminium sheets, acetonitrile (ACN),
Ammonium Bicarbonate (AmBic), trifluoroacetic acid (TFA),
trypsin from bovine pancreas and alpha-cyano 4 hydroxy-
cinnamic acid (CHCA) were obtained from Sigma-Aldrich
(Dorset, UK). Trypsin Gold was purchased from Promega,
Southampton (UK) whereas Rapigest™ SF was purchased from
Waters (Elstree, UK). Defibrinated horse blood was obtained
from FisherScientific (USA). Unistik® 3 Neonatal & Laboratory
single use lancet were obtained from Owen Mumford (Oxford,
UK). Vmh2 ethanolic solution was prepared as previously
described."

Instrumentation and data acquisition

Calibration over a 600-2800 Da mass range was performed
prior to analysis using phosphorous red. MALDI IMS/MS data
were acquired in positive ion mode from 600 to 3000 Da at a
mass resolution of 10 000 FWHM using a SYNAPT G2™ HDMS
system (Waters Corporation, Manchester, UK) operating with a
1 KHz Nd:YAG laser. Full scan mass spectra were manually
acquired over 45 seconds; all experiments were carried out in
duplicate. The laser energy was set to 250 arbitrary units on
the instrument; with laser energy increased to 270 arbitrary
units for MALDI IMS-MS/MS experiments. MS/MS analyses
were conducted in situ on the most intense peaks. Fragmenta-
tion was carried out in the transfer region of the instrument,
post ion mobility separation, therefore product ions retain the
same drift time as the precursor ion. Collision energies
ranging between 60-80 eV were used to obtain the best signal
to noise ratio for product ions.

Methods

Preparation and digestion of blood samples and enzymatic
digestions. For the in solution experiments, 10 pl of horse and
human blood were spread individually (2 cm?) onto a clean

This journal is © The Royal Society of Chemistry 2016


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5an02016f

Open Access Article. Published on 24 November 2015. Downloaded on 10/22/2025 2:34:41 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Analyst

white ceramic tile. The tile was covered and placed into the
environmental chamber for 5 hours at 25 °C and 60% humi-
dity. Blood was then extracted from the ceramic tile by pipetting
70 ul of 50% ACN solution onto the dried blood regions. The
extract was transferred to an eppendorf and 50/50 ACN/H,O
was added up to 1 mL in volume; the eppendorf was sub-
sequently placed in an ultrasonic bath for 10 min at 45 kHz
frequency. Forty pl of 40 mM AmBic (pH 8) was added to 10 pl
of the extracts from horse and human blood. Nine pl of 20 pg
ml™" Trypsin Gold including 0.1% Rapigest™ SF were sub-
sequently added and were allowed to digest for 1 hour at 37 °C
and 5% CO,. Proteolysis was stopped by the addition of 2 pl
5% aqueous trifluoroacetic acid (TFA,q). 0.5 pl of each in solu-
tion digest were spotted onto a welled target plate with 0.5 pl
10 mg mL~' CHCA (50/50 ACN/0.5% TFA,q containing 4.8 ul
aniline) matrix solution spotted on top.

For enzymatic digestions performed using the lab-on-plate
approach, 10 pl of defibrinated horse blood was spread across
pre-cut 2 cm? ALUGRAMSIL G/UV,s, aluminium sheets pre-
treated as previously described.'® These were sealed in petri
dishes with parafilm and placed in an environmental chamber
for 5 hours at 25 °C and 60% relative humidity. Under full
ethical approval (HWB-BRERG23-13-14), human blood was
obtained from the tip of the index finger using a Unistik® 3
Neonatal & Laboratory single use lancet UK) and blood was
then prepared as described for horse blood. The MALDI plates
were preliminarily functionalized with Vmh2 hydrophobin and
subsequently immobilized with trypsin from bovine pancreas
as previously described.'® The aluminium sheets with dried
blood were carefully rolled into a glass vial, covered with 1 mL
50% ACN solution and ultra-sonicated for 10 min. One pl of
sample was spotted on Vmh2-adsorbed enzyme wells (MALDI
plate) contained immobilized trypsin. The on plate digest reac-
tion was carried out for 5 min at room temperature. The reac-
tion was stopped by the addition of 0.5 pl 10 mg mL™" CHCA
matrix solution. After mass spectrometric analysis the Vmh2
coating was removed by washing the MALDI plate with 10%
TFA (and gently polishing the surface) followed by washing
with 100% acetonitrile, water, and 100% acetone.

Blood provenance determination. Ten pl of horse blood was
mixed with 10 pl of human blood. The mixture was digested
using the in solution and lab-on-plate protocols reported
above. Samples were submitted to MALDI MS analysis upon
completion of the proteolysis.

Analysis of a 9-year-old bloodstain. Blood extracts were
obtained from a ceramic tile exhibiting a 9-year-old bloody
handprint, previously enhanced with acid black 1, by rubbing
a swab previously wetted with 70/30 ACN/H,O over the sample
region. The swab tip was cut and sonicated for 10 min in 1 mL
70/30 ACN/H,0 to release the proteins. Twenty pl of the super-
natant were dried under a stream of nitrogen and re-dissolved
in 20 pl of 50 mM AmBic (pH 8) under sonication (10 min).
The blood extracts were subsequent digested in solution or on
the hydrophobin coated plate as previously described.

Data analysis. Mass spectra obtained from MassLynx™
(Waters Corporation, Manchester, UK) were either converted
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into txt files and imported into mMass,">"®
multiplatform mass spectrometry software, or processed
directly within MassLynx™ by means of peak smoothing, base-
line correction and peak centroiding. Expasy (http:/www.
expasy.org/) was employed to generate in silico peptide lists of
known proteins present in horse and human blood. In silico
peptide lists were generated by selecting “Equus caballus” or
“Homo sapiens” as taxonomy for the two blood types investi-
gated. Mass lists were generated by selecting “monoisotopic”,
“MH"™, “trypsin higher specificity”, “2 missed cleavages” and
“methionine oxidation”. Peptide lists were imported into
mMass (an open source multiplatform mass spectrometry soft-
ware) to create an “in house” and local reference library. Mass
lists including known matrix (or matrix cluster, adduct) and
trypsin autolysis m/z were used to preliminarily assign peaks
and therefore exclude them from subsequent peptide assign-
ment. Peak assignments in mMass were performed automati-
cally using the “compound search” tool and the in house
created library by setting the tolerance at 10 ppm with a
“max charge” of 1 and ticking the box “monoisotopic”. Prior to peak
assignment search, spectra were smoothed and de-isotoped.
Peak assignment was not accepted if the S/N was lower than
3:1. Spectral processing consisted of smoothing, baseline cor-
rection and lock mass based mass correction. Prior to perform-
ing an MS/MS Mascot (Matrix Science, London, UK) search,
spectra were processed using MassLynx™ with the MaxEnt 3
algorithm to deisotope and enhance the S/N.'” Queries were
searched against the “Swiss-Prot” database with parent and
fragment ion tolerances set to 50 ppm and 0.1 Da respectively.
Two missed cleavages were also selected.

an open source

Results and discussion

Although detection of blood at crime scenes or on evidential
items is often a crucial piece of intelligence in the investi-
gation of criminal offences, current forensic visualization
methods do not offer the desired level of specificity.® This may
result in incomplete or even in missing crucial information. In
this paper the development of a rapid bottom up proteomic
method offering blood-specific signatures is reported. The
developed methodology employs a recently proposed pro-
cedure involving immobilization of trypsin on hydrophobin
Vmh2 coated MALDI plates,'® (“lab-on-plate” approach).
Although other methods for immobilizing trypsin for enzy-
matic digestion have been reported we have found the use of
Vmh2 to be very straightforward and have optimized the
reported protocols for the detection and identification of
blood. MALDI MS profiles of blood were acquired from both in
solution digest and the lab-on plate digest for comparative pur-
poses. In order to optimise both methodologies, defibrinated
horse blood was preliminarily employed. Both optimized
methods yielded blood specific peptide signatures including
those from myoglobin and the two chains of Haemoglobin
with a mass accuracy lower than 8 ppm (Table 1). In general,
relevant peptide intensities are greater within the 1 hour in
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Table 1 Peptide mass fingerprinting of equine blood from in solution and lab on plate digests

In solution relative Lab-on-plate relative

Horse proteins Peptide m/z Sequence error (ppm) error (ppm)
Myoglobin 2232.0865 120HPGDFGADAQGAMTKALELF R, 4 — —2.3296
Haemoglobin beta 2326.2037 oAAVLALWDKVNEEEVGGEALGR;, —5.7174 —0.2579
1999.9218 41FFDSFGDLSNPGAVMGNPK 54 —6.0002 6.3002
1930.0293 s KVLHSFGEGVHHLDNLKg, —5.4403 -7.9791
1801.9343 67VLHSFGEGVHHLDNLKg, —7.5474 —
1449.7961 133VVAGVANALAHKYH, 4 ~7.3803 ~0.6207
1426.6849 121 DFTPELQASYQK, 3, —4.2756 —
1358.6546 18VNEEEVGGEALGR;, —6.0353 —1.6928
1274.7255 31 LLVVYPWTQR —7.8448 -1.0198
1265.8303 10sLLGNVLVVVLAR, ;¢ —7.3469 —
Haemoglobin alpha 2043.0042 13AAWSKVGGHAGEFGAEALER;, -3.3773 —0.0978
1499.7237 1sVGGHAGEFGAEALER, —7.4680 -1.1335
1833.8918 22 TYFPHFDLSHGSAQVK5, —7.1432 —0.0545

solution digest; however the majority of peptides are still
present employing the 5 minutes lab-on-plate digestion with
generally a much better mass accuracy (Fig. 1A, B and Table 1).
Since high throughput is always one of the “desirables” for any
new forensic protocol, the method employing Vmh?2 is highly
relevant since it has been observed that the proteolysis is most
efficient if the sample is allowed to digest for no longer than
5 minutes. The optimized methodologies were subsequently
applied to whole human blood. The digestion of whole human
blood using the classic in solution method resulted in a
number of tentative protein identifications. In addition to pep-
tides resulting from Haemglobin a («Hb) and f (BHb), a
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N
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number of other proteins were detected including complement
C3, apolipoprotein A-1, alpha-1-antitrypsin, haemopexin, sero-
transferrin and alpha-2-macroglobulin (Table 2). As seen in
Table 2, the number of peptides originating from oHb and
fHb is marginally greater in the in solution digest compared
to the immobilized digest. However it is apparent that there
are peptides from proteins such as myoglobin, haemopexin
and serotransferrin detected only via the on lab-on-plate
digest. Interestingly, using both methods, it was possible to
tentatively assign multiple peptides to Erythrocyte membrane
protein band (EPB) 3 and 4.2. The significance of this is that
EPB 3 is specific to human blood. In the case of whole human

Human
TOF MS LD+
7.39e6
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Fig.1 MALDI MS spectrum of digested blood. Panels 1A and 1B show the
plate approach respectively. Panels 1C and 1D show the MALDI spectra
approach respectively.
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MALDI spectra of equine blood digested in solution and via the lab-on-
of whole human blood digested in solution and via the lab-on-plate
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Table 2 Peptide mass fingerprinting of whole human blood from in solution and lab-on-plate digests
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In solution
relative

Lab-on-plate
relative

Human proteins Peptide m/z Sequence error (ppm) error (ppm)
Haemoglobin beta 767.4886 61VKAHGKKg —4.5603 —10.8144
952.5098 >VHLTPEEKy —4.5143 —5.5642
1274.7255 3 LLVVYPWTQR,, —1.8827 —4.0793
1314.6648 10VNVDEVGGEALGR3, —4.3357 0.1521
1378.7001 122EFTPPVQAAYQK 5, 2.8287 —10.0094
1449.7961 13aVVAGVANALAHKYH, ,, -3.5177 -3.1728
1669.8907 6sVLGAFSDGLAHLDNLKg; —5.0901 —10.7192
1866.0119 ,VHLTPEEKSAVTALWGK; g —1.1253 —
2058.9477 1 FFESFGDLSTPDAVMGNPKg, —2.7198 —-2.3312
2228.1669 10SAVTALWGKVNVDEVGGEAL GR3, —2.2439 —2.4683
2529.2190 42GTFATLSELHCDKLHVDPEN FR, o5 —0.0790 —8.1052
Haemoglobin alpha 1071.5543 33MFLSFPTTK 4 -1.7731 —1.6798
1087.6258 9sLRVDPVNFK; ¢ —-1.6549 —-0.5516
1171.6681 ,VLSPADKTNVK,, —6.9132 —
1529.7342 1sVGAHAGEYGAEALER, —-4.5105 —3.7915
1833.8918 2 TYFPHFDLSHGSAQVK5, —2.3447 —-3.7624
2043.0042 13AAWGKVGAHAGEYGAFALER;, —5.9226 -3.1815
2341.1836 12 TYFPHFDLSHGSAQVKGHGKKj, —2.6055 —2.5200
2582.2707 18VGAHAGEYGAEALERMFLSFPTTK -1.1230 —6.5059
2996.4894 63 VADALTNAVAHVDDMPNALSALSDLHAHK o -3.5374 -3.1370
Myoglobin 1685.8679 135ALELFRKDMASNYK, 4¢ — —5.1012
Complement C3 887.4581 542NEQVEIRg¢ —3.0423 -3.2677
1334.7096 672SVQLTEKRMDKg g, 8.1665 —6.6681
1087.6357 1502EALKLEEKK ;600 —10.7572 —9.6539
Apolipoprotein A-1 1215.6215 220ATEHLSTLSEK 34 —-4.1131 —
1230.7092 220QGLLPVLESFK,5, —0.9750 —2.1938
1723.9449 141QKVEPLRAELQEGAR 55 —3.7704 —4.0024
1815.8507 18DSGRDYVSQFEGSALGKg, 7.2693 7.8200
1833.8918 1 TYFPHFDLSHGSAQVK;, —2.3447 —3.7624
1908.9847 15sLHELQEKLSPLGEEMR, ;5 —4.0859 —
Alpha-1-antitrypsin 1318.6758 248 LGMFNIQHCKK 55 —0.3033 5.4600
Haemopexin 965.4430 103VDGALCMEK 1, —5.9040 9.4257
1060.5785 42ELISERWKg, — —1.8857
1070.5741 »14GEVPPRYPR,,, — 2.6154
Serotransferrin 1068.5506 61KASYLDCIRgq — 9.7328
1855.8683 531EGYYGYTGAFRCLVEK; 46 —-0.1616 —0.6465
EPB 4.2 949.4771 15.EKMEREK 460 5.0554 8.3203
1048.5455 151VEKEKMER 54 —0.1907 5.2453
1079.5745 20sWSQPVHVAR,; 3 —9.4481 —
1113.4881 125CEDITQNYK 456 1.7063 —
1258.7001 146EVLERVEKEK 55 —2.3834 1.9861
EPB 3 949.4771 28sAAATLMSER o, 5.0554 8.3203
1328.6852 -31SVTHANALTVMGK 43 — —2.7847
Alpha 2-Macroglobulin 1334.7215 350LSFVKVDSHFR 34, —0.7492 —

blood, the overall relevant peptides intensities were lower
within the in solution digest (Fig. 1C) in comparison to the on
plate digest (Fig. 1D); this is probably due to the analyses
being performed on whole human blood as opposed to a defi-
brinated sample (less complex) as in the case of the equine
blood.

A close evaluation of the data on its performance, in com-
parison with an optimized in solution digestion of the
minimum duration of 1 hour (Fig. 1A and B), shows that the
lab-on-plate protocol enabled the detection of the same
number of blood proteins but less blood protein-derived pep-
tides (10/13 of the peptides from myoglobin, aHb and pHb
observed in in solution digest). However the slightly fewer
number of peptides detected is outweighed by the consider-
ably reduced digestion time for the lab-on-plate approach.

This journal is © The Royal Society of Chemistry 2016

As can be seen in Table 2 there are instances in which only
one peptide could be putatively assigned to a protein (i.e. in
the case of myoglobin, alpha-1-antitrypsin and alpha-2-macro-
globulin). This is not standard practice in proteomics whereby,
for increased identification reliability, at least two peptides
should be assigned to a single protein. In the view of these
authors, this is not an issue preventing to claim the presence
of blood; based on the experiments carried out, we suggest the
presence of two or more peptides from oaHb and fHb and
another blood protein (i.e. myoglobin or serotransferrin) to be
the proposed minimum for the confident identification of
blood.

Encouraged by these data, the focus was moved onto inves-
tigating the opportunity to provide information of the prove-
nance of blood. These authors have already reported
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preliminary data on blood provenance by MALDI-MS;® an
intact protein detection approach that was employed that,
whilst successful in the instances investigated, may suffer
from mass resolution and mass accuracy issues, thus reducing
the level of reliability of the scientific evidence provided. At
least one criminal case has been widely reported in the UK
(Regina vs. Mrs Susan May),'® in which determining with cer-
tainty the provenance of the blood detected would have
resulted in a better informed or speedier outcome. The impor-
tance of determining blood provenance is further testified by a
case from the USA reported 1996. Here the blood of the dog
shot together with his owners aided the conviction of two men
of murder; in this case it took a DNA test (in the first trial ever
in the country to use animal DNA as evidence) to prove the
presence of canine blood on the jacket of one of the mur-
derers.'® Already the comparison of the peptides obtained for
equine and human blood (Fig. 1A, D and Tables 1, 2) demon-
strate this as a feasible approach to determine blood prove-
nance with a much higher specificity than previously shown.?
To further demonstrate robustness of the method, the lab-on-
plate approach was applied to a sample made from mixing
both equine and human blood.

Fig. 2 shows the peptide mass spectral profiles obtained
from in solution (Fig. 2A) and lab-on-plate (Fig. 2B) digests of
a mixture of human and equine blood. Although overall signal
intensity is higher within the in solution digest spectrum,
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Fig. 2 MALDI MS spectrum of mixed digested blood. Panels A and B
show the mass spectral profile of whole human blood mixed with
defibrinated horse blood using the in solution and the lab-on-plate
approach respectively.
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both digestion protocols enabled the detection of blood
peptide markers specific to each species and putatively
assigned peptides are shown in Table S1 (ESIT). A number of
tryptic peptides originating from aHb and fHb were present.
However, due to the extensive sequence homology between the
two species, it was not possible to solely use the m/z of these
protein derived peptides or even the confirmed presence of
BHD tryptic peptide at m/z 1274.7260 via MALDI-IMS-MS/MS
analysis of the peptide ion (Fig. 3A) as markers for species
differentiation. However, subjected to MS/MS analysis, the
tryptic peptide at m/z 1499.7237 was identified as equine oaHb
with Mascot score of 99 (Fig. 3B). Furthermore, the tryptic
peptide m/z 1815.9024 originating from myoglobin was also
detected in the same spectra. This peptide is specific to the
equine protein sequence thus more robustly confirming the
presence of blood from equine provenance. Additionally, as
expected from the in silico digestions, the detection of the
human EPB 4.2 peptides, at m/z 949.4771 and 1113.4881
(present in the 1 hour in solution digest and via the rapid lab-
on-plate hydrolysis), as well as that of serotransferrin at m/z
1529.7529, indicated the further presence of human blood
thus enabling to claim the sample to be of mixed provenance,
as well as indicating the individual species contributing to the
blood sample under investigation. The authors would like to
note that although there is a significant sequence homology
between EPB 4.2 and a-2-macroglobulin within humans and
chimpanzees, the indication of EPB 4.2 to be specific to
human within this discussion is only with respect to equine

1: TOF MSMS 1274.72LD+
1274.7260.12865

L-L-V-V-Y-P-W-T-Q-R

b, 1273,6555|
2 Y, b, v* N Y7
*
5 70308 6 1266566
6273337 | | 7904152 8334134 8863014 1007.4086 11205211 12307223,

1% 200 300 400 500 500 700 500 550 000 1100 200

Yy
i | et ke g

1: TOF MSMS 1499.72LD+
82.7288. 37604

V-G-G-H-A-G-E-F-G-A-E-L-E-R

13256525

s

8
8024851

13436643

Ve Vi Yo | 1307133
Y, y. b, b, b,
7 10124702 10835292 44966177
454075 853.4307 [g6 000m /
Loddofidinld

08
ess 4305
et AU (M A b
; e e T e I Rt T TR M R

y. b, v
175 ‘?wu o 4 u7?577
Faor A

A

Fig. 3 MALDI-IMS-MS/MS of tryptic peptides m/z 1274 (3A) and m/z
1499.7237 (3B), identified via Mascot as pHb and aHb respectively. Both
b and y ions are annotated with y* representing the y-NH3z fragment ion.
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blood. Both the in solution and the lab-on-plate approaches
were successful in determining the double source of blood,
and the considerably shorter digestion time within the lab-on-
plate makes this the preferred method once again.

Finally, a method that is applicable not only to fresh blood-
stains but also to much older ones would be highly desirable
in the review of cold cases. Therefore the Vmh2 lab-on-plate
method was tested, in comparison with the classic optimized
in solution protocol, on a 9-year-old bloody handprint which
was deposited on a ceramic tile and stored at room tempera-
ture (Fig. 4A(i and ii)). Spectra acquired from the analysis of
the extract digested in solution (Fig. 4B) and via on plate
hydrolysis (Fig. 4C) are shown, with corresponding expanded
mass regions in the m/z range 1000-2000. A number of rele-
vant tryptic peptides are present including oaHb peptides m/z
1087.6258, 1529.7342 and PHb peptides m/z 1274.7255 and
1449.7961 to name a few (Table S2}). Data obtained indicated
that blood presence confirmation was possible with the in
solution approach, though both EBP 4.2 (indicating that the
blood may be of human origin) and Complement C3 were

View Article Online
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identified by one peptide only each. The lab-on-plate approach
did not allow the detection of the Complement C3 protein
(which is not highly specific to blood in any case) and also
enabled the detection only one EBP 4.2 peptide. The authors
suggest that in these cases, the lab-on-plate approach should
still be used first for its rapidity. However for confirmatory pur-
poses, as a tryptic digestion generates numerous peptides
resulting in complex mixtures, often with overlapping signals,
cross validation and identification using LC/MS/MS may be
beneficial.

In addition to the ability to detect blood reliably and from
such an old sample, it is very important to note that the blood-
ied handprint was preliminarily, 9 years ago, enhanced with
acid black 1, a commonly used protein stain for blood
enhancement. Successful blood confirmation in this instance
demonstrates feasibility of the protocol to be integrated in the
forensic workflow for blood enhancement/visualisation. The
data obtained suggest that the acid black 1 does not interfere
with the analyses, rather, that it may slow down degradation of
the blood proteins over time.
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Fig. 4 Confirmation of the presence of blood from a 9-year-old forensically treated sample. Panels A and Ai show the bloodied handprint and
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Panels B and C show the mass spectral profiles of the extracts digested in solution and via the lab-on-plate approach respectively.
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Conclusions

The shotgun method illustrated in this report will have a sig-
nificant impact on forensic practice as well as on the overall
criminal justice system by generating more robust and infor-
mative evidence. This is due to the high specificity of the
method against current presumptive tests prone to generate
false positives. Furthermore the recovery of simultaneous
information on blood provenance will both empower and
speed up investigations as well as strengthening judicial
debates. The study also crucially highlights compatibility with
the necessary and prior application of blood enhancement
techniques in combination with the analysis of very old blood
samples, thus opening up new forensic opportunities for the
review of cold cases. The lab-on-plate approach was shown to
additionally offer rapid results (5 minutes only proteolysis
time) which, in an operational forensic context, is a highly
desirable feature. These studies are currently being expanded
in our laboratories and include the reliable mapping of blood
signatures on fingermark ridges using MALDI MS Imaging in
order to link the suspect (through the biometric information)
to the crime. Finally, validation has also been planned
whereby the requirement for the minimum number of blood
peptide signatures for both blood detection and blood prove-
nance determination will be provided through a blind study
in collaboration with the Minnesota Bureau of Criminal
Apprehension.
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