Issue 32, 2024

Enhancing the catalytic properties of silicalite-1 through ammonium fluoride modification for waste glycerol acetalization

Abstract

Silicalite-1 is a silica with a zeolitic MFI (Mobil Five) structure devoid of noticeable catalytically active (e.g., acid) sites. In this study, we present its modification with NH4F solutions of varying concentrations (0.5–3 M), which generates efficient and selective acid sites for the acetalization of glycerol with acetone towards solketal (2,2-dimethyl-1,3-dioxolane-4-methanol). The creation of acid sites is attributed to the partial elimination of external silanol groups in silicalite-1 and the generation of some framework defects, resulting also in increased porosity. The characterization of the modified materials was performed using various techniques, i.e. X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed desorption of ammonia (TPD-NH3), and Fourier-transform infrared spectroscopy (FTIR). The results demonstrate that the newly created acidic sites of Brønsted and Lewis nature exhibit significantly higher acidic strength and enhanced accessibility for reagents compared to the pristine one, resulting in exceptional glycerol conversion in the acetalization of glycerol with acetone and notable selectivity towards solketal. Glycerol conversion over modified silicalite-1 reached nearly 70%, with the selectivity to solketal exceeding 98% at 70° C after 1 hour of reaction time, using a mixture of glycerol and acetone in a 1 : 1 ratio. The proposed reaction mechanism takes into account a combination of Brønsted and Lewis acid sites. The obtained results indicated that Brønsted acid sites, especially those of higher strength, are the most beneficial in this process. The remarkable catalytic performance and stability of modified silicalite-1 make it a promising candidate for potential industrial applications in the utilization of waste glycerol formed in the biofuel industry.

Graphical abstract: Enhancing the catalytic properties of silicalite-1 through ammonium fluoride modification for waste glycerol acetalization

Supplementary files

Article information

Article type
Paper
Submitted
24 May 2024
Accepted
14 Jul 2024
First published
24 Jul 2024

Dalton Trans., 2024,53, 13537-13549

Enhancing the catalytic properties of silicalite-1 through ammonium fluoride modification for waste glycerol acetalization

J. Kowalska-Kuś, E. Janiszewska, K. Góra-Marek, A. Jankowska and A. Held, Dalton Trans., 2024, 53, 13537 DOI: 10.1039/D4DT01523A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements