Issue 9, 2025

Synthesis of fluorinated biomimetic hydrophobic gas diffusion cathodes for catalytic hydrogen peroxide

Abstract

The electrochemical synthesis of dispersed hydrogen peroxide (H2O2) in acidic solutions is of significant interest for the electro-Fenton (EF) process. However, the development of robust and cost-effective catalysts for the selective two-electron oxygen reduction reaction (2e-ORR) remains a challenge. In this study, inspired by the hydrophobic surface of natural rose petals and mimicking their microstructure, we utilized the high adhesion property of polytetrafluoroethylene (PTFE) to bind highly conductive acetylene carbon black (ACET) onto the surface of graphite felt wire mesh. This formed a low-surface-energy, fluorine-doped hydrophobic cathode with a rough and defect-rich surface, optimized for gas diffusion. The cathode demonstrated an impressive H2O2 generation rate of 46.21 mg h−1 cm−2, meeting the requirements for the EF process. In continuous operation, the electrode exhibited exceptional catalytic performance and stability. This can be attributed to the variations in electron distribution density induced by F/C doping and surface defects, where high-density electron domains attract oxygen molecules at the interfaces of hydrated hydrogen ion (H3O+) clusters, promoting the formation of the *OOH intermediate. The hydrophobicity of the interfaces weakly bind to *OOH, favouring desorption to enhance H2O2 generation and prevent the side reaction of hydrogen evolution on the wetted electrode surface and further reduction of generated H2O2 to H2O. This study provides a new strategy for designing efficient and stable cathodes to guide future catalyst discovery.

Graphical abstract: Synthesis of fluorinated biomimetic hydrophobic gas diffusion cathodes for catalytic hydrogen peroxide

Supplementary files

Article information

Article type
Paper
Submitted
29 Dec 2024
Accepted
10 Mar 2025
First published
27 Mar 2025

Catal. Sci. Technol., 2025,15, 2888-2897

Synthesis of fluorinated biomimetic hydrophobic gas diffusion cathodes for catalytic hydrogen peroxide

Q. Yu, Z. Liu and J. Li, Catal. Sci. Technol., 2025, 15, 2888 DOI: 10.1039/D4CY01558D

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements