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Opto-electronics of PbS quantum dot and narrow
bandgap polymer blendsf

Simon Kahmann,®® Andrea Mura,® Loredana Protesescu,® Maksym V. Kovalenko,
Christoph J. Brabec® and Maria A. Loi*®

Here we report on the interaction between the narrow bandgap polymer [2,6-(4,4-bis(2-ethylhexyl)-4H-
cyclopenta-[2,1-b;3,4-bldithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) and lead sulphide
(PbS) colloidal quantum dots (CQDs) upon photoexcitation. We show that the presence of both materials
in a blend leads to a significant reduction of photoluminescence (PL) lifetime of the polymer. This
observation is attributed, supported by transient absorption (TA) data, to an efficient electron transfer
towards the QDs for excitons generated on the polymer. Furthermore, the ligand capping the QD surface
exhibits a great impact on the dynamics of the PL, with the long-chain oleic acid (OA) largely suppressing
any kind of interaction. By means of external quantum efficiency (EQE) measurements we find evidence
that both components give rise to a contribution to the photocurrent, making this an interesting blend for
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1 Introduction

The so-called third generation of photovoltaic technologies aims
at a reduction of manufacturing costs and material consump-
tion, while maintaining high efficiencies. A plethora of new
materials and concepts is currently investigated in order to make
future products more efficient and less expensive. Amongst them
organic photovoltaics (OPV) especially have taken a leap from the
proof of concept of a heterojunction by Tang in 1986" up to
10.6% power conversion efficiency (PCE) in 2013.” The relatively
low permittivities of materials involved in organic solar cells
demand an electron donor (D) and acceptor (A) couple to be
applied in order to achieve an efficient photocurrent generation
through separation of electron and holes. The most widely
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future applications in hybrid organic—inorganic solar cells.

spread D-A combination consists of a fullerene derivative as
acceptor and a polymer as donor, forming a type-II heterojunction.
Since most acceptors tend to exhibit low extinction coefficients, it is
common that just the donor component gives rise to a significant
solar light harvesting in these blends.

Colloidal quantum dot solar cells (QDSC) are a new class of
devices that has been attracting interest for several years now.
Here the active layer consists of a film of quantum dots - most
commonly cadmium- or lead chalcogenides.> ® The absorption
profile of these QDs can be tuned due to the quantum size
effect.’ Lead sulphide is of particular interest in QDSCs since
its rather narrow bulk bandgap (0.41 eV) allows for harvesting
photons in the near infrared region (IR) of the solar spectrum -
a spectral region that is beyond reach for many other materials.

In order to fabricate working QDSCs the long insulating
ligands (commonly oleic acid (OA)) that stabilise the QDs in
solution, need to be exchanged for shorter entities, which
establish a more efficient interconnection between the particles
(without losing their confined nature). The exchange is often
carried out as a solid state treatment involving thiol-containing short
molecules such as 1,4-benzenedithiol (BDT), 1,2-ethanedithiol (EDT),
or 3-mercaptopropionic acid (MPA) acting as bidentate linkers.

By intermixing both a narrow bandgap polymer with good
performance in OPVs and QDs, one might overcome drawbacks
of the two respective concepts.'®® Namely, the rather poor
absorption of the acceptor species in OPV may be improved by
using lead chalcogenides. From the QDSC point of view, the
addition of the polymer into the inorganic matrix might be able
to suppress the formation of cracks upon exchanging the
ligand, hence offering the possibility for large-scale compatible
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manufacturing techniques. Furthermore, the confinement of
the QDs leads to the formation of a ‘“valley” in the absorption
profile which might be closed efficiently by adding a second
absorbing component to the active layer.*®

Here we report on the well-known narrow bandgap polymer
PCPDTBT"” blended with PbS QDs and investigate their inter-
action upon photoexcitation using steady state and transient
spectroscopy. To our knowledge this is the first investigation
using this polymer with PbS QDs. We also include a variation of
the ligand capping the QDs in order to elucidate the impact of
these molecules on the system.

Our findings reveal that an efficient electron transfer from
the polymer occurs upon exciton generation on the PCPDTBT,
but only if the short ligand BDT is applied. In the same way
evidence for a hole transfer can be found albeit less pronounced.
No favourable interaction between the materials seems to occur
when employing the longer oleic acid ligand.

2 Experimental

PbS QDs were synthesised analogously to previous reports.'® In
short, a lead precursor PBAc,-H,O is dissolved in octadecene
(ODE) and OA and heated to 145 °C. The sulphur precursor is
also dissolved in ODE and rapidly injected into the lead-solution
to evoke a burst nucleation event. After cooling the mixture down
4 washings are carried out and the QDs are eventually dissolved
in chloroform. All employed QDs stem from the same synthesis
batch. PCPDTBT was purchased from Konarka Technologies
GmbH and used as received. All samples were cast under nitrogen
atmosphere from solutions of 10 mg mL™" concentration. Films
comprising OA capped QDs were drop cast on a hot plate (approx.
60 °C) and both pristine PbS_BDT and polymer comprising films
were fabricated via spin-coating in a layer-by-layer fashion. For the
ligand exchange the cast layer was immersed in a solution of BDT
in acetonitrile (2.85 mg mL ") for 30 s. The film was spun dry at
4000 rpm for 60 s and the next layer deposited. A complete removal
of OA ligands for this method has previously been confirmed.'*°
QD comprising films were annealed at 140 °C analogously
to QDSCs.

All samples for spectroscopy were cast on quartz substrates
and sealed using a cover glass and epoxy glue in order to avoid
oxygen exposure. Absorption spectra were recorded with a
Shimadzu 3600 UV-vis-NIR spectrometer. For PL investigations
the samples were excited at 400 nm by the second harmonic of
a mode-locked Ti:sapphire (Mira 900) laser delivering pulses of
150 fs width, with a repetition rate of approximately 76 MHz.
Steady-state spectra were recorded with an InGaAs detector
from Andor. Time-resolved traces were taken with a Hamamatsu
streak camera working in synchroscan mode for fast decaying
samples. An optical pulse selector was used to vary the repetition
rate of the exciting pulses for OA capped QDs and the streak
camera was driven in the single sweep mode.

Transient absorption spectra were recorded using a super
continuum laser source (SuperK Extreme, NKT Photonics) that
provided both the pump and probe at a MHz repetition rate.
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The pulse duration was approximately 1 ps and the pump power
was always kept below 4 pJ em ™2 in order to avoid, thermal effects,
sample degradation and non-linear higher order processes. The
signals were measured with an auto-balanced photoreceiver
(Nirvana 2017, New Focus) and amplified with a Lock-In amplifier
(SR 830 DSP, Standford Research Systems).”* All measurements
were carried out at room temperature.

Solar cell active layers were deposited as explained above,
with a thickness of approximately 150 nm on pre-patterned
indium tin oxide (ITO) substrates. The devices were annealed at
140 °C for 10 min before thermal evaporation of 1 nm LiF and
100 nm Al as top contact. Device areas were defined by the
overlap of the Al and ITO electrodes to be 16 mm?®. External
quantum efficiencies were measured near short circuit condi-
tions using a 250 W quartz tungsten halogen lamp (6334NS,
Newport) with lamp housing (67009, Newport). Monochromatic
light was generated using narrow band pass filter (Thorlabs)
with a full width at half maximum (FWHM) of 10 &+ 2 nm from
400 to 1300 nm and a FWHM of 12 + 2.4 nm from 1300 to
1400 nm. The light intensity was determined by calibrated
photodiodes (PD300 and PD300IR, Ophir Optics).

3 Results

The molecular structure of PCPDTBT and the energy levels of
the materials are depicted in Fig. 1.>** It is crucial to note that
these levels are determined collectively, i.e. for the bulk poly-
mer and an ensemble of dissolved OA capped QDs. The values
may differ on a local level and the determination for the QDs
involves a particular amount of uncertainty. Furthermore,
whereas the bandgap is generally not affected by the ligands,
it has been shown that they may induce a significant shift of the
HOMO and LUMO energies.**

Nevertheless, when assuming the here depicted levels, one
would expect a type-II heterojunction to form, albeit with a
relatively small energy offset between the two HOMO levels. As
depicted, there are three processes of interest which might give
rise to efficient photocurrent generation. In the following it will
be convenient to distinguish between photons absorbed by the
polymer and those that are absorbed by the QDs. Both events

-4.2 ev OA
(Jv;w_::k ————————— either oH

=

-5.3 ev \_/
pcPDTBT N PbS

Fig. 1 Energy levels and schemes of the employed materials. The inter-
actions discussed here, i.e. electron, hole and energy transfer are depicted
in blue. The two different ligands on the PbS surface, OA and BDT are
shown on the right hand side.
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offer the opportunity for a charge carrier transfer towards the other
material, i.e. an electron transfer from the polymer towards the QDs
and a hole transfer vice versa. Moreover, photons absorbed by the
polymer may lead to a Forster-like energy transfer since the polymer
PL and QD absorption overlap (vide infra).

Absorption spectroscopy

As a first step we investigated the absorption spectra of the pristine
materials and blends. Their spectra are depicted in Fig. S1.f The
QDs dissolved in chloroform exhibit a first transition located at
1022 nm and an increasing absorption at shorter wavelengths, as it
is common for these quantum-confined particles.” Using sizing
curves previously determined, the QD diameter can be estimated to
roughly 3.5 nm.>® For a film of QDs on glass (still capped with oleic
acid, PbS_OA) the excitonic peak shifts to 1076 nm which is
generally attributed to a change in the permittivity of the effective
medium surrounding the QDs (our QD film exhibit a ¢ between
21-24,° polymers typically lie between two and three). Upon
exchanging the ligands from OA to the shorter bidentate linker
BDT, the excitonic peak further shifts to the red. The decrease in
energy is a consequence of both an improved coupling of the QDs,
ie. a delocalisation of the carriers’ wavefunctions and a further
increase in the permittivity of the effective medium surrounding
the QDs. Furthermore, the width of the excitonic peak significantly
increases when comparing the BDT capped film with the
OA-capped QDs in solution, which we attribute to the increased
degree of disorder in the former.

The pristine polymer displays two absorption bands, a weaker
one at short wavelengths (419 nm) and a more pronounced band
ranging from roughly 600 to 840 nm. The latter coincides with
the absorption valley of BDT capped QDs. Blending the two
components (1:9 wt%; polymer: QDs) thus offers an increased
absorbance in this area.

Photoluminescence

Steady state PL spectra of both pristine and blended films are
depicted in Fig. 2. The polymer (a) exhibits a rather broad
emission with two distinct peaks (at 886 and 974 nm), analogously
to the absorption in Fig. S1.t For the pristine PbS BDT film
(d) there is a rather symmetric emission with a peak at 1205 nm,
i.e. on the low energy side of the polymer maximum emission, but
coinciding with its low energy tail. The blend of these two
components (b) exhibits a superposition of the emission of the
pristine materials; a pronounced contribution of PbS on the low
energy side and a smaller, but still visible, emission of PCPDTBT
around 885 nm. Notably, the QD emission is blue-shifted by
approximately 40 nm with the peak located at 1163 nm. This might
be ascribed to the reduced permittivity of the effective medium
surrounding the QDs.

A similar behaviour is observed for the spectra of the sample
involving OA capped PbS. The blue-shift for the QD emission
takes place from 1237 to 1179 nm upon blending with the
polymer (c). Strikingly, the pristine PbS_OA film (e) offers a
significantly narrower emission than the other samples - an entity
generally associated with the disorder in a QD film (vide supra).
We thus conclude that the degree of disorder induced by blending

This journal is © The Royal Society of Chemistry 2015
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Fig. 2 Steady state PL spectra of pristine PCPDTBT (a), PCPDTBT:
PbS_BDT (b), PCPDTBT:PbS_OA (c), PbS_BDT (d), PbS_OA (e) normalised
to the respective maxima. There are two distinct spectral regions of which
one is characterised by the polymer emission (I) and the other mainly by
the QD PL (ll).

1300 1400

with the polymer and/or by cross-linking with BDT becomes larger
than for an as-cast film of pristine PbS_OA.

In order to further elucidate the interaction between the two
components, we measured the time resolved photoluminescence
(TRPL) of the films above. In order to quantitatively determine the
lifetimes and examine possible differences, we investigated the
respective traces in the windows (I) and (II) indicated in Fig. 2.
These data are depicted in Fig. 3 and 4. Fitting the decay of the
pristine polymer’s emission (Fig. 3, red) with a monoexponential
function y = Ay-e™"" reveals a lifetime of approximately 7, = 118 ps,
which is in good accordance with previous investigations involving
this material.*® The blended sample with OA capped PbS (dark
blue) offers a similar lifetime for the polymer (128 ps; a summary
is given in Table 1). However, upon blending the polymer with QDs
that are capped with the short BDT ligand (light blue), the lifetime

10 '~\_ PCPDTBT (1
> f ()
E T=118 ps ]
) PCPDTBT:PbS_OA 1
€107
-
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Fig. 3 TRPL in the polymer region (I) of a pristine PCPDTBT film and
blends with PbS QDs. The pristine PbS_OA containg films can be fitted
with a monoexponential decay whereas a biexponential fit is necessary for
the BDT comprising blend.
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Fig. 4 TRPL (Il) of films comprising BDT (a) and OA (b) capped PbS. In
order to suppress possible contributions from the polymer only mono-
exponential fits in the QD regime are considered.

is significantly reduced and must be fitted with a biexponential
function y = A;-e™* + 4,-e™". By doing so, we obtain two fast
components of approximately t; = 5 and 1, = 75 ps of which the
former approaches the resolution of our set-up in this configuration
(about 4 ps). Upon exposing pristine PCPDTBT to BDT we do not
observe any changes in lifetime (Fig. S2+) and thus conclude that the
quenching arises from the presence of the QDs.

The QD emission is depicted in Fig. 4. The lifetimes are
longer than for the polymer. Here the difference between the
pristine and the blended film is less pronounced.?’ Fitting the
decays of pristine PbS_BDT and of the PCPDTBT containing
blend reveals lifetimes of 236 and 196 ps, respectively. Note that
the initial decay of the QDs coincides with the polymer tail (vide
supra), we therefore do not consider the early decay in order to
suppress the polymer contribution (hence only one lifetime is
given). The trend suggests a slight lifetime quenching for the
blend. Conclusively, an interaction between the components
appear present, albeit rather weak.

The OA capped QDs display significantly longer lifetimes
than their BDT capped counterparts. This is a well-known
phenomenon® mostly attributed to either a reduced surface
passivation or the improved carrier delocalisation when cross-linked;
both phenomena reduce the probability of radiative decay. For a

Table 1 Summary of the PL data for the pristine films and blends in the
polymer (I) and QD () spectral region. The emission of the QD region
marked with “—" it was not possible to disentangle the initial QD decay
from the polymer signal

Emission Sample Amax/DM Ty T,
Polymer Pristine 886 118 ps
Blend_OA 891 128 ps
Blend_BDT 885 5.0 ps 75.3 ps
QDs Pristine_ OA 1237 45.7 ns 275 ns
Blend_OA 1179 — 474 ns
Pristine_ BDT 1205 — 236 ps
Blend_BDT 1163 — 196 ps
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better comparison of the pristine and blended film, both spectra
are plotted on a ps-range in Fig. 4(b). Curiously, the lifetime of
the blended film exceeds the one of the neat QDs. This is in stark
contrast to the observations for the short ligands above. Again, this
might be evoked by both change in morphology and permittivity.

Transient absorption

Transient absorption (TA) can offer valuable insight into carrier
dynamics. It may especially allow to determine which species of
carrier is present in a system.

From literature we know that hole polarons, singlet- and
triplet-excitons can be tracked on PCPDTBT - all give rise to signals
in a wavelength region around 1200 nm.”*>*" We thus tracked the
dynamics of pristine PCPDTBT, a blend with PbS_OA and one with
PbS_BDT when pumping at 700 nm, Ze. in the maximum of the
polymer absorption, and probing at 1200 nm. For samples of
pristine PbS - both with OA and BDT - we could not observe any
signal which is possibly due to the low excitation power we are
limited to. We can thus assume that all signals discussed below
derive from the polymer.

The decay for pristine PCPDTBT depicted in Fig. 5 (red) can
be fitted with a monoexponential function and a lifetime of
roughly 90 ps. This value is of the magnitude of the lifetime
observed for the PL and suggests the measured signal to be the
photo-induced absorption (PIA) originating from the polymer
singlet exciton (S; — S,). Results from literature support this
assumption.>®*** The same behaviour is obtained for the blend
comprising OA capped QDs. Given the striking resemblance
between these two samples (and their PL; Table 1) we conclude
that the probed signal here is also the polymer singlet exciton.

For the BDT capped PbS blended with PCPDTBT there is a
strikingly different behaviour observable. The signal stays virtually
constant within the measurement window of approximately 800 ps.
Such a long lifetime signal could either be evoked by a triplet
exciton or by a hole polaron on PCPDTBT.****** Though we cannot
fully exclude the former, we have indirect evidence for this to be a
polaron - namely the fact that we measured at room temperature
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Fig. 5 Transient absorption of respective films pumped at 700 nm and
probed at 1200 nm.
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Fig. 6 External quantum efficiency of a pristine QD cell and a blend with
PCPDTBT (1:9) (lines with symbols) and the respective absorption spectra
(solid lines). The inset depicts the employed device architecture with the
active layer (AL) sandwiched between the ITO and LiF/Al electrode.

1%° needed a sensitiser to

and that under such conditions Etzold et a
generate sufficient triplet population on PCPDTBT in a blend with
PCBM. Finally, the pronounced contribution of the polymer in the

EQE (Fig. 6) suggests an efficient charge carrier generation.

Solar cells

Based on the observations above, it is promising to use a blend
of PCPDTBT with BDT capped PbS as active layer (AL) of a solar
cell. We fabricated cells in the simple Schottky-like architecture
(vide inset of Fig. 6) which has previously lead our group to
achieve power conversion efficiencies of up to 5.2% employing
pristine PbS." The measured external quantum efficiencies of
both types of cells are depicted in Fig. 6 (for the j/V curves and
electrical parameters vide Fig. S3 and Table S11) where the black
curve, referring to the QD-only device, exhibits a pronounced
contribution of the excitonic peak centred around 1050 nm and a
steep increase at shorter wavelengths ultimately exceeding 60% at
420 nm. Furthermore, a dip in the intermediate spectral range is
observable, roughly between 700 and 950 nm. The blended device
exhibits a pronounced increase of EQE in this spectral range
analogously to the absorption spectrum of the pristine polymer
(Fig. S11). Consequently, both materials take part in the photo-
current generation.

A significant drawback, however, arises when considering
the spectral regions of pronounced QD contribution. Adding
the polymer leads to a reduction of EQE for the QDs’ first
excitonic peak and at shorter wavelengths. The extent cannot be
justified by the difference in QD content (the QD content in the
blend should amount to roughly 90 wt%). A possible explana-
tion for this might be the increased disorder in the QD phase
(vide supra) that may hamper the carrier transport. Additionally,
we find evidence that upon annealing a polymer rich layer
forms near the LiF/Al backcontact (vide Fig. S47). Such a layer
could reduce the efficiency of electron extraction. The improve-
ment in the intermediate spectral region is hence accompanied
and compensated by a reduction of the QD contribution.
Calculating the theoretically achievable Jsc leads to 11.06 and

This journal is © The Royal Society of Chemistry 2015
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11.15 mA cm > for the pristine and the blended device,
respectively.

4 Discussion

We sought to elucidate the behaviour of PCPDTBT and PbS QDs
blended in a film upon photoexcitation for the eventual use in
hybrid organic-inorganic solar cells. In the following, all possible
steps from the absorption of an incident photon up to the successful
extraction of a free carrier at an electrode shall be discussed.

Starting from photons absorbed by the polymer, i.e. predo-
minantly from approximately 650 to 840 nm, there are several
processes possible. For a pristine film of PCPDTBT it is known
that photons lead to the formation of strongly bound Frenkel
excitons with a typical diffusion length of about 10 nm.** These
excitons percolate within the material and eventually recombine
either radiatively or non-radiatively. Bringing the polymer chains
into a blend with the QDs could lead to a charge transfer, i.e. an
electron may be transferred to the lower lying LUMO level of the
QDs - thereby leaving a free hole in the organic phase. This
interaction is the prototypical donor-acceptor interaction which
should provide the best performance in solar cells. Furthermore,
given the overlap of polymer fluorescence and QD absorption, an
energy transfer between the components might also be possible.
Finally, blending the materials may lead to an increased (non-
favourable) recombination of excitons, e.g. via surface traps of
the QDs.

Though the latter cannot fully be excluded, the magnitude of
the polymer contribution to the photocurrent depicted in the
EQE (Fig. 6) suggests that this is by far not a dominant process
for BDT capped QDs.

Both the energy (E) and electron (e™) transfer should lead to
a reduction of the PL lifetime of the polymer. As can be seen
from the respective TRPL depicted in Fig. 3, there is a signifi-
cant quenching of the PL lifetime for PCPDTBT when BDT is
applied. In presence of OA capped PbS the lifetime is essentially
identical and the TA absorption in Fig. 5 also reveals the same
spectra for pristine PCPDBT and the blend comprising PbS_OA.
We thus exclude transfers between these two phases.

When considering the BDT capped QDs, the behaviour is
strikingly different. The reduction in PL lifetime of the polymer
and the presence of its EQE signal adduces evidence for the
successful extraction of charge carriers that arose from polymer
excitations. In order to distinguish between E- or e -transfer we
find evidence via TA as depicted in Fig. 5. There is a clear
difference for the behaviour of pristine PCPDTBT and when
blended with PbS_BDT. The blend exhibits a signal that virtually
stays constant over the observed time range. This can be attributed
to the formation of long-lived hole polarons on the polymer*®*?°
and thereby proves the presence of a charge transfer in this system.

For the case of a photon absorbed by PbS, which is pre-
dominantly the case for wavelengths shorter than approximately
650 or longer than 800 nm (vide Fig. S17), several further steps
are possible: initially, the photon will lead to the formation of an
exciton on the same QD it was absorbed by. Depending mostly
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on the nano-morphology this might either lead to a dissociation
of the exciton into free charge carriers promoted by thermal
energy or the exciton can percolate within the material until it
either recombines or reaches an interface. For long chain ligands
such as OA it is generally assumed that bound excitons form.**
In this case the exciton would have to diffuse towards an inter-
face in order to dissociate.

The energy levels depicted in Fig. 1 allow for a hole transfer
from the QDs. This, however, should lead to a reduction of the
lifetime of the QDs PL (and the formation of a signal in the TA
spectra) which we do not observe. On the contrary, the PL
lifetime of the PbS_OA QDs is even prolonged in presence of
the polymer (Fig. 4 bottom). We therefore conclude that for
photons absorbed by PbS_OA there is no favourable interaction
between the two materials.

A possible explanation for the prolonged lifetime in the
blend might be due to the reduced permittivity. Following the
explanation of Wehrenberg et al.*® the lifetime of a spherical

38h
ep + 2ep
permittivity ¢ of the particle p and the host h. Reducing the
matrix’ permittivity by introducing the polymer thus leads to an
increase in the radiative lifetime. It should be considered
however, that this theory is strictly only valid for isolated
particles in a homogeneous matrix.

The same pathways are possible for BDT capped QDs. In this
case we find a slightly reduced PL lifetime of the blend in
comparison to the pristine film (Fig. 4 top) that suggests a
charge transfer. It is worth mentioning here that the QD
content of the film strongly exceed the amount of polymer
which leads to a plethora of quenching sites for polymer
excitons, whereas the smaller impact on the QD PL might be
due to a lack of sufficient quenching sites. Therefore a bulk of
QD excitations might lead to the same processes occurring in a
pristine QD film. From above considerations for photons
absorbed in pristine PbS_BDT, we know that the QDs there
act as both the hole and electron conducting phase. Obviously,
the QDs also act as the electron transporting phase in the case
of absorption by the polymer in a blend, but the question
remains how the hole is driven towards the electrode. The TA
measurement offers important information on this question,
namely the long lifetime of the hole polaron on the polymer. If
there were any second transfer, i.e. a successive hole transfer
towards the QDs, the polymer polaron signal should decay on a
relatively short time range. Since this is not the case we conclude
that the lifetime is sufficient to allow the holes to percolate
towards the electrodes via the polymer phase.

For absorption by the QDs the electron again is transported
via the particles. Whether the hole also remains on the QDs
cannot fully be answered - we cannot exclude it.

-2
particle is proportional to ( > with the (optical)

5 Conclusion

We investigated the optical properties and charge carrier
dynamics for a hybrid organic-inorganic system comprising a
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narrow bandgap polymer and lead sulphide quantum dots. We
observed that their interaction upon photoexcitation strongly
depends on both the initially absorbing component and the
ligand capping the QDs.

For light absorbed by OA capped QDs we could not track any
interaction with the polymer phase which we attribute to the
ligand length that successfully suppresses any transfer. When
applying the shorter BDT, we observe a reduced lifetime which
we attribute to a hole transfer. Nevertheless, given the unequal
amounts of QDs and polymer in the blend we note that there
are probably many holes that are not transferred to the polymer.
Carrier transport following photon absorption by QDs thus
predominantly follows the behaviour of a pristine QD film.
Since, however, the degree of disorder is increased, the EQE in
the spectral regions of pronounced QD absorption is reduced
compared to a pristine film.

For photons absorbed by the polymer we found essentially
the same behaviour, but more pronounced. For BDT we observed
a significant quenching of the PL lifetime and a TA signal of a
long-lived species, which we ascribed to an efficient exciton
dissociation at the heterointerface leading to the formation of
a hole polaron on the polymer and an electron transferred to the
QD phase. Accordingly, we found both components to offer a
contribution to the EQE.

Given that fabricated solar cells did not outperform their
pristine inorganic counterparts, we conclude that although there is
a promising interaction between the two materials, further effort is
required to optimise the film deposition for efficient devices.
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