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Applying a new interatomic potential for the
modelling of hexagonal and orthorhombic YMnO3

Ning Jiang,ab Scott M. Woodley,*c C. Richard A. Catlowc and X. Zhang*ab

We develop and apply an interatomic potential for YMnO3, based on the shell model together with the

angular overlap model, which can model ligand field effects. The potential parameters accurately

reproduce the complex structure of both hexagonal and orthorhombic phases of YMnO3. The rotation

of the MnO6 octahedra in o-YMnO3 suggests the E-type AFM order. The potential is further employed

to investigate the energies of intrinsic defects in the material. Lower defect energies were found in

o-YMnO3. Oxygen Frenkel and Y2O3 partial Schottky are the most favourable defects in h-YMnO3 and

o-YMnO3, respectively. The defect models proposed have implications for the properties of the related

non-stoichiometric phases.

Introduction

The rare-earth manganite, YMnO3, is a well-known example of a
multiferroic which possesses magnetism and ferroelectricity
simultaneously and thus has attracted considerable attention in
recent years due to its multiferroic and magnetoelectric properties
and potential interest.1–3 YMnO3 prepared under ordinary synthetic
conditions crystallizes in a hexagonal structure, which belongs
to the space group P63cm, and can be considered as alternating
ab-layers of Y3+ ions and corner-sharing MnO5 trigonal bipyramids,
as shown in Fig. 1(a). Each MnO5 bipyramid is formed of a central
Mn3+ ion surrounded by three planar oxygen (O3 and O4) atoms
and two apical oxygen (O1 and O2) atoms. Whilst there is one
unique site for manganese atoms and four for oxygen atoms, there
are two inequivalent sites for yttrium atoms.4 By means of soft-
chemistry synthesis, applying pressure, or epitaxial strain in thin
films, the hexagonal structure can be converted into the more
dense, albeit metastable orthorhombic structure (Pnma space
group),5–13 which contains two distinct oxygen sites (four planar
O1 sites and two apical O2 sites), while there is only one inequi-
valent site for Y atoms and likewise for Mn atoms.7 The ortho-
rhombic structure is composed of corner-sharing MnO6 octahedra
with one yttrium cation occupying each hole; see Fig. 1(b). Com-
pared to the cubic phase, the unit cell of which is composed of just
one regular octahedron, the MnO6 octahedra are both rotated
(Mn–O bonds originally align parallel with the crystallographic axes)

and distorted (the six equivalent Mn–O bond distances become
three degenerate pairs) as a result of steric and Jahn–Teller effects.25

Both the hexagonal and orthorhombic phases of YMnO3

have been subjected to theoretical studies based on Density
Functional Theory.2,6,14–17 Many questions, however, remain

Fig. 1 The crystal structure (right panels) of YMnO3 and the corres-
ponding secondary building units, MnO5 trigonal bipyramid and MnO6

octahedron, (left panels) in (a) the hexagonal phase and (b) the ortho-
rhombic phase, respectively.
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unsolved that lie beyond the computational limits of applying
purely quantum mechanical approaches, especially problems
related to complex defect structures, and other configurations
that require the inclusion and relaxation of a large number of
ions. Atomistic modelling techniques – employing interatomic
potentials based on the ionic model which has already been
successfully employed to a range of oxide-based materials18,19 –
have been applied to the study of YMnO3

20,21 but, due to the
purely radial feature of the potentials, the calculations showed
major limitations in accurately modelling its structure which has
a substantial distortion of the MnO5 polyhedron in the hexagonal
phase and the MnO6 polyhedron in the orthorhombic phase.

In the present paper, we employed a semi-empirical force
field approach, which includes the angular overlap model
(AOM).22 The AOM model has been successfully applied to
modelling the Jahn–Teller distortions within and the rotations
of the MnO6 octahedra in the orthorhombic perovskite LaMnO3,23

oxygen anion migration in LaMnO3�d,
24 and the changes in the

structure that occur across the series of lanthanide manganates.25

Here, we develop a set of potential parameters that accurately
reproduce the structure of YMnO3 in both the hexagonal phase
and metastable orthorhombic phase and, moreover, successfully
model the thermodynamic parameters relating to the phase
transition. For h-YMnO3, the lattice distortions are associated
with its ferroelectric properties3,4 and the strong interactions
between Mn trimers, which dominate the magnetic and magneto-
dielectric coupling.26 For o-YMnO3, the magnetic ordering and,
consequently, the multiferroic and magnetoelectric properties of
this phase depend on the bond angle.9,27–31 Thus, the capability of
the present method to predict accurately the bond length, bond
angle, atomic displacement and distortion features of YMnO3

under hydrostatic pressure and chemical doping is of great
interest in the multifunctional properties of RMnO3 based
materials, where R is a rare earth element. Additionally, con-
sidering that the large leakage currents with a small quantity
of defects induced by the low band gap of YMnO3 hamper
their application,32–35 it is of great importance to know the
origin of the defects in the material, especially for h-YMnO3,
which is ferroelectric at room temperature. Consequently, we
also perform a detailed investigation of the intrinsic defect
properties which also relate to the properties of the related
non-stoichiometric phases.

Simulation method

Our calculations are based on the Born model, using inter-
atomic potentials that have been modified by the addition of a
ligand field term. The contribution from ‘‘spherical’’ forces
between ions to the lattice energy is described by the standard
Coulomb–Buckingham expression:

E ¼
X
i; j

qiqj

4pe0rij
þ Aij exp �rij

.
rij

� �
� Cijr

�6
ij

� �
(1)

where the summation over i and j includes unique pairs of atoms
and parameters q, A, r and C are species dependent parameters.

Three-dimensional periodic boundary conditions were applied
to the unit cell, i restricted to atoms within this unit cell and
contributions to the energy reduced by a half when atom j is a
periodic image so that eqn (1) gives energy per unit cell. The
Ewald summation36,37 was employed to compute the Coulomb
term, using formal charges, q, on the ions. The remaining terms
constitute the short-range Buckingham potential representing
the cation–anion and anion–anion short-range interactions; a
cut off of 12 Å was applied. The shell model38,39 is employed to
describe the polarizability of individual ions. In this model, each
ion is divided into two coupled parts: a core with mass m and
charge X and a massless shell with charge Y (we constrained
X + Y to be the formal charge of ion). The interaction between the
core and corresponding shell is described by an harmonic
function with a spring constant k. In our calculations, A, r, C,
k and Y were fitted empirically so that the structural parameters
of the appropriate phases for YMnO3 were reproduced.

To model the irregular coordination geometry associated
with Mn3+ ions, we add a contribution to the lattice energy that
corresponds to the Jahn–Teller driving force for the distortions
and removal of degeneracy in electronic energy:40

E ¼ �
X
tsd

etd 1�Ots
d

� �
: (2)

Here, et
d and Ots

d are the energy changes and occupations of the
d-orbitals for each transition metal, t, respectively, and s is the
spin of an electron. An adaptation of the angular overlap model
(AOM) is used to obtain et

d. In this model we compute the
eigenvalues, ed, of a 5 � 5 overlap matrix, Hdd0 for each
transition metal ion. Hdd0 is formed by taking the products of
the angular contributions to the overlap integrals, Gd,41

between the d-orbital of transition metal ion and the orbitals
of any surrounding ligand (l),

Hdd0 ¼
X
l

RGdGd0 ; (3)

where the Born–Mayer interaction is used to model the radial
dependence of the interaction between transition metal ion
and its ligand:

R = ALF exp(�rtl/rLF). (4)

The two new parameters, ALF and rLF, depend on ligand type
and can be empirically fitted. Upon optimization of the lattice
energy with respect to the cell parameters and ionic coordinates,
the energy levels may become degenerate and the order of the
energy levels may also change. To prevent the energy landscape
becoming discontinuous, we employ partial occupancies (or a
nonzero probability that an electron can occupy a higher energy
state) via the implementation of a Fermi function. The theory of
the AOM and its successful application in modelling compounds
containing ‘‘non-spherical’’ transition metal ions, i.e. manganites
with distortions, are reviewed in detail elsewhere.40

The lattice-energy is minimized by relaxing both cell dimen-
sions and atomic coordinates at constant pressure using a quasi
Newton–Raphson procedure together with the BFGS method42

for updating the Hessian. All our calculations employed the
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General Utility Lattice Program (GULP).43,44 The potential para-
meters derived in our fitting procedure are reported in Table 1.

Results and discussion
Lattice calculations

The first challenge, for our newly derived potential model, is to
reproduce the crystal structures of both the hexagonal and ortho-
rhombic structures with the same set of potential parameters. The
energy minimised structural parameters and experimental data are
listed in Table 2. Results calculated from previously published force
field parameters are also presented for comparison. We note that
the differences between experimental5,45 and our calculated lattice

parameters and bond lengths are all within 2%, and in most cases
less than 1%. Hence, our potential parameters reproduced the
complex crystal structure of YMnO3 for both the hexagonal and
orthorhombic phases, which is in stark contrast to previous
results.20,21 For example, the largest bond length error was reduced
from 4.6% and 6.98% to 1.56% for the hexagonal phase, and from
9% and 7.98% to 2.38% for the orthorhombic phase. It is note-
worthy that the bond angle in the orthorhombic phase is now
within 2.04% (cf. 3.5% and 4.42% for ref. 20 and 21, respectively).
According to the magnetic phase diagram for orthorhombic
RMnO3 as a function of Mn–O–Mn bond angle,27–31 our results
show the E-type AFM order of o-YMnO3, while other results20

determine the magnetic phase to be A-type. Moreover, comparing
the predicted structural data obtained from potentials with and
without the AOM ligand field term, we note that the ligand term
effectively reproduces the asymmetry of the Mn3+ ions, i.e. the
distortion and rotation of both MnO5 bipyramid in h-YMnO3 and
MnO6 Jahn–Teller octahedron in o-YMnO3.

The robustness of the proposed potential set is further
checked through investigation of the pressure dependence
of both the orthorhombic and hexagonal structures (Fig. 2).
Our calculations showed that the orthorhombic phase became
more stable at the pressure of 25.8 GPa, which accords well
with the experimental observation that, at room temperature,
a pressure-induced hexagonal–orthorhombic phase transition
requires a pressure above B22 GPa for YMnO3.46 This result is
gratifying in view of the considerable sensitivity to details of the
potential model of the thermodynamic parameters associated
with this kind of phase transition.

Frenkel and Schottky disorder

We next present results of our defect calculations for YMnO3.
We use the supercell method rather than the Mott–Littleton
approach in our study of defects within both the hexagonal and
orthorhombic structure as the use of potential functions

Table 1 Buckingham parameters for the interaction between the shells of
the ions; the force field parameters for radial part of the AOM that acts
between each manganese core and the surrounding oxygen cores; and
the parameters for the shell model. Subscripts s and c indicate shell and
core, respectively. The cut-off radius for all short range potentials is 12 Å

Interaction A (eV) r (Å) C (eV Å6)

Short-range Buckingham potentials
Ys

3+–Os
2� 26384.018 0.2270 0.0

Mns
3+–Os

2� 835.222 0.3654 0.0
Os

2�–Os
2� 22764.300 0.1490 46.0

Radial force field parameters
Mnc

3+–Oc
2� 2.0109 0.7005

Species Y (e) k (eV Å�2)

Shell model
Y3+ 4.6575 88
Mn3+ 3 98.4
O2� �2.389 42.00

Table 2 Structural data of YMnO3

Structural
parameter Experimental5,45

Including
AOM

Excluding
AOM

Previously
calculated20

Hexagonal phase
a/Å 6.1382 6.1604 6.115 6.1203
c/Å 11.3958 11.2341 11.632 11.4316
Y1–O1/Å 2.2676 2.2491 2.2334 2.2682
Y1–O2/Å 2.3099 2.3105 2.2958 2.2923
Y1–O3/Å 2.3163 2.3525 2.3462 2.4229
Y2–O1/Å 2.2720 2.2747 2.2539 2.2670
Y2–O2/Å 2.2974 2.2750 2.2616 2.2800
Y2–O4/Å 2.4581 2.4708 2.4779 2.5647
Mn–O1/Å 1.8584 1.8421 1.9580 1.8637
Mn–O2/Å 1.8755 1.8506 1.9630 1.8714
Mn–O3/Å 2.0632 2.0743 2.0699 2.0488
Mn–O4/Å 2.0555 2.0639 2.0564 2.0558
O1–Mn–O2/1 179.994 179.984 179.972 179.950
O3–Mn–O4/1 120.382 120.410 120.713 120.338

Orthorhombic phase
a/Å 5.8029 5.741 5.543 5.5572
b/Å 7.3643 7.2614 7.876 7.4050
c/Å 5.2418 5.3664 5.336 5.3142
Mn–O1/Å 1.9036 1.9225 2.1260 1.9337
Mn–O2(s)/Å 1.9382 1.9476 2.0295 1.9910
Mn–O2(l)/Å 2.2007 2.1806 2.0363 2.0027
Mn–O1–Mn/1 144.442 141.503 135.686 146.307
Mn–O2–Mn/1 143.591 144.219 142.219 148.601

Fig. 2 Lattice energies (eV mol�1) of orthorhombic and hexagonal YMnO3

as a function of pressure calculated using our new potentials. Squares and
circles show the values obtained by relaxing the h-YMnO3 structure and
the o-YMnO3 structure, respectively.
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needed to describe Mn3+–O2� interactions in the non-cubic
phase is not currently implemented in the latter.

Supercells were generated from the relaxed cell parameters
and ionic coordinates of bulk YMnO3. After removing or adding
one ion from or into the supercell, we added a neutralizing
uniform charge background. These structures were then optimized
with the cell parameters being fixed, since one isolated defect
should not change the bulk lattice constants. To obtain the energy
required to form an isolated defect, Ef, we first calculate the energy
difference, DE, between the lowest local energy minimum
obtained from the optimization of the defect containing cell and
the lattice energy of the perfect crystal. We require this energy
to be converged with respect to the size of the supercell,
or shortest distance between the defect and the unwanted
images of this defect. In order to speed up this convergence,
we reduce the unwanted long-range interactions between the
defect (vacancy and local distortions) and its images, by adding
a correction term Ec to DE.24,47

Ec ¼
aQ2

2erL
; (5)

where a is the Madelung constant and er the dielectric constant
of the perfect crystal. This term refers to the Coulomb energy of
a point charge Q (charged defect) immersed in a structureless
dielectric, within a cubic unit cell of length L with a neutralizing
uniform charge background.47 With increasing size of the
supercell, the contribution given by Ec will dominate the energy
difference between the lattice with a periodic array of defects
and that with an isolated defect, i.e. the energy difference
caused by the unwanted interaction mentioned above.

In order to estimate Ec, we first compute

ED ¼
aQ2

2L
: (6)

For a single point charge Q, ED is very straight forward to obtain
from GULP as it is the lattice energy of the cation or anion,
which was removed in order to create the defect, in an empty

unit cell that has the same dimensions as the supercell it was
removed from. Note that a charged uniform neutralizing back-
ground is also required. This procedure can be generalised to
include more point charges, and will be discussed elsewhere.
The interactions of the charge associated with the defect and
that of its images will be reduced by the screening effect of the
remaining ions, and so the correction term, Ec, is estimated as:

Ec ¼
ED

er
; (7)

where er is the average of the diagonal components of the
diagonalized static dielectric constant tensor. The defect forma-
tion energy, Ef, is therefore

Ef ¼ DE � ED

er
: (8)

Fig. 3 shows the results of isolated oxygen vacancy formation
energy of hexagonal and orthorhombic YMnO3. We investi-
gated all unique oxygen sites. By adding Ec, the term in
eqn (7), the convergence of Ef was improved considerably in
both phases. In our final results, we extrapolate the value for Ef

at 1/R = 0. This supercell method has also been compared with
the Mott–Littleton approach before and proved to be reliable
and effective.24

The energies of isolated vacancy and interstitial defects were
calculated first for both the hexagonal and orthorhombic
structures. Regarding the vacancies, we calculated both the
yttrium sites and the four oxygen sites in the hexagonal
structure and the two oxygen sites in the orthorhombic struc-
ture. For h-YMnO3, the planar oxygen O3 and O4 sites have a
lower energy – about 1 eV lower than the apical sites, which is
consistent with experimental observation.48 It is reported that
the host h-YMnO3 shows a preference for removing the equa-
torial oxide anions (at O3 and O4) to yield phases of composi-
tion YMnO3�d, which may be rationalized by considering the
coordination requirement of cations.49 The formation energy of
the Y2 vacancy is slightly lower than Y1 by 0.25 eV. For the

Fig. 3 Calculated energy of formation for an isolated oxygen vacancy in (a) hexagonal and (b) orthorhombic YMnO3 as a function of the reciprocal of the
distance between a defect and its nearest image without (solid symbol) and with (hollow symbol) the correction term.
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orthorhombic phase, the difference in Ef between different
sites is much smaller. The O2 vacancy is a little more energe-
tically favourable by 0.65 eV. Only the lowest energies were used
in the following calculations.

As to interstitial defects, for the hexagonal structure, we
tested several possible positions to confirm the optimal posi-
tion of the interstitial site; for the orthorhombic phase, we
considered two possible sites: the octahedral interstice at
(0, 1/2, 0) and the tetrahedral interstice at (1/4, 1/4, 1/4), and
lower energies were found for interstitials placed at the octa-
hedral site. Only the lowest formation energies were employed
in the calculations below.

Then, Frenkel disorder, full Schottky disorder and partial
Schottky disorder energies were calculated by combining indivi-
dual defect energies and lattice energies. These defect reactions
are described by the following equations, where Kröger–Vink
notation is used.

Yttrium Frenkel disorder:

Y�Y ! V000Y þY���i (9)

Manganese Frenkel disorder:

Mn�Mn ! V000Mn þMn���i (10)

Oxygen Frenkel disorder:

O�O ! V��O þO00i (11)

YMnO3 full Schottky disorder:

Y�Y þMn�Mn þ 3O�O ! V000Y þ V000Mn þ 3V��O þYMnO3 (12)

Y2O3 partial Schottky disorder:

2Y�Y þ 3O�O ! 2V000Y þ 3V��O þY2O3 (13)

Mn2O3 partial Schottky disorder:

2Mn�Mn þ 3O�O ! 2V000Mn þ 3V��O þMn2O3 (14)

The corresponding energies for all these types of intrinsic
defects are listed in Table 3. In order to enable comparisons
between different types of disorder reactions, the energies are
given as defect formation energies per defect, i.e. EF/2 for
Frenkel disorder and ES/5 for Schottky disorder.

For both systems, the cation Frenkel disorder energies are
much higher than other disorder energies. However, in the
hexagonal structure, the oxygen Frenkel energy is the lowest
defect type; while in orthorhombic structure, it is slightly
higher than but comparable to Schottky disorder energies,

which indicates that vacancies, not interstitials, will be the
dominant structural defects. For both structures, however,
defect energies are so high that intrinsic disorder would not
be expected to dominate the defect chemistry, although we find
that very significantly lower energies were obtained for the
orthorhombic structure.

Essentially, from our results obtained using the supercell
method, it is predicted that the oxygen Frenkel disorder and
Schottky disorder involving Y are found to be the most energe-
tically favourable intrinsic defect in h-MnO3 and o-YMnO3,
respectively, although the defect energies are still high. The
greatest significance of our calculations is perhaps not in the
low levels expected for intrinsic disorder, but their predictions
for related non-stoichiometric phases. The variable valence of
Mn should result in both oxygen deficient and oxygen excess
phases depending on the oxygen partial pressure. Our calcula-
tions predict that for oxygen deficient phases the reduction of
Mn should, as expected, lead to oxygen vacancy formation. The
results for oxidation are more interesting as there are more
possibilities. And we will discuss this in more details below.

Oxidative nonstoichiometry

As mentioned earlier, oxidation in the hexagonal phase and
orthorhombic phase might happen via different mechanisms,
consequently we have examined the energetics of four different
oxidation reactions (eqn (15)–(18)):

3=2O2 ! 3O00i þ 6h� (15)

3=2O2 ! 2V000Y þ 6h� þY2O3 (16)

3=2O2 ! 2V000Mn þ 6h� þMn2O3 (17)

2=3O2 ! V000Y þ V000Mn þ 6h� þYMnO3 (18)

The hole state in both phases was modelled as a Mn4+ ion
(i.e. as a small polaron), as observed in oxygen excess systems5

and hole doped systems.50 In addition to the individual defect
energies and the lattice energies, we also included the dissocia-
tion energy of an oxygen molecule (5.16 eV), the first and
second electron affinities of oxygen (�1.46 and +8.75 eV respec-
tively) and the fourth ionisation energy of manganese (52 eV).51

This is clearly an approximate approach but should still provide
useful comparisons between the different processes listed above.

The calculated reaction energies are listed in Table 4. For the
hexagonal phase, the results show that the energy for reaction
(15) is the lowest, which suggests that oxidation will result
in the formation of oxygen interstitials. This prediction is in
agreement with experiment studies in which hexagonal YMnO3+d

was observed to accommodate interstitial oxygen.52,53 Moreover,
h-Dy1�xYxMnO3+d has been investigated as a possible material
for storing/releasing oxygen; as high as 2000 mmol-O per g in air
is observed when cycling between stoichiometric and interstitial
oxygen rich structures by changing temperature between 250
and 350 1C.54

For the orthorhombic system, we predict yttrium vacancy for-
mation during oxidative reactions. The difficulty of preparation of

Table 3 Calculated energies for Frenkel disorder, partial Schottky disorder
and full Schottky disorder in YMnO3 crystals

Reaction
Eqn

Energy/eV per defect

Hexagonal Orthorhombic

Y Frenkel (9) 11.46 6.40
Mn Frenkel (10) 10.83 7.69
O Frenkel (11) 5.01 3.65
YMnO3 full Schottky (12) 6.61 3.40
Y2O3 partial Schottky (13) 6.91 2.85
Mn2O3 partial Schottky (14) 6.73 4.01
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YMnO3 in its perovskite form results in the relative scarcity of
reports devoted to the description of its basic properties. Insight
perhaps can be gained from studies of its larger A-site cation
isomorphous LaMnO3 counterpart, which have reported that
LaMnO3 has the ability to accommodate oxidative nonstoichio-
metry via cation vacancies.55,56 There is some disagreement,
however, in the literature concerning whether A-site or B-site
cation vacancies dominate in oxygen excess compositions.
Mitchell et al.56 used NPD methods and found that there was
a tendency towards more A-site lanthanum vacancies present
in orthorhombic LaMnO3 structures, which accords with our
calculations.

Importantly, the lower reaction energies for the orthorhombic
phase would lead us to expect greater non-stoichiometry than for
the hexagonal phases. It would be interesting to see whether this
prediction can be verified experimentally.

To summarise, the oxidation reaction is found to occur via
oxygen interstitial and yttrium vacancy formation for h-MnO3

and o-YMnO3, respectively, and their ability to accommodate
oxidative nonstoichiometry is to be expected.

Conclusions

In conclusion, we have developed a new set of interatomic
potential parameters based on the AOM model,23 which suc-
cessfully reproduces the structure of both hexagonal and
orthorhombic structure of YMnO3. Furthermore, we have used
this potential to examine basic defect energies. In the hexa-
gonal structure, the oxygen Frenkel defect is the most energe-
tically favourable, while Schottky defects involving Y ion have
the lowest energies in the orthorhombic phase. Significant
intrinsic disorder of either Frenkel or Schottky type is, however,
unlikely, but the results have considerable significance for the
nature of related non-stoichiometric phases. The capability of
the proposed method to estimate accurately the structural
properties of both h-YMnO3 and o-YMnO3, and the detailed
investigation of the defects in the present work have implica-
tions for modified RMnO3 based multifunctional materials.
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