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A theory for the phase behavior of mixtures of
active particles†

Sho C. Takatori and John F. Brady*

Systems at equilibrium like molecular or colloidal suspensions have a well-defined thermal energy kBT

that quantifies the particles’ kinetic energy and gauges how ‘‘hot’’ or ‘‘cold’’ the system is. For systems

far from equilibrium, such as active matter, it is unclear whether the concept of a ‘‘temperature’’ exists

and whether self-propelled entities are capable of thermally equilibrating like passive Brownian

suspensions. Here we develop a simple mechanical theory to study the phase behavior and

‘‘temperature’’ of a mixture of self-propelled particles. A mixture of active swimmers and passive

Brownian particles is an ideal system for discovery of the temperature of active matter and the quantities

that get shared upon particle collisions. We derive an explicit equation of state for the active/passive

mixture to compute a phase diagram and to generalize thermodynamic concepts like the chemical

potential and free energy for a mixture of nonequilibrium species. We find that different stability criteria

predict in general different phase boundaries, facilitating considerations in simulations and experiments

about which ensemble of variables are held fixed and varied.

1 Introduction

Active matter systems like colonies of bacteria and self-propelled
synthetic microswimmers are a rich area of study for soft matter.
The fundamental and seemingly elementary ability of self-
propulsion allows active systems to free themselves from classical
thermodynamic constraints and to control their own motion and
the surrounding environment. Their inherently nonequilibrium
properties engender intriguing behavior such as spontaneous
self-assembly and pattern formation,1,2 making active matter a
fascinating but challenging system to study.

Recently a new ‘‘swim pressure’’ concept was introduced—
namely, all active entities exert a unique mechanical pressure
owing to their self-motion.3,4 This perspective was applied5 to
predict the self-assembly of a suspension of active particles into
regions of dense and dilute phases observed in both experiments
and simulations.6–10 The usefulness of the mechanical pressure to
illuminate active matter’s physical principles begs the question:
what is the temperature of active matter? Do active swimmers
‘‘thermally equilibrate’’ with their surroundings? Although it is clear
that the mechanical pressure can be quantified and is valid out of
equilibrium, it is uncertain whether the notion of a temperature
exists and can be explained in basic physical quantities.

To understand the temperature of active matter, we shall
first discuss a simple experiment involving passive Brownian

suspensions (i.e., no self-propulsion) which can be rigorously
related to conventional thermodynamic quantities like the tem-
perature and free energy. Suppose we have a purely Brownian
suspension with thermal energy (kBT)H that is separated by a
thermally-insulated partition from another Brownian system
with a different temperature (kBT)C, as shown in Fig. 1. The
partition is suddenly removed and the particles at different
temperatures are allowed to mix. The ‘‘hot’’ and ‘‘cold’’ parti-
cles undergo many collisions, share their kinetic energy with

Fig. 1 Schematic of the mixing process of purely Brownian suspensions
(top) and active systems (bottom) that are initially at two different ‘‘tem-
peratures.’’ The Brownian particles thermally equilibrate their thermal
energy kBT whereas the active swimmers do not share their characteristic
‘‘energy scale’’ ksTs � zU0

2tR/2.
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each other, and eventually equilibrate to a common tempera-
ture (kBT)eq.

Now suppose we do the same mixing experiment with self-
propelled swimmers at two different activity levels. For simplicity
we consider self-propelled spheres of radii a that translate with an
intrinsic swim speed U0, reorient with a reorientation time tR, and
experience a hydrodynamic drag factor z from the surrounding
continuous Newtonian fluid. Their motion can be described as a
random-walk process for times t 4 tR with a diffusivity Dswim =
U0

2tR/2 in two dimensions (2D). Their characteristic ‘‘energy
scale’’ is not the thermal energy kBT = zD0 where D0 is the
Stokes–Einstein–Sutherland translational diffusivity, but comes
from their self-propulsive activity, defined as ksTs � zDswim =
zU0

2tR/2 (see later section for a more detailed treatment).
A system of ‘‘hot’’ active swimmers with (ksTs)H is initially

separated from ‘‘cold’’ swimmers with (ksTs)C as shown in
Fig. 1. When the partition is removed, the swimmers with
different activity levels spontaneously mix and undergo colli-
sions with each other. When a swimmer collides into another
swimmer, it displaces the body by its size a until they move
completely clear of each others’ trajectories. After the collision,
each swimmer then continues its motion with the same activity
it had initially—there is no sharing of kinetic activity (ksTs)
upon collisions. This implies that the swimmers’ activity scale
ksTs � zU0

2tR/2 does not get shared via collisions and thus does
not ‘‘equilibrate’’ like the temperature of a classical fluid kBT.
This simple experiment already reveals the richness and challenge
to understand the ‘‘temperature’’ of nonequilibrium active systems.

A simple multicomponent mixture of self-propelled particles
with two different activities is an ideal system to discover and
study this problem in greater detail. Previous studies have
provided various interpretations of the temperature in a non-
equilibrium active matter system.11–13 We discuss a new perspec-
tive by developing a mechanical pressure theory for predicting the
phase behavior of a mixture of active swimmers over the entire
phase space of the system. Our theory applies in general to
a multicomponent suspension with swimmers of different
activities, but perhaps the most straightforward mixture is that
of active self-propelled particles and passive Brownian particles
in a single solvent. In this mixture we must treat active swimmers
and passive particles as independent species, because their
compositions vary in space due to the phase-separating behavior
of active suspensions. This is true in general for multicomponent
systems—in a simple polymeric solution of polyethylene in
benzene, the polyethylene molecules do not all have the same
number of segments or molecular weight, and thus generally need
to be treated as different components. Experiments also often use
mixed solvents in which the solvent composition inside a polymer
coil (or gel) is in general different from the outer regions, as
certain solvent species preferentially remain inside (or outside)
the polymer coil.14

We consider a simple mixture of spherical active and passive
Brownian particles with equal size a; the passive particles
translate by Brownian motion but are otherwise inactive (see
Appendix A for the equations of motion). We do not include the
effects of hydrodynamic interactions, and there is no polar

order of the swimmers or any large-scale collective motion
(e.g., bioconvection). We find that many new insights about
the temperature of active matter can be obtained from this
simple system.

In the next section we further extend the mixing example
discussed above (Fig. 1) by analyzing the effects of adding
a small concentration of passive Brownian particles into an
active system. We analyze the quantities that ‘‘equilibrate’’ in
an active system by studying the collisions between a swimmer
and a passive particle. In Section 3 we develop a simple
mechanical theory by identifying the different contributions
that make up the total active pressure of the mixture. Since
active matter is an inherently nonequilibrium system, we do not
rely upon the thermodynamic free energy or chemical potential to
predict the phase behavior of the system. Unlike these thermo-
dynamic quantities, the mechanical stress (or pressure) is defined
out of equilibrium and can be used to analyze mechanical
instability of active matter. We then take our equation of state
to compute what would be the nonequilibrium analogs of the free
energy and chemical potential. Lastly, we analyze different stabi-
lity criteria, facilitating discussion about the variables that may be
held fixed and varied in experiments and computer simulations.

2 Do active particles ‘‘thermally’’
equilibrate?

From the mixing process in Fig. 1 we learned that the charac-
teristic activity scale of the swimmers do not equilibrate (i.e.,
(ksTs)H a (ksTs)C) unlike the thermal energy kBT of passive
Brownian particles. To gain further insight into the quantities
that get shared in an active system, suppose now that we have a
dilute concentration of passive bath particles in a sea of active
swimmers. The motion and behavior of passive bath particles
are influenced markedly by the swimmers’ reorientation Péclet
number PeR � a/(U0tR), a ratio of the swimmer size a to its run
length U0tR.

Swimmers with run lengths small compared to their size
(PeR c 1) reorient rapidly and take small swim steps behaving
as Brownian walkers. When a swimmer takes a step and
collides into a bath particle, the passive particle gets a dis-
placement of order the swimmer’s step size � O U0tRð Þ. After
many such collisions, the change in the translational diffusivity
of the passive bath particle is (Dbath � D0) B U0(U0tR)fa, where
D0 = kBT/z is the Stokes–Einstein–Sutherland diffusivity of an
isolated bath particle and fa is the area (or volume in 3D)
fraction of the swimmers. In this limit active swimmers repeat-
edly displace the bath particle by their run length U0tR, which
allows the bath particle to sense the activity or ‘temperature’ of
the swimmers via collisions. In other words, the bath particle
behaves as a ‘thermometer’ of the active suspension,12 where
the collisional displacements it receives from the swimmer can
be used to infer the swimmers’ characteristic ‘energy scale’
ksTs = zU0

2tR/2. This activity scale is analogous to the thermal
energy kBT, the kinetic activity of passive Brownian particles,
which can also be probed by analyzing the collisions between
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two passive particles. In this sense a suspension of swimmers
with small run lengths U0tR o a behaves similarly to a purely
Brownian suspension with an effective ‘temperature’ ksTs. For
active Brownian particles, this contribution is in addition to the
thermal kBT that gets shared as usual as a result of translational
Brownian motion. However, one would not be able to distin-
guish between the two contributions because the dynamics of
swimmers with PeR c 1 is equivalent to that of passive
Brownian particles. If we placed active swimmers that behave
identically to passive Brownian particles behind an osmotic
barrier, we would not be able to distinguish one from the other.
In this sense a Brownian particle can be interpreted as a
‘‘swimmer’’ having an extreme value of the reorientation Péclet
number PeB

R - N.
The swim activity ksTs can also be understood by comparing

the statistical correlation of the self-propulsive swim force,
Fswim � zU0 = zU0q where q is the unit orientation vector
specifying the swimmer’s direction of self-propulsion, to that
of the Brownian force, FB. The swim force correlation
hFswim(t)Fswim(t0)i = (zU0)2hq(t)q(t0)i = (zU0)2 exp(�(t � t0)/tR)
turns into a delta-function correlation hFswim(t)Fswim(t0)i B
(zU0)2tRd(t � t0) as tR - 0.15 Recall that as tR - 0 the active
swimmers behave as random Brownian walkers, which have the

white noise statistics FBðtÞFB t 0ð Þ ¼ 2kBTzd t� t 0ð Þ where the
overline indicates an average over the solvent fluctuations.
A comparison of these two correlations again suggests that the
swimmers’ kinetic activity can be interpreted by ksTs � zU0

2tR/2.
For swimmers with run lengths large compared to their size,

(PeR { 1), we observe a different behavior. Colliding into a bath
particle, the swimmer continues to push the bath particle until
it moves completely clear of the swimmer’s trajectory. The bath
particles receive a displacement of� OðaÞ upon colliding with a
swimmer, not the run length U0tR. Therefore the length scale
associated with collisions is the swimmer size a, and the change
in the long-time diffusivity of the bath particles (Dbath � D0) B
U0afa. Unlike the limit of PeR c 1 discussed above, here the bath
particles cannot probe the activity or ‘temperature’ of the swim-
mers because it only receives a displacement of its size a, even
though the swimmers actually diffuse with their swim diffusivity
Dswim B U0

2tR. The ratio of the two diffusivities (Dbath� D0)/Dswim B
U0afa/(U0

2tR) = faPeR, suggesting that the reorientation Péclet
number PeR � a/(U0tR) is the quantity that gets shared between
the swimmers via collisions for small PeR.5 This implies that
the swimmers’ energy scale ksTs = zU0

2tR/2 does not get shared in
the collisions and thus does not represent the ‘temperature’ in
the classical sense.

The bath particles’ entirely different behavior for large and
small PeR reveals the richness and challenge to understanding
the ‘temperature’ of nonequilibrium active systems. This
marked change in the quantity that gets shared in active
systems is due to the capability of swimmers to have run
lengths U0tR that can be small or large compared to their size a.
This is a key fundamental difference between the swimmers’
activity ksTs and the thermal energy kBT. In a classical molecular
fluid, kBT is always the quantity that equilibrates because the
displacements of a passive Brownian particle are small compared

to its size a (or any other length scale), i.e. PeB
R � a/(UBtB) - N

where UB = D0/a is the characteristic speed of a Brownian step
and tB is its momentum relaxation timescale.

Moreover, the swimmers must continuously collide with
the passive particle to impart information about their kinetic
activity, ksTs—even after many collisions, the passive particle
only possesses kBT units of thermal energy once all collisions
stop. This is in stark contrast with a molecular or kinetic fluid
particle that is able to completely transmit its kinetic activity to
another particle upon collisions. If a molecular fluid particle
with initially zero activity is placed inside a container full of
fluid particles with energy kBT, the inactive particle would
collide repeatedly and eventually attain the thermal energy
kBT. Furthermore, it will keep its kBT activity even when the
other particles are removed. In contrast, a passive particle
would cease to move (aside from its translational Brownian
motion) if active swimmers are removed because of the damp-
ing due to the solvent. In this sense the temperature of an active
nonequilibrium fluid is not well defined, as each swimmer has
its own unique intrinsic kinetic activity that does not get shared
and equilibrated.5

In pursuant of the discussion above we conducted Brownian
dynamics (BD) simulations (see Appendix) and computed the

long-time self diffusivity Dbath ¼ ð1=2Þ lim
t!1

dhxdxdi=dt, where xd

is the position of the passive bath particles. As shown in Fig. 2,
for small PeR we indeed find that Dbath = D0 + U0afa/2 fits the
data for all f t 0.4. At higher f the passive particles are
trapped into clusters by the swimmers and Dbath decays to 0.
Fig. 2 suggests that the parameter PeR gets shared upon
swimmer collisions and not the scale ksTs.

Finally, an important concept here is that the departure
induced by a swimmer is the same whether it collides into a

Fig. 2 Long-time self diffusivity of a passive particle as a function of the
total area fraction for different values of the active swimmer fraction xa.
The known Brownian diffusivity D0 was subtracted from the results. The
solid line is the analytical theory and symbols are Brownian dynamics (BD)
simulations. All data collapse onto a single curve when the diffusivity is
scaled with U0axa/2.
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passive particle or into another active swimmer. In both cases
the displacement due to the collision is the swimmer size a (for
small PeR), and this is the key idea underlying the mechanical
theory which we explain below.

3 Mechanical theory

Our theory applies in general to a mixture of active swimmers
with different activity levels, but here we focus on a mixture of
active swimmers and passive particles. Since a passive particle
behaves equivalently to an ‘‘active’’ particle with a very small
reorientation time and step size, this system corresponds to the
limiting case of a mixture of one group of swimmers with a
finite, nonzero PeR and another group of ‘‘swimmers’’ with
PeR - N. The general case is a mixture of active swimmers
with two different, finite Pea

R and Ped
R. However, the active and

passive limit is interesting from an experimental perspective
because a mixture of passive and active particles is easy to
make. Mixtures of swimmers with different, finite PeR are
difficult to analyze because of the inherent variations in activity
in living organisms and in synthetic self-propelled particles due
to fabrication defects.

We are now in a position to derive a simple mechanical
pressure theory to predict the phase behavior of a mixture of
active and passive particles. The total active pressure of the
mixture is given by

Pact = Pswim + PP
a + PP

d + nkBT, (1)

where Pswim is the ‘swim pressure’, PP
a and PP

d are the inter-
particle pressure contributions of the active swimmer and
passive particle, respectively, and nkBT is the Brownian osmotic
pressure. It is permissible to add the separate contributions of
the pressure in what appears to be a superposition; this is true
in general for molecular, Brownian and active systems. Eqn (1)
is the additional pressure contribution due to the particles
(both active and passive); the solvent pressure pf is arbitrary
and constant in our analyses.

In general Pact is a function of (f, xa, PeR, ksTs, kBT), where f
is the total area fraction (f = fa + fd), fa and fd are the area
fractions of the active and passive particles, respectively, xa =
fa/f is the active swimmer composition, the reorientation
Péclet number PeR � a/(U0tR) is the ratio of swimmer size a
to its run length U0tR, ksTs � zU0

2tR/2 is the swimmers’
characteristic ‘energy scale’ as discussed earlier, and kBT is
the thermal energy. We can also express the active pressure
using the area fractions of the active and passive particles,
Pact(fa, fd, PeR, ksTs, kBT). To reduce the number of para-
meters, we take equal size active and passive particles aa = ad = a
and assume that swimmer reorientation is thermally induced so
that the translational and reorientational diffusivities are related
via the Stokes–Einstein–Sutherland expressions: (D0/a2)/tR = 4/3.
Thus the ratio of the thermal energy to the swim activity is
kBT/(ksTs) = 8PeR

2/3. This is not a requirement; one can also vary a
swim Péclet number, Pes � U0a/D0 in addition to the reorientation
Péclet number PeR � a/(U0tR).

We now explain the independent pressure contributions in
detail below. The theory is presented for 2D, but it is straight-
forward to generalize to 3D.

3.1 Swim pressure of active swimmers, Pswim

The swim pressure is defined as the first moment of the swim
force Pswim = �nahx�Fswimi/2 (in 2D), where na is the number
density of swimmers and the angle brackets denote an average.3

It is permissible for computing the stress to interpret the self-
propulsion of an active swimmer as arising from a swim force,
Fswim � zU0,‡ where U0 = U0q; U0 is the swimming speed and q is
the unit orientation vector defining the swimmer’s direction of
self-propulsion. Physically, Fswim represents the force required to
prevent an active swimmer from moving, for example by optical
tweezers. The origin of the swim pressure stems from the notion
that confined self-propelled bodies exert a pressure on the con-
tainer boundaries as they collide into the surrounding walls.
The same notion applies to molecular gases that collide into the
container walls to exert a pressure or to colloidal solutes that
collide into a semipermeable membrane to exert an osmotic
pressure. The swim pressure is the ‘‘osmotic’’ pressure of active
particles.

A dilute system of purely active swimmers exerts an ‘ideal-
gas’ swim pressure given by Pswim = nazU0

2tR/2 = naksTs in 2D.3

The swim pressure is a single-particle self contribution in
which the relevant length scale (i.e. moment arm) is the
swimmers’ run length U0tR. As discussed earlier the ratio of
the swimmer size a to the run length U0tR is the reorientation
Péclet number PeR � a/(U0tR), and this parameter impacts the
phase behavior of active systems.5 For large PeR the swimmers
take small swim steps and behave as Brownian walkers, exerting the
swim pressure Pswim = nazU0

2tR/2 = naksTs for all concentrations.
For small PeR the swimmers have large run lengths and

undergo many collisions with passive particles and other
swimmers in a time tR. The average distance traveled by a
swimmer between reorientation events is reduced and the same
is true for the swim pressure. Extending the results for a purely
active system,5 we take (for small PeR)

Pswim = naksTs(1 � f � 0.2f2), (2)

where na is the number density of active swimmers,
ksTs� zU0

2tR/2 is the characteristic ‘energy scale’ of a swimmer.
Inside the parenthesis of eqn (2) is the total area fraction
because both active and passive particles hinder the run length
of an active swimmer. Recall our discussion from Section 2 that
the displacement induced by a swimmer is the same whether it
collides into another swimmer or a passive particle. For a dilute
system f - 0 we recover the ‘ideal-gas’ swim pressure Pswim =
naksTs. As the area fraction increases, both passive and active
particles collide and obstruct the motion of swimmers, decreasing
the run length and therefore the swim pressure. The decrease in
Pswim is the principle destabilizing term that facilitates a phase
transition in active systems. This is fundamentally different than a

‡ This however does not imply that the intrinsic swimming mechanism generates
a long-range (1/r) Stokes velocity field as does an external force.16,17
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purely Brownian system where repulsive interactions (e.g.,
excluded volume) necessarily increase the pressure and have a
stabilizing effect. Recall the concept that a passive Brownian
particle with the thermal energy kBT is equivalent to a ‘‘swimmer’’
with PeB

R - N. In this work we focus on small PeR since this is
the limit that engenders interesting phase behavior in active
matter.

Fig. 3 confirms that all data from BD simulations collapse
onto eqn (2). To better understand eqn (2), we can analyze the
limits for large and small concentrations of active swimmers
relative to passive particles. Expanding the swim pressure for
small fd/fa = (1 � xa)/xa, we find

Pswim ¼ naksTs 1� fa � 0:2fa
2

� �
� naksTs 1þ 0:4fað Þfd

þO fd

fa

� �2

: (3)

The first term on the right is the swim pressure for a purely
active system, and the second term is the leading-order correc-
tion of the hindrance provided by passive particles. As expected,
it is a 2-body correction of an active swimmer colliding into a
passive particle, Bnafd.

In the other limit of small concentration of active swimmers
relative to passive particles (i.e., small fa/fd = xa/(1 � xa)),
we find

Pswim ¼ naksTs 1� fd � 0:2fd
2

� �
þO fa

fd

� �2

: (4)

Unlike the large active concentration limit, the reduction in the
swim pressure is caused entirely by the sea of passive particles.
Due to the small concentration of swimmers, a swimmer exerts
the self-term ‘ideal-gas’ swim pressure naksTs but does not
hinder the motion of other active swimmers.

3.2 Interparticle (collisional) pressure

In addition to the swim pressure, which is a single-particle
contribution to the mechanical pressure, there is also an
interparticle (or collisional) pressure arising from interactions
between the particles. Since two bodies are required for an
interaction (or collision for a hard-sphere potential) and the
relevant length scale is the particle size a, the interparticle
pressure scales as PP B n2zU0a3 B nksTsPeRf, fundamentally
different from the swim pressure. Furthermore, the interparticle
pressure monotonically increases with concentration for a
repulsive potential and helps stabilize a system. The competi-
tion between the destabilizing effect of the swim pressure and
the stabilizing effect of the interparticle (or collisional) pressure
controls the phase behavior of active systems. For clarity we split
the interparticle pressure into two contributions—collisions
induced by active swimmers and passive particles separately.

3.2.1 Active swimmer, PP
a. Extending the nonlinear micro-

rheology analysis,3 the collisional pressure contribution for
active swimmers (for small PeR) is

PP
a ¼ na

4

p
ksTsPeR þ 2kBT

� �
fgðfÞ; (5)

where kBT is the thermal energy and g(f) is the pair-distribution
function at contact. The first and second terms in the bracket
are the collisional pressures due to self-propulsion and Brow-
nian fluctuation, respectively. The former scales as BnanzU0a3

whereas the latter scales as Bnanz(D0/a)a3; the characteristic
Brownian speed D0/a replaces the swim speed U0 in the colli-
sional pressure arising from thermal noise. We again use the
total area fraction in eqn (5) since the active swimmers impart
the same departure whether they collide with a passive or an
active particle. Rigorously, the pair-distribution function is
different for each pair, i.e., gaa(f), gad(f), etc., but we assume
that they are all the same and equal to g(f) since we have taken
aa = ad. We adopt g(f) = (1 � f/f0)�1 where f0 is the area
fraction at close packing (f0 = 0.9 in this study).5,18

3.2.2 Passive particle, PP
d. The collisional pressure contri-

bution of a passive particle is given by

PP
d ¼ nd

4

p
ksTsPeRxa þ 2kBT

� �
fgðfÞ: (6)

The first term in the brackets is the interparticle pressure due to
collisions with active swimmers, which scale as ndnazU0a3 because
these collisions are induced only by the active swimmers. The
second term is the usual Brownian collisional pressure. Unlike
eqn (5) we see that the collisional pressure of passive particles has
an additional dependence on the active-swimmer fraction xa. If
there are no active swimmers (i.e., xa = 0) then eqn (6) reduces to
the usual collisional pressure of Brownian hard-spheres.19

Fig. 4 graphs the sum of the collisional pressures of the
contributions from both active and passive particles as a
function of the total area fraction. We see a dependence on
the composition of active swimmers xa especially at high area
coverage. We assume that swimmer reorientation is thermally
induced so that the translational and reorientational

Fig. 3 Swim pressure exerted by active swimmers in a mixture as a
function of the total area fraction f = fa + fd for different values of active
composition xa = fa/f and fixed PeR � a/(U0tR) = 0.1. Subscripts ‘‘a’’ and
‘‘d’’ refer to active and passive particles, respectively. The solid curve is the
mechanical theory eqn (2) and the symbols are BD simulations. The
swimmer activity ksTs � zU0

2tR/2.
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diffusivities are related via the Stokes–Einstein–Sutherland
expressions, (D0/a2)/tR = 4/3, and the ratio of the thermal energy
to the swim activity is kBT/(ksTs) = 8PeR

2/3.

4 Phase behavior

Experiments and computer simulations have shown that a
suspension of purely active particles may self-assemble into
regions of dense and dilute phases, resembling an equilibrium
liquid–gas coexistence.6–10 The source of this phase separation
is that swimmers collide and obstruct each others’ movement,
causing large clusters to form at sufficiently high concentrations.13

Now, if this active system also contained passive Brownian parti-
cles, recent computer simulations20 and experiments21 have shown
that the composition of passive particles inside the dense cluster
phase is generally larger than that in the dilute phase, as they tend
to stay inside the cluster once they are pushed into one by an active
swimmer. In contrast, the active swimmers prefer to swim freely in
the dilute phase because their activity allows them to escape the
dense clusters.

Theory and simulations have produced phase diagrams for a
suspension of purely active swimmers,5,8,15,22–24 but a mixture of
active and passive particles is yet to be thoroughly analyzed.
Recently Stenhammar et al.20 conducted Brownian dynamics simu-
lations of a mixture of active and passive Brownian particles and
used a kinetic model to locate the phase boundaries. The kinetic
model based upon Redner et al.8 accurately predicts many regions
of phase space, but due to the theory’s inherent assumptions the
lower spinodal boundary is not well characterized.

Our theory is based upon the new ‘swim pressure’ perspec-
tive which accurately predicts the phase behavior of a system of

active swimmers.3–5 Others have subsequently used the swim
pressure to study phase-separating active systems.25,26 We now
have eqn (1), an equation of state that allows us to predict the
phase behavior of the active/passive mixture.

Interpreting the total density derivative of the active pressure
as a global mechanical instability, (qPact/qf)xa,Ts,PeR

= 0, we can
identify the regions of stability in the phase diagram. This is a
purely mechanical definition of the spinodal and does not rely
upon thermodynamic arguments. As shown by the red curve in
Fig. 5, our prediction agrees well with Stenhammar et al.’s20

simulation data. Here the spinodal and the simulation data
correspond to a global dense/dilute-phase separation based upon
fluctuations in the total particle—active plus passive—density.
This is different from the phase separation that may occur locally
within each phase, as commonly seen in immiscible polymer
mixtures. There are no adjustable parameters in the comparison.

Compared to a purely active swimmer system, onset of phase
transition occurs at lower PeR when passive particles are pre-
sent. For xa = fa/f = 0.5 shown in Fig. 5, phase transition is
possible for PeR t 0.025, compared to PeR t 0.04 for a purely
active system xa = 1. Therefore, given a fixed total area fraction
the presence of passive particles makes it more difficult for
phase separation to occur, which may be an important consi-
deration in the design of experiments of active systems.

In Section 2 we discussed that the reorientation Péclet
number PeR is the quantity that gets shared upon collisions
between swimmers for PeR { 1. Using the swimmer activity
ksTs � zU0

2tR/2, we can rewrite PeR � a/(U0tR) = zU0a/(2ksTs),
which is interpreted as the interactive energy of the swimmer
(zU0)a to its swim activity scale ksTs. In Fig. 5 phase separation
becomes possible for small PeR, or large ksTs. In contrast, phase
transition in a classical thermodynamic system is usually driven
by attractive enthalpic interactions and becomes possible for

Fig. 4 Collisional pressure exerted by active and passive particles PP =
PP

a + PP
d for fixed PeR � a/(U0tR) = 0.1 as a function of the total area fraction

f = fa + fd and different values of active composition xa = fa/f. The solid
curve is the mechanical theory eqn (5) and (6) for xa = 0.3, and the symbols
are BD simulations. We take the swimmer reorientation to be thermally
induced so that kBT/(ksTs) = 8PeR

2/3.

Fig. 5 Phase diagram in the PeR � f plane in 2D for a fixed active
swimmer composition xa = 0.5. The colorbar shows the active pressure
scaled with the swim activity ksTs = zU0

2tR/2. The open and filled symbols
are simulation data of Stenhammar et al.20 with a homogeneous and
phased-separated state, respectively. The solid and dashed red curves are
the spinodals delineating the regions of stability based upon fluctuations in
the total particle density and the thermodynamic definition, respectively.
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small kBT (low temperatures). If ksTs is interpreted as the ‘‘tem-
perature’’ of active matter, Fig. 5 suggests that mixtures of active
and passive particles may exhibit a lower critical solution tem-
perature (LCST) transition,27 commonly seen in thermosensitive
polymer systems.28 The LCST phase transition is dominated by
entropy—as PeR decreases (ksTs increases), the run length of the
swimmer increases, and the particle becomes effectively larger in
size and has less space available for entropic mixing.5 However,
because PeR is the quantity that gets shared upon collisions for
PeR { 1 (and not the activity ksTs), the activity ksTs does not play
the same role as the thermal energy scale kBT in LCST phase
transitions of polymer mixtures. This further verifies that the
‘‘temperature’’ of active matter is an elusive quantity that does
not have a direct mapping to the temperature of an equilibrium
system.

5 Limits of active pressure

Recent experiments by Kümmel et al.21 analyzed the phase
behavior of a mixture of passive particles with a small concen-
tration of active swimmers (fa E 0.01). They observed swimmers
gathering and compressing the passive particles into clusters.
By varying the concentration of passive particles, they observed
a phase separation of the mixture even at very small active
swimmer concentrations.

Our BD simulations agree qualitatively with the experiments.21

The active swimmers create tunnels in the sea of passive particles,
which open a path for other trailing swimmers to move through.
This leads to the formation of large clusters composed of purely
passive particles and individual swimmers moving in the dilute
phase, as shown in simulation images in Fig. 6. Based upon our
mechanical theory, there is an equality between the Brownian

collisional pressure of the dense passive clusters and the swim
pressure of the dilute active swimmers compressing the crystals.
A video of the BD simulation is available in the ESI.†

To model these observations, it is instructive to analyze the
limits of the active pressure for large and small concentrations of
active swimmers relative to passive particles. Since the mechanical
pressure exerted by a system of purely active swimmers and purely
Brownian particles are known, we can interrogate the effect of
adding a small amount of passive or active particles into the
suspension. This may be particularly useful for further experi-
mental pursuits of active/passive mixtures.

In the limit of small active swimmer concentration relative
to passive particles, the active pressure is

Pact ¼ Posm þP00 fd;Ts;PeRð Þfa þO
fa

fd

� �2

; (7)

where the first term on the right is the osmotic pressure of a
purely Brownian suspension:

Posm = ndkBT(1 + 2fdg(fd)), (8)

and the second term in eqn (7) is

P00 fd;Ts;PeRð Þ

¼ naksTs 1� fd � 0:2fd
2

� ��
fa

þ 2nd
4

p
ksTsPeR þ 2kBT 2þ fd

2f0

g fdð Þ
� �� �

g fdð Þ

þ ndkBT=fd:

(9)

In this limit, the swim pressure and swimmers’ interparticle
collisions appear in the leading-order correction. Taking the
global density fluctuation qPact/qf = 0, we find that the
spinodal qualitatively agrees with the experiments of Kümmel
et al.21—a lower spinodal boundary of f B 0.45 and the
divergence of the interparticle pressure near close packing.
A phase diagram in the PeR � f plane for different active
swimmer compositions is shown in Fig. 6. As xa decreases the
spinodal curve lowers to smaller PeR because phase separation
becomes more difficult to observe with a smaller fraction of
swimmers. For smaller xa, the Brownian crystals have more time
to melt and dissolve into a homogeneous system, and hence the
swimmer must have a small PeR that is in commensurate with
the small xa. Kümmel et al.21 report phase separation in swimmers
with PeR E 0.04, but our theory suggests that PeR must be smaller
(PeR t 0.01) for phase separation to be possible at the small
concentration of active swimmers used in their study.

In the other limit of large active swimmer concentration relative
to passive particles, we expect phase behavior similar to those
observed in purely active suspensions.5 The passive particles can
act as nucleation sites for cluster formation, which may spark an
earlier onset of phase separation. The active pressure has the form

Pact ¼ Pact fa;fd ¼ 0;Ts;PeRð Þ þP0 fa;Ts;PeRð Þfd þO
fd

fa

� �2

;

(10)

Fig. 6 Phase diagram in the PeR � f plane in 2D for different active
swimmer compositions xa = fa/f. The solid curves are the spinodals
delineating the regions of stability based upon fluctuations in the total
particle density. The two-phase region diminishes as xa decreases. Steady-
state images from BD simulations are shown for PeR = 0.01, xa = 0.05 at
f = 0.35 (left) and f = 0.6 (right), corresponding to a homogeneous and
phased-separated state, respectively. The red and white circles are the
active and passive particles, respectively.
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where the first term on the right is the active pressure for a purely
active swimmer suspension5 (i.e., eqn (1) with fd = 0):

Pact fa;fd ¼ 0;Ts;PeRð Þ ¼ naksTs 1� fa � 0:2fa
2

� �

þ na
4

p
ksTsPeR þ 2kBT

� �
fag fað Þ

þ nakBT ;

(11)

and the second term in eqn (10) is

P0 fa;Ts;PeRð Þ ¼ � naksTs 1þ 0:4fað Þ

þ na
4

p
ksTsPeR þ 2kBT

� �
2þ fa

f0

g fað Þ
� �

g fað Þ

þ nakBT=fa:

(12)

As expected the leading-order correction to the swim and inter-
particle pressures scales as Bnafd. As shown in Fig. 6, the spinodal
curve for xa E 1 remains high because phase separation is
dominated by the hindered motion of the active swimmers.

6 ‘Thermodynamic’ quantities

Thermodynamic quantities like the chemical potential and free
energy are defined only for equilibrium systems. However,
standard macroscopic mechanical balances can be applied to
define quantities that are nonequilibrium analogs for active
systems.3,5 Here we extend the derivation of the nonequilibrium
free energy and chemical potential to mixtures of active and
passive particles, and interpret these quantities as a natural
extension for nonequilibrium systems.

The virtual work done by an external mechanical force (i.e.,
stress) due to an infinitesimal change in the system volume dV
is given by dW = �PdV where P is the applied mechanical
pressure. One can interpret this virtual work as the change in
Helmholtz free energy of the system due to an applied mechan-
ical stress, as is commonly done in elasticity theory.29 Upon
carefully imposing incompressibility of the solvent, one can
relate the nonequilibrium free energy to the mechanical pressure
of a multicomponent mixture as14

P ¼ �f þ
XNc

i¼1
fi

@f

@fi

þ f ð0Þ; (13)

where Nc is the number of species in the mixture and f (0) is the
free energy density of the pure solvent (which is arbitrary and
constant in our analysis). We interpret eqn (13) as the definition
of the free energy for nonequilibrium active systems with Pact in
place of P. For our two-component (plus the solvent) system, we
have Nc = 2 and the nonequilibrium free energy f act(fa, fd, Ts,
PeR) can be defined as

Pact þ f act ¼ fa

@f act

@fa

þ fd

@f act

@fd

: (14)

The general solution is

f act fa;fd;Ts;PeRð Þ

¼ ksTs

n
fa logfa � faf

f
10
þ 1

� ��

� 4PeRf0fa log f0 � fð Þ 1

p
1þ fd

f

� �
þ 4f
3fa

PeR

� ��

þ kBT

n
fa logfa þ fd logfdð Þ;

(15)

where n � pa2 is the projected area of a particle. This definition
for the nonequilibrium free energy agrees with the true thermo-
dynamic free energy for molecular or colloidal solutes in solution
(i.e., f act(fa = 0, fd, Ts, PeR) = f osm).14 To gain further insight into
the free energy, in the Appendix we analyze the limits of f act for
our mixture for large and small concentrations of active swimmers
relative to passive particles.

As done previously for a purely active system,3 we can derive
the nonequilibrium chemical potential for multicomponent
mixtures using purely mechanical arguments (see Appendix
C). For a mixture of active and passive particles, it is given by

na
@macta

@f
þ nd

@mactd

@f
¼ 1� fa � fdð Þ@P

act

@f
: (16)

Again this expression agrees with the rigorous thermodynamic
definition of the chemical potential for mixtures of molecular
solutes in solution.14 The chemical potential for each species i
in a multicomponent system can thus be obtained from

macti ¼ ni
@f act

@fi

�Pact

� �
; (17)

where the reference states were absorbed into the free energy.
We can invoke eqn (15) and (1) to obtain the chemical potential
for the active (mact

a ) and passive (mact
d ) species.

From the thermodynamics of mixtures, the stability criter-
ion using the free energy is given by det(q2f/qfiqfj) = 0.14 For
our system this reduces to

@2f act

@fa
2

� �
@2f act

@fd
2

� �
� @2f act

@fa@fd

� �2

¼ 0: (18)

This gives us the reorientation Péclet number as a function of
the active and passive concentrations, PeR = PeR(fa, fd).

The dashed curve in Fig. 5 is the spinodal curve using
eqn (18) for a fixed active swimmer fraction xa = 0.5. This
spinodal boundary does not agree with the simulation data of
Stenhammar et al.,20 as eqn (18) predicts a different phase
boundary than those observed in a simulation. The simulations
reflect a global dilute/dense phase separation based upon
fluctuations in the total particle (both active and passive)
density. In contrast, eqn (18) interrogates the stability of the
free energy due to fluctuations in the active particle concen-
tration while keeping the passive particle concentration fixed,
and vice versa.

This facilitates an important consideration in both experi-
ments and simulations about which variables are held fixed
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and varied. Depending on the ensemble of variables that are
held fixed (active swimmer density, composition, etc.), the
theory predicts in general different phase boundaries. To
produce a phase diagram in a simulation, one typically fixes
the overall swimmer composition xa and swimmer PeR, and
varies the total area fraction f or vice versa. This corresponds to
a global dense/dilute-phase separation based upon fluctuations
in the total particle density, which is well described by the
mechanical instability criterion (qPact/qf)xa,Ts,PeR

= 0, as shown
by the red solid curve in Fig. 5.

In the experiments of Kümmel et al.,21 the active swimmer area

fraction (fa = 0.01) and Péclet number Pe � U0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tR=D0

p
¼ 20

� �
were held fixed, and the passive particle area fraction (fd) was
varied. The ensemble of variables that we fix and vary must
therefore be considered when we predict of the phase behavior of
active mixtures. It is likely that one can conduct an experiment or
simulation where the phase behavior agrees with the thermo-
dynamic spinodal det(q2f/qfiqfj) = 0 (red dashed curve in Fig. 5).
There remains much more to the phase portrait than the existing
studies and our mechanical theory have revealed.

7 Conclusions

We developed a simple mechanical theory to address an impor-
tant question in active matter: do active particles thermally
equilibrate, and if so, what is the quantity that gets shared upon
collisions? We found that the swimmers’ activity ksTs � zU0

2tR/2
does not have the same properties of the thermal energy kBT. The
swimmers’ capability to have run lengths U0tR small or large
compared to their size a (and other length scales in the problem)
distinguishes them from passive Brownian particles whose step
size is smaller than any other length scale in the system.

We discovered that for PeR � a/(U0tR){ 1 the quantity that
gets shared upon collisions is PeR, not the scale ksTs. This was
seen in the simple mixing experiment in Fig. 1 and from
analyzing the motion of a passive particle as a probe to measure
the kinetic activity of the swimmers (ksTs). The notion of the
swimmers’ energy ksTs and/or PeR being shared via collisions is
an interesting concept that may facilitate further theoretical
and experimental studies.

Another fundamental difference between an active system and
a classical fluid was found by observing the motion of a passive
particle in a sea of active swimmers. Even after undergoing many
collisions with swimmers, the passive bath particle ceases to
move (aside from its translational Brownian motion) if the
swimmers are removed because of the damping by the solvent.
In contrast, a passive bath particle placed inside a classical
molecular or colloidal solution keeps its kBT activity even when
the other particles are removed. Because the swimmers must
continuously collide into the passive bath particle to impart
information about their kinetic activity, there is no ‘‘thermal
equilibration’’ that takes place in an active suspension.

To understand the temperature and phase behavior of active
matter, we studied a mixture of active and passive Brownian
particles. Our theory applies more generally to a mixture of

active systems with different activities. In fact, we showed that a
passive Brownian particle behaves equivalently to a ‘‘swimmer’’
with PeR - N, so the active/passive mixture corresponds to a
limiting case of a mixture of active systems with different
activities. A swimmer that takes small steps and reorients
rapidly is indistinguishable from a purely Brownian particle if
it is placed behind an osmotic barrier. For a mixture of active
particles with different, finite PeR, we would simply write the
swim and collisional pressures for each individual species Pe(1)

R ,
Pe(2)

R , etc. The total active pressure of the system is a sum of the
contributions from all species, as in eqn (1).

By understanding the dependence of the active swimmer
composition xa and the total area fraction f in each of the active
pressure contributions, we obtained an explicit equation of state
for the active/passive mixture. The key principle in deriving the
equation of state was that a swimmer imparts the same displace-
ment whether it collides into another swimmer or a passive
particle. We found that the swim pressure decreases with increas-
ing area fraction and is the destabilizing term that leads to a phase
separation in active systems. In contrast, the interparticle (colli-
sional) pressure increases monotonically with the area fraction
and helps to stabilize the suspension from phase separation. The
competition between these two effects is determined by the
reorientation Péclet number, PeR� a/(U0tR). The spinodal specifies
the regions in the phase diagram where these two opposing effects
cancel precisely, and these regions were identified in the PeR � f
space for our mixture.

We corroborated our theory with recent simulations20 and
experiments21 of active/passive mixtures. Our simple model
may be a useful tool for predicting phase behavior in both
experiments and simulations, as many regions of phase space
are difficult to explore because of experimental and computa-
tional challenges of covering the parameter space.

We found that different stability conditions give rise to
different phase boundaries, facilitating considerations in simu-
lations about which variables are held fixed and varied. The
derivative of our active pressure with respect to the total area
fraction predicts accurately the global dense/dilute phase tran-
sitions observed in simulations. To predict the local phase
separation within the dense or dilute phase (as in immiscible
polymer mixtures), a different stability criterion is required.
Finally, we extended the mechanical theory to determine the
nonequilibrium chemical potential and free energy for a mix-
ture of active and passive species.

Extension of our theory to 3D and for different particle size
ratios is straightforward. In 3D the characteristic activity scale
becomes ksTs � zU0

2tR/6 instead of zU0
2tR/2 due to the extra

degree of freedom. For a mixture of particles with different
sizes a and b, the pair-distribution function adjusts to different
collision pairs gaa(f), gad(f), etc because now the particle–
particle separation at contact is different. For a polydispersed
active system, the large clusters are no longer crystalline and
are less stable than those in a monodisperse system. Therefore
the two-phase region in Fig. 5 shrinks and shifts to smaller PeR.

In our model we neglected hydrodynamic interactions between
the particles, which may contribute additional terms such as the
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‘‘hydrodynamic stresslet’’30 to the active pressure. We also did not
consider the effects of polar order and alignment of the swimmers,
which are not necessary for phase-separating systems.

Appendix
A. Micromechanical equations of motion

The active particle dynamics are governed by the N-particle
Langevin equation

0 ¼ �zU þ Fswim þ FP þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2z2D0

p
KT (A1)

dy
dt
¼

ffiffiffiffiffi
2

tR

r
LR (A2)

where U is the translational velocity, z is the hydrodynamic drag
factor, Fswim� zU0 = zU0q is the self-propulsive swim force, U0 is
the swim speed, y specifies the swimmers’ direction of motion
q = (cos y, sin y), FP is the interparticle force between the
particles to enforce no overlap, KT and LR are unit random
normal deviates, tR is the orientation time of the swimmer, and
D0 is the Stokes–Einstein–Sutherland translational diffusivity.
The passive Brownian particles are governed by the same
equation but without the self-propulsive force:

0 ¼ �zdUd þ FP þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2zd2D0

p
LT; (A3)

where the subscript ‘‘d’’ indicates a passive particle. For simpli-
city in this work we considered spherical particles with the
same size for active and passive particles so that z = zd. The left-
hand side of eqn (A1) and (A3) is zero since inertia is negligible
for colloidal suspensions. A more detailed discussion concern-
ing the origin of the swim force and the role of hydrodynamic
interactions is available elsewhere.17

B. Limits of active free energy

To gain further insight into the free energy, we analyze the
limits of fact for our mixture system for large and small
concentrations of active swimmers relative to passive particles.
Expanding the active free energy for small e = fd/fa = (1 � xa)/xa,
we find in the limit of large active concentration

f act ¼ f act fa;fd ¼ 0;Ts;PeRð Þ þ f 0 fa;Ts;PeRð Þfd

þ kBT

n
fd log

fd

fa

� �
þO e2

� �
;

(B1)

where n� pa2 is the projected area of a particle and the first term
on the right is the active free energy for a purely active system:5

f act fa;fd ¼ 0;Ts;PeRð Þ ¼ ksTs

n
fa logfa � fa

fa

10
þ 1

� ��

�4PeRf0 log f0 � fað Þ 1

p
þ 4

3
PeR

� ��

þ kBT

n
fa logfa;

(B2)

and the second term in eqn (B1) is

f 0 fa;Ts;PeRð Þ

¼ ksTs

n
�fa

fa

5
þ 1

� ��

� 4PeRf0 log f0 � fað Þ � fa=f0

1� fa=f0

� �
1

p
þ 4

3
PeR

� ��

þ kBT

n
logfa:

(B3)

Expanding the swim pressure for small e0 = fa/fd = xa/(1 � xa),
we find in the limit of small active concentration

f act ¼ f osm þ f 00 fd;Ts;PeRð Þfa

þ 1

n
kBT þ ksTsð Þfa log

fa

fd

� �
þO e02

� �
;

(B4)

where the first term on the right is the osmotic pressure of a
purely Brownian suspension:

f osm ¼ kBT

n
fd logfd � f0 log f0 � fdð Þ½ �; (B5)

and the second term in eqn (B4) is

f 00 fd;Ts;PeRð Þ

¼ kBT

n
logfd þ 2f0 log f0 � fdð Þ½ �

þ ksTs

n
logfd � fd

fd

10
þ 1

� �
� 8

p
PeRf0 log f0 � fdð Þ

� �
:

(B6)

The influence of the swim pressure and swimmers’ interparticle
collisions are present in the correction term.

C. Mechanical derivation of the chemical potential for
multicomponent systems

The number density of an Nc-component system§ satisfies the
conservation equation

@n

dt
þ
XNc

i¼1
ri � ji ¼ 0; (C1)

where ji = niui = nihui + jrel
i is the particle flux of species i,

jrel
i = ni(ui� hui) is the flux of species i relative to the suspension

average velocity hui, which is defined as hui ¼
PNc

i¼1
fiui þ ð1� fÞuf ,

and ui and uf are the number averaged velocity of swimmer species
i and fluid at a continuum point, respectively. The total volume (or

area) fraction of the particles is f ¼
PNc

i¼1
fi. Incompressibility

requires the suspension-average velocity (particles plus the fluid)
to satisfy r�hui = 0.

§ There are Nc + 1 total components, including the solvent.
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We apply an averaged macroscopic mechanical momentum
balance to obtain an expression for jrel

i . Following the standard
Irving–Kirkwood approach, we obtain

0 ¼ �
XNc

i¼1
nizi ui � huið Þ þ r � ract; (C2)

where ract = rswim + rP is the active stress and the left-hand side
is zero since inertia is negligible for colloidal systems. Using the
relative flux jrel

i = ni(ui � hui) we arrive at a relationship between
the active particle flux and gradients in the active stress:

XNc

i¼1
zij

rel
i ¼ r � ract: (C3)

We did not rely upon the notion of a thermodynamic chemical
potential or the free energy to arrive at this expression.

We can use our mechanical derivation to define a non-
equilibrium chemical potential by analogy to the quantity
whose gradient would drive a flux:

jreli ¼ �
ni

zið1� fÞrm
act
i ; (C4)

where again f ¼
PNc

j¼1
fj . This definition is analogous to that of a

thermodynamic system where the relative flux is driven by
gradients in the thermodynamic chemical potential. Substituting
eqn (C4) into eqn (C3) and using the definition Pact � �tr ract/2,
we arrive at

XNc

i¼1
ni
@macti

@f
¼ ð1� fÞ@P

act

@f
: (C5)

For a two-component (active and passive) system, we have
na(qmact

a /qf) + nd(qmact
d /qf) = (1 � fa �fd)qPact/qf, as given in

the main text.
This relationship between the chemical potential and pres-

sure is equivalent for a system of passive Brownian particles
and active swimmers with small tR. We thus interpret mact as a
natural definition and extension of the chemical potential for
nonequilibrium systems.

Comparison to thermodynamics. From equilibrium thermo-
dynamics,14 the chemical potential of species i for a multi-
component system is given by

mi ¼ n
@f

@fi

�P
� �

; (C6)

where n is the volume (or area) of a particle. The free energy is
related to the osmotic pressure by

fa

@f

@fa

þ fd

@f

@fd

¼ f þP: (C7)

Taking the density derivative of both eqn (C6) and (C7) and
combining the results, we obtain

na
@ma
@f
þ nd

@md
@f
¼ 1� fa � fdð Þ@P

@f
; (C8)

which is identical to eqn (16) of the main text, a result obtained
using a mechanical derivation.

Therefore the mechanical derivations of the stress, momentum
balance, and flux are in full agreement with thermodynamics.
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21 F. Kümmel, P. Shabestari, C. Lozano, G. Volpe and

C. Bechinger, Soft Matter, 2015, 11, 6187–6191.
22 J. Stenhammar, D. Marenduzzo, R. J. Allen and M. E. Cates,

Soft Matter, 2014, 10, 1489–1499.
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