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Fluctuations in flows near jamming†

Erik Woldhuis,a Vijayakumar Chikkadi,bcd Merlijn S. van Deen,d Peter Schallb and
Martin van Hecke*de

Bubbles, droplets or particles in flowing complex media such as foams, emulsions or suspensions follow

highly complex paths, with the relative motion of the constituents setting the energy dissipation rate.

What is their dynamics, and how is this connected to the global rheology? To address these questions,

we probe the statistics and spatio-temporal organization of the local particle motion and energy

dissipation in a model for sheared disordered materials. We find that the fluctuations in the local

dissipation vary from nearly Gaussian and homogeneous at low densities and fast flows, to strongly

intermittent for large densities and slow flows. The higher order moments of the relative particle

velocities reveal strong evidence for a qualitative difference between two distinct regimes which are

nevertheless connected by a smooth crossover. In the critical regime, the higher order moments are

related by novel multiscaling relations. In the plastic regime the relations between these moments take

on a different form, with higher moments diverging rapidly when the flow rate vanishes. As these

velocity differences govern the energy dissipation, we can distinguish two qualitatively different types of

flow: an intermediate density, critical regime related to jamming, and a large density, plastic regime.

1 Introduction

Flowing complex media exhibit both highly nontrivial macro-
scopic rheology and spatiotemporally heterogeneous microscopic
fluctuations,1 and understanding, linking and predicting the
micro and macro behavior remains a formidable challenge.2–6

In this paper we will focus on the microscopic fluctuations and
micro-macro link for a model which describes the wide class of
complex yield-stress fluids that consist of discrete constituents
which interact through short range interactions, such as foams,
emulsions, granular media, (colloidal) suspensions and Lennard–
Jones glasses.7,8

At sufficiently low density, such disordered materials lose
their yield stress and are unjammed. The rheology for dilute
systems is Newtonian, and the particle motions lack complex
features.2 At sufficiently high density, such materials are
jammed—they have a finite yield stress, and their rheology is
then necessarily non-Newtonian.2,3 For slow, dense flows, a
phenomenological elasto-plastic scenario has emerged, where
the central role is played by localized, plastic events, called
shear transformation zones, T1 events or Eshelby inclusions.9–13

During flow, episodes of elastic loading of the system are punc-
tuated by these plastic events which lower the shear stresses, so
that the rate and magnitude of the stress drops together with the
rate of elastic loading govern the steady state. Many models have
been developed that capture this phenomenology.9,14,15 In particular
the collective organization and buildup of correlations, where one
event triggers the next, leading potentially to the formation of large
scale avalanches, have received much attention.16

In between these two extremes, i.e., with densities closer to
the jamming transition, the phenomenological scenario is far
less clear. For static packings, the jamming transition has a
critical nature as evidenced by power law scaling of response
quantities and diverging time and length scales.17,18 How this
static critical point influence the dynamics is far from under-
stood. Just above jamming, the system has a low yield stress
and the material becomes exceedingly fragile.19–24 The elastic
shear modulus vanishes, the elastic response becomes strongly
non affine, and the strain scale for which an elastic description
is valid vanishes.17,18 Nevertheless, these systems are sufficiently
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crowded that particle motion must be strongly correlated. The
question of the nature and role of fluctuations and plastic events
in flows of disordered media close to jamming is wide open—at
the very least their very weak elastic response suggests that
episodes of elastic loading will be short lived, if they even can
be distinguished. The crucial question is whether, close to jamming,
we find the same type of physics—elastic loading punctuated by
localized plastic events—as far away from jamming.

Here we address this question for one of the simplest models
for the flow of disordered media, the Durian bubble model.8 In
this over-damped, athermal model, originally developed for
the flow of foams or emulsions, particle interactions combine
harmonic repulsion—as in many models for jamming17—with
viscous like dissipation.2,3 In the version of this model used here,
the dissipative forces are linear in the relative motion Dv of two
particles in contact. The two crucial control parameters are the
shear rate _g and packing fraction f, and by varying these we can
probe two qualitatively different flow regimes. For moderate
densities, the static yield stress is low, and the flow dynamics is
complex and presumably governed by the proximity of the (static)
critical jamming point, whereas for large densities, the static
yield stress is large and deformations take the form of well-
delineated elastic loading and plastic relaxation events known
as elasto-plastic flows.

To make progress, we note that the microscopic particle
motion and macroscopic rheology remain intimately connected:
in steady flows, the energy supplied to the system must be
balanced by dissipation.25 The power input is set by the product
of shear stress s and strain rate _g. The dissipation rate is
governed locally by interactions between the constituents. In
particular, for the bubble model the energy dissipation rate is
given by the sum of Dv2 over contacts.3,25 Hence, power balance
takes the form s_g �

P
Dv2—we will determine the exact relation

below. The crucial point is that this powerful and precise con-
nection has strong implications for the magnitude of the local
fluctuations: in particular this underlies the finding that in many
weakly jammed media the local fluctuations decay sub-linearly
with flow rate, such that the relative fluctuations diverge for
slow flows.25,26

Powerful as this link is, it only predicts the 2nd moment of
the distribution P(Dv), and most aspects of the microscopic
fluctuations in flows near jamming are completely open. Is
P(Dv) essentially Gaussian or do their probability distribution
functions exhibit additional structure? Are these fluctuations
intermittent in time and/or localized in space? What are the
systematic variations with strain rate and density?

Here we address these questions and characterize the dissi-
pative fluctuations, focusing on the higher moments of Dv
which directly characterize deviations from Gaussianity, and
also probe spatiotemporal heterogeneities. We first show that
the probability distribution P(Dv) varies from near Gaussian in
the critical regime to near power law in the yield stress regime.
Similarly, the spatiotemporal distributions vary from essen-
tially homogeneous near jamming to strongly heterogeneous
in the yield stress regime. Second, we find that the nontrivial
4th and 6th moments of Dv can be related to the 2nd moment

via nontrivial scaling relations which are reminiscent of multi-
scaling in turbulence. Crucially, these scaling relations take on
a different form in the intermediate density, jamming and large
density, yield stress regimes, which suggest an objective criterion
to separate these two. As the velocity differences govern the
energy dissipation, this qualitative difference in their statistics
points to an important difference in the nature of energy
dissipation. The broad picture that emerges is that we can both
distinguish and connect two qualitatively different regimes: the
yield stress regime that exhibits the well know elasto-plastic
phenomenology seen in many other systems, and the near
jamming regime with qualitatively different and new features.

2 Numerical model

We perform simulations on Durian’s bubble model in 2D, for
systems of N = 1024 particles in a 50/50 mixture of disks of
diameter 1 and 1.4. The contact force fij between particles i and
j is only nonzero when the particles are in contact, when it is
the sum of a repulsive linear elastic force f e

ij and a linearly
viscous damping force f v

ij, where:

f e
ij = �kr̂ijdij, (1)

f v
ij ¼ �b D̂vij

� �
Dvij : (2)

Here, r̂ij is the unit vector pointing from the center of particle i
to j, dij is their overlap, Dvij is their relative velocity, and k and b
are the elastic and viscous constants.

The particles are massless so that their motion is overdamped
and the contact forces remain in balance. The velocities are then
determined by solving a matrix equation at each time step.3

Simulations become much faster for the well studied ‘mean field’
variant of the bubble model, where the dissipative forces are
calculated with respect to a mean flow.27 However this model is
less realistic and leads to anomalous results for the fluctuations
and their spatial correlations.2,3,28

The shear stress s is calculated from the contact forces via
the Born–Huang formula:29

s ¼ 1

2V

X
hiji

rxij f
y
ij ; (3)

where V is the volume of the simulation box and the sum runs
over all contacting bubbles. As the contact forces are the sum of
elastic and viscous forces, we can also define the elastic and
viscous stresses se and sv by only including the appropriate
forces in eqn (3); of course, their sum equals the total stress s,
and for the strain rates studied here, sv { se.3 In the remainder,
we express stresses in units of k, lengths in units of the average
bubble diameter, times in units of b/k and strain rates in units
of k/b.

We perform numerical simulations at constant strain rate _g
between 10�5 and 3 � 10�3, and for our system we previously
estimated that fc E 0.8423.3 We focuss on excess packing
fractions Df := f � fc from 10�4 to 0.16 but also show some
results for runs below jamming. All runs have a duration of 20/ _g
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so that the total strain is 20, and s and Dv are sampled each
0.67 percent of strain; transients are less then 1.5 units of strain
and are excluded from the averaging.

3 Power balance and phenomenology

The power supplied to the system by driving it must be
dissipated by the relative motion of the particles. As the
injected power is the product of strain rate and stress, and
the dissipated power is set by the local particle motion, power
balance sets up a powerful relation between the macroscopic
rheology and microscopic fluctuations that we explore here.

The time averaged power injected into the system is

Pin = V _ghsit, (4)

where brackets denote temporal averaging. The only source of
dissipation is the relative motion of particles, so that the rate of
energy dissipation is equal to the sum of the square of their
relative velocities, Dv2, taken over all Nz/2 contacts, where z is
the average number of neighbors:

Pout ¼
N

2
zDv2
� �

xt
� N

2
hzixt Dv2

� �
xt

:¼ Nc Dv2
� �

xt
; (5)

where brackets denote averages over space and time, Nc := Nz/2
is the total number of contacts, and we have assumed that the
fluctuations in contact number z and velocities Dv are uncorre-
lated. To check that this assumption is correct and eqn (5)
holds, we present in Fig. 1a the scatter plot of Pin vs. Pout.
Clearly, eqn (5) is correct to within a few percent.

In our simulations, hDv2ixt varies over several orders of
magnitude whereas the contact number z only varies between
3.5 and 6. Moreover, the elastic stresses se remain much larger
than the viscous stresses sv. Hence, the simplified scaling
se _g B hDv2i, which was used in earlier work to describe the
scaling behavior of the rheology of this model near jamming,3

captures the dominant trend well as shown in Fig. 1b.

3.1 Trends with D/ and _c

Power balance has important consequences for the nature of the

velocity fluctuations. Defining the relative velocity Dv :¼ Dv= _g,
the power balance equation can be written as

C Dv2
� �

xt
¼ hsixt

_g
; (6)

where C := Nc/V is the mean contact density. This form clarifies
that the relative velocity fluctuations are set by the ratio of the
shear stress s and the strain rate.

Previous results for the stress as function of density and flow
rate distinguish (at least) three qualitatively different regimes:
the regime below jamming (Df o 0), the critical regime near
jamming (Df E 0) and the yield stress regime above jamming
(Df 4 0).2,3 Using these results we can now understand the

following trends in Dv2
� �

: (i) below jamming, the rheology
becomes Newtonian (s B _g) so that from eqn (6) it follows that

the relative fluctuations Dv2
� �

are essentially independent of
the flow rate. (ii) In the critical regime, the material is shear
thinning: the stress scales as _gb, with different groups2,3,6

reporting different values of b between 0.2 and 0.5. For any

b o 1, power balance implies that Dv2
� �

diverges as _gb�1 when
_g - 0. (iii) In the yield stress regime, the stress reaches a finite

yield stress when _g - 0, and Dv2
� �

diverges as _g�1.
The divergence of the relative velocity fluctuations in the

critical and yield stress regimes implies a breakdown of the
quasistatic limit. For a meaningful quasistatic limit to exist,
characteristics of the particle positions as function of strain
should not depend on strain rate, and Dv and _g have to scale
similarly, but as discussed above, power balance forbids this
near and above jamming. Similar divergencies have been
observed in experiments on flowing two dimensional foams,26

and we note that for other models (such as the ‘‘mean field’’
versions of the bubble model8), similar arguments also imply
the breakdown of the quasi-static limit.2,25

4 Non-Gaussianity and heterogeneity

Power balance does not dictate the detailed statistics of Dv, nor
its spatial or temporal homogeneity. For amorphous, plastic
flow, one expects the energy dissipation to be heterogeneous in
space and time, with concomitant non-Gaussian behavior of
Dv. Near jamming, plastic rearrangements have been shown to
be related to quasi-localized modes30,31 which suggest a hetero-
geneous picture; on the other hand, many quantities such as
the connectivity near jamming remain fairly homogeneous.3,32–34

Here we show that near jamming Dv is Gaussian and homo-
geneous in space and time, whereas for larger densities,
progressively stronger deviations from Gaussian statistics and
concurrent spatiotemporal heterogeneity is observed. As the
velocity differences govern the energy dissipation, this qualitative
difference in their statistics points to an important difference
between the nature of energy dissipation: near jamming, this
energy is homogeneously dissipated, whereas far above jamming

Fig. 1 (a) Scatter plot of Pin := V _g hsi vs. Pout := Nc hDv2i. Straight lines
indicate equality, red (light) symbols denote high density and blue (dark)
symbols denote low density. The inset shows that in our simulations Pin

and Pout never differ more than a few percent. (b) The simplified version of
the power balance equation, used in ref. 3, ignores the variation of the
contact number and the contribution of the viscous stress. When we fix
the contact number at four, we find that this simplified version works well
for scaling, and that R := (2NhDv2i)/(V _ghsei) is within a factor two of unity.
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the energy dissipation becomes increasingly localized. As we will
discuss at the end of the paper, this suggests two distinct flow
phenomenologies.

In Fig. 2 we show the distribution of the normalized velocity

differences, P Dvj j
. ffiffiffiffiffiffiffiffiffiffiffi

Dv2h i
p� �

, for a range of densities and

strain rates. The variations in the shape of this distribution
with Df and _g immediately show that the second moment of Dv
is not sufficient to fully characterize the velocity fluctuations.
In the critical regime, i.e., for low Df and large _g, these
distributions are narrower than an exponential distribution
and approach Gaussians (Fig. 2). In contrast, in the yield stress
regime, i.e., for large Df and low _g, the tails of P(|Dv|) become
significantly fatter than exponentials—in the most extreme
case (Df = 10�1, _g = 10�5) the tail may tend to a power law,
although our range of data is insufficient to establish this with
certainty. Be that as it may, the distributions clearly indicate a
change from homogeneous to heterogeneous velocity distribu-
tions when Df is increased and _g is decreased.

To get insight into the temporal and spatial structure of the
velocity differences we have studied two quantities. To elucidate
the temporal heterogeneity of the energy dissipation, we calculate
the ratio of instantaneous to mean energy dissipation:

D := hDv2ix/hDv2ixt, (7)

where temporally homogeneous behavior corresponds to D = 1.
To quantify the spatial homogeneity, we calculate the inverse
participation ratio which measures the spatial heterogeneity of
the instantaneous energy dissipation:

IPR ¼
Dv4
� �

x

Dv2h ix2
: (8)

We recall that the IPR can vary from 1 for completely spatially
uniform Dv, to OðNÞ when Dv is concentrated on a single
contact.

As illustrated in Fig. 3, in the critical regime, both the energy
dissipation and IPR are fairly constant in time, with both D and

the IPR being of order one indicating both spatial and temporal
homogeneity. In contrast, in the yield stress regime, the energy
dissipation rate varies over many orders of magnitude. In
episodes when D { 1, little energy is dissipated, which means
that all the work done on the system is stored as elastic energy;
when D c 1, this stored energy is released. Concomittant with
this increase in temporal heterogeneity, the IPR values become
larger. Hence, in the yield stress regime, the energy dissipation
occurs in bursts that are localized in both space and time.

In Fig. 4 we illustrate the underlying spatiotemporal inter-
mittent behavior by showing snapshots of the normalized
velocity differences per particle

Dp := hDv2ip/hDv2ixt. (9)

Here Dv2
� �

p
:¼
P
j

Dvij2
�
zi, the sum runs over all contacts of a

single particle i with number of contacts zi, and hDpix = D. In
Fig. 4, left column, we show representative examples of the
essentially homogenous case that we encounter for low density
and large flow rates ( _g = 10�3 and Df = 10�3). For this particular
snapshot we selected a local minimum and maximum of the
IPR, but for these flow parameters the IPR does not vary much
with time. Moreover, the spatial fluctuations are short ranged
and lack any distinct features, and essentially appear like
random noise. In contrast, in Fig. 4, right column, we show
Dp for large density and slow flows ( _g = 10�5 and Df = 10�1).
Here, the IPR varies significantly, and we show both snapshots
where the IPR is in a local minimum and in a local maximum.
For the low IPR snapshot, the amount of dissipation is very low,
and the material is therefore in an elastic loading episode; for
the large IPR snapshot, the dissipation is strongly localized
around a core where Dp reaches almost 200, i.e. more that two
orders of magnitude larger than the mean Dp which is of order
one. Around this highly active ‘‘core’’, we can observe a quadru-
polar structure familiar for dense flows. This type of intermittency

Fig. 2 The shape of the probability density function of the normalized
velocity differences, |Dv|/hDv2i1/2, varies strongly with packing fractions
and strain rates as indicated. In this representation, a Gaussian appears
parabolic and an exponential becomes a straight line. Fig. 3 The strain dependencies of the normalized energy dissipation

Dp := hDv2ix/hDv2ixt and of the inverse participation ratio IPR :=
hDv4ix/hDv2ix2 exhibit systematic trends with Df and _g.
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is familiar for slow, dense flows, but the striking observation is that
signatures of such localized events essentially disappear near
jamming. In the ESI,† we provide four movies, showing Dp and
the evolution of D and the IPR, at Df = 10�3 and 10�1 and _g = 10�5

and 10�3, that illustrate the trends with density and strain rate in
more detail.

5 Scaling of higher order moments
of Dv

Can we capture the qualitative changes in the statistics between
the Gaussian, critical regime and the intermittent yield stress
regime? Here we show how the aforementioned spatial and
temporal heterogeneity manifests in the higher moments of
Dv, which we show to exhibit nontrivial scaling relations that
allow us to quantify the statistics of Dv in detail. These scaling
relations between the higher moments are reminiscent of
multiscaling in turbulence.35,36 Moreover, these scaling relations
allow us to distinguish two distinct scaling regimes, which
suggest objective criteria to separate the critical/jamming and
yield stress/plastic phenomenology.

We will focus on even moments of the velocity differences
hDv2ni as these are scalar,37 and restrict ourselves to n = 1, 2 and
3.38 The second moment of Dv is equal to the second moment

of what we call the dissipation rate G :¼
ffiffiffiffi
C
p

dv, and the 4th and

6th and standardized moments of dv can be written as hG4i/
hG2i2 and hG6i/hG2i3, where all averages are over both space and
time. To probe deviations from Gaussianity, we recall that when
G2 is normal distributed, G4/hG2i2 equals 3 and G6/hG2i3 equals 15.

As shown in Fig. 5a, where we plot the 4th standardized
moment of G as function of hG2i, we approach the Gaussian
limit in the critical regime where hG2i is small. However, the 4th
standardized moment of G reaches values exceeding 100
for large hG2i, which corresponds to strongly non-Gaussian
behavior as observed in Fig. 2. We note that the data does
not collapse when plotted simply as function of hG2i (in parti-
cular data at a single, fixed strain rate, does not follow the overall
trend). Inspired by the success of scaling approaches near
jamming,2–4,32,39,40 we attempt to rescale all our data by intro-
ducing a standard scaling function of the form

hG4i = hG2ia4F4(Dfb4/ _g) (10)

where the exponents a4 and b4 need to be determined numerically
by requiring scaling collapse, after which the form of the scaling
function F4 follows.

As shown in Fig. 5b, we find good data collapse for a4 = 2.36 �
0.05 and b4 = 1.3 � 0.1. Crucially, the scaling function F4 reveals
the existence of two distinct scaling regimes depending on the
magnitude of Dfb4/_g—in both, F4 takes a particularly simple
form, with F4(x) - cnst for x o 10 and F4ðxÞ �

ffiffiffi
x
p

for x 4 100.
The situation for the 6th standardized moment is analogous

to that of the 4th. As shown in Fig. 5c, we approach the

Fig. 4 False color plots showing the normalized dissipation per particle
Dp for two sets of parameters, and each at the lowest and highest IPR of a
run. For _g = 10�3 and Df = 10�3 (left column), the dissipation does not
show much distinct spatial structure, and temporal fluctuations are small.
The top panel has IPR E 3.42, hDpix E 0.96, and the bottom panel has IPR
E 6.34, hDpix E 1.06. In contrast, for _g = 10�5 and Df = 10�1 (right
column), the dissipation is strongly intermittent in space and time. The top
panel shows a homogeneous, elastic loading state when the IPR has a local
minimum (IPR E 5.4) and the mean dissipation is very low hDpix E 0.021.
The bottom panel shows a localized plastic event; here the IPR has a local
maximum (IPR E 286, hDpix E 0.70), with the central particle of the plastic
event having Dp E 188.

Fig. 5 Multiscaling relates hG4i and hG6i to hG2i. (a) If the energy dissipa-
tion rate hG2iwas normally distributed, hG4i/hG2i2 = 3 (dashed line), and we
see significant deviations of Gaussianity for large fluctuations hG2i.
(b) Scaling collapse for hG4i/hG2ia4 as function of Dfb4/ _g, for a4 = 2.33 �
0.05 and b4 = 1.3 � 0.1. The dashed line has slope 1/2. Inset: Data for
Df o 0. (c) If the energy dissipation rate hG2i was normally distributed,
hG6i = 15hG2i3 (dashed line), and we see significant deviations of Gaussianity
for large values of hG2i. Inset: Data for Df o 0. (d) Scaling collapse for
hG6i/hG2ia6 as function of Dfb6/_g, for a6 = 3.85 � 0.1 and b6 = 1.1 � 0.2. The
dashed line has slope 1. Inset: Data for Df o 0.
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Gaussian limit for small hG2i, but strongly deviate from Gaussian
behavior, reaching values of hG6i/hG2i3 of order 105 for larger
hG2i. Using the scaling form

hG6i = hG2ia6F6(Dfb6/ _g) (11)

we find good data collapse for a6 = 3.85 � 0.1 and b6 = 1 � 0.2
as shown in Fig. 5d. F6 is reminiscent of, but different from,
F4: F6(x) - cnst for x o 10, and F(x) E x for x 4 100.

We note that b4 and b6 are not particularly sensitive to the
precise choice of fc: when we adjust fc by up to �10�3, i.e., far
beyond our estimate of its error bar, our estimates for bi are not
significantly affected; moreover, our estimates for ai are essen-
tially independent of the choice of fc. We have run exploratory
simulations in smaller systems (N = 64) to see whether the
crossovers in F4 and F6 are due to finite size effects, but have
found no indications for this.

Finally, to see if the scaling regimes expressed in eqn (10)
and (11) extend below jamming, we have also analyzed data for
Df o 0. As shown in the insets of Fig. 5, the data for 4th and
6th moment of hGi for small |Df| scale as hG4i = hG2ia4 and hG6i
= hG2ia6 as long as Df is not too negative. Some deviations for
the 6th moments for relatively large _g can be seen in the plateau
region—whether these are physical, or due to numerical artefacts
(the code was developed for Df 4 0) we cannot determine.
Nevertheless we believe that the plateau region extends into the
Df o 0 regime—when crossing the Df = 0 boundary at finite
flow rate, nothing dramatic occurs in the nature of the fluctua-
tions, consistent with the analysis of a robust powerlaw elastic
correlation length across Df = 0 shown recently.13

6 Conclusion and outlook

We have probed the statistics, spatial and temporal organization
of the local energy dissipation in a model for sheared disordered
materials, and observe strong variations with the control para-
meters Df and _g. Broadly speaking, for low densities and/or fast
flows, the fluctuations become nearly Gaussian, and spatial and
temporal fluctuations are small. The rheology in this regime is
that of a powerlaw fluid, and may be amenable to simple, mean-
field modeling.2,3 In contrast, for large densities and/or slow
flows, the fluctuation distributions become very wide, and
strongly heterogeneous in space and time. This broad trend is
intuitive: for large densities, the material can be deformed
elastically over a substantial range, and the dynamics is a mix
of elastic loading and plastic, dissipative events, whereas for low
densities near jamming, the elastic range vanishes and the
dynamics becomes more homogeneous.

Surprisingly, our results for the scaling of the fluctuations
(eqn (10) and (11)) show that, in addition to these overall
trends, we can clearly distinguish two qualitatively different
regimes, which we now refer to as a critical and a plastic
regime. As shown in Fig. 6, where we sketch a schematic state
diagram, these regimes are connected via a smooth crossover,
governed by the ratio Dfb/ _g (pink, dashed line). The distinction
between these regimes and the form of this crossover follows

from the crossovers observed for both hG4i and hG6i. Even
though our best estimates for the exponents b4 and b6 are
slightly different, they are equal to within error bars, and we
suggest that both scaling relations eqn (10) and (11) point to
the same crossover, with b E 1. We further suggest that the
crossover between the plastic and critical regimes is related to
rheological crossovers observed previously.2,3

We now briefly summarize the phenomenology in the critical
and plastic regimes, and discuss the relation to quasistatic flows
as well as to the quasistatic jamming point.

Critical regime

In the critical regime, eqn (10) and (11) reduce to a simple form,
reminiscent of multiscaling of higher moments of the velocity
differences observed in turbulence:

hG4i = hG2ia4, (12)

hG6i = hG2ia6. (13)

For large _g and small |Df|, where G is small, this predicts that
the fluctuations approach a Gaussian, consistent with what is
shown in Fig. 2, and as shown in Fig. 3 and 4, the temporal and
spatial fluctuations become small here. However, the fluctua-
tions become increasingly non-Gaussian when one approaches
the jamming point from the critical regime. As discussed above
(see Fig. 1), the combination of powerlaw rheology and power
balance dictates that the 2nd moment of the relative velocity
fluctuation distributions hG2i diverges when _g - 0. In that
case, eqn (12) and (13) imply that the fluctuations become
strongly non-Gaussian, although the ratio hG4i/hG2ia4 remains
finite and fixed.

Plastic regime

In the plastic regime, the (simple) expressions of F4ðxÞ �
ffiffiffi
x
p

and F6(x) B x (see eqn (10) and (11)), indicate a very rapid

Fig. 6 Regimes in the (Df, _g) plane based on our scaling results for the
moments of G. Our data indicates a crossover, at _gB Dfb for bE 1 (purple,
dashed) which separates the critical and plastic regime as indicated. The
quasistatic regime can smoothly be reached from the plastic regime. Our
data clearly evidences critical behavior for Df o 0 at finite flow rate,
although the nature and location of the crossover to the deeply unjammed
regime is unclear. Note that while the jamming point (red dot) plays a
crucial role in organizing the physics, the line Df = 0 has no particular
significance for _g 4 0.
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growth of the non-Gaussian behavior when _g - 0: the ratio
between, e.g., hGi and hG2ia4, diverges, in stark contrast to what
happens in the critical regime. This divergence is consistent
with the avalanche-like phenomenology observed in strongly
jammed quasistatic or very slow flows, that have been studied
extensively.11,16,43 Such flows proceed by a sequence of plastic
events localized in space and time, which are referred to
as shear transformation zones, T1 events or Eshelby events,
with concomitant sharp drops in the stress just after such a
plastic event.

Outlook

We close by putting our results in a wider context. Earlier work
on a probe particle pushed through a packing at densities
below, near and above jamming, evidenced multiscaling of
the particles fluctuations.41 At present it is an open question
if and how these and our observations are related. Fluctuations
of flowing matter have also received widespread interest in the
context of dynamical heterogeneities42—how to relate those
observations to ours is an important open question. Our results
are obtained for a simple viscous model where the dissipative
forces scale as Dv. In more realistic systems, dissipation can
take a more complex form such as pDvx, where x E 2/3 in
foams,5 and x tends to zero in frictional systems. As long as x
remains positive, the power balance suggest a divergence in the
limit of vanishing strain rates, and it would be interesting to see
what types of multi scaling this yields. Intriguingly, the fric-
tional case is marginal as far as power balance is concerned,
and it is an open question whether a similar divergence of the
strength of the relative fluctuations arises then.

Finally we briefly discuss the role of the static jamming
point at Df - 0, _g - 0. Even though this point appears to
organize much of the rheology and fluctuations of disordered
media, we note here that the nature of the crossover between
the critical and plastic regime in both the present and prior
studies strongly indicate that the approach to the point
depends on the order of limits. For example, quasistatic
simulations performed at the jamming density35,43 require a
very careful analysis. More generally, the relation between
the purely quasistatic, linear response phenomenology near
jamming,17 and the rheology near jamming needs clarification.
For example, for flows near jamming, power-balance dictates
that at fixed _g the fluctuations grow in magnitude when Df is
increased. In the case of elastic deformations near jamming,
various measures of randomness and non-affinity diverge when
decreasing the density towards the jamming density.17,18 These
completely opposite trends highlight that the relation between
elastic and viscous quantities is highly intricate near jamming.
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M. van Hecke, Phys. Rev. E: Stat., Nonlinear, Soft Matter
Phys., 2009, 79, 066318.

6 T. Hatano, M. Otsuki and S. I. Sasa, J. Phys. Soc. Jpn., 2007,
76, 023001; T. Hatano, J. Phys. Soc. Jpn., 2008, 77, 123002;
T. Hatano, Prog. Theor. Phys. Suppl., 2010, 184, 143.

7 G. Katgert, B. P. Tighe and M. van Hecke, Soft Matter, 2013,
9, 9739.

8 D. J. Durian, Phys. Rev. Lett., 1995, 75, 4780; D. J. Durian,
Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip.
Top., 1997, 55, 1739.

9 M. L. Falk and J. S. Langer, Phys. Rev. E: Stat. Phys., Plasmas,
Fluids, Relat. Interdiscip. Top., 1998, 57, 7192.

10 M. Dennin, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2004, 70, 041406; M. Durand and H. A. Stone, Phys. Rev.
Lett., 2006, 97, 226101; A. L. Biance, S. Cohen-Addad and
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