Open Access Article. Published on 04 August 2015. Downloaded on 1/18/2026 2:50:31 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Soft Matter

CrossMark
&click for updates

' ROYAL SOCIETY
OF CHEMISTRY

Nonlinear electro-osmosis of dilute non-adsorbing

polymer solutions with low ionic strength

Cite this: Soft Matter, 2015,

11, 7402 Yuki Uematsu

Nonlinear electro-osmotic behaviour of dilute non-adsorbing polymer solutions with low salinity is
investigated using Brownian dynamics simulations and a kinetic theory. In the Brownian simulations, the
hydrodynamic interaction between the polymers and a no-slip wall is considered using the Rotne—Prager

approximation of the Blake tensor. In a plug flow under a sufficiently strong applied electric field, the polymer
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migrates toward the bulk, forming a depletion layer thicker than the equilibrium one. Consequently, the
electro-osmotic mobility increases nonlinearly with increasing electric field and becomes saturated. This
nonlinear mobility does not depend qualitatively on the details of the rheological properties of the polymer

solution. Analytical calculations using the kinetic theory for the same system quantitatively reproduce the
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1 Introduction

Electro-osmosis is observed widely in many systems such as
colloids, porous materials, and biomembranes. It characterises
the properties of interfaces between solids and electrolyte
solutions.”” Interest in the applications of electro-osmosis
has been growing recently. For instance, it is used to pump
fluids in microfluidic devices, as it is more easily implemented
than pressure-driven flow.? Its application to electrical power
conversion in chemical engineering is also very fascinating.*”
When the electrokinetic properties of a surface are characterised
by a zeta potential, the Smoluchowski equation is often employed
in conjunction with measurements of the electro-osmotic or
electrophoretic mobilities. However, the validity of this equation
should be considered more seriously. It is derived from the
Poisson-Boltzmann equation and Newton’s constitutive equation
for viscous fluids. The zeta potential is defined as the electrostatic
potential at the plane where a no-slip boundary condition
is assumed. When these equations cannot be validated, the
Smoluchowski equation is also questionable. The Poisson-
Boltzmann equation, the simple hydrodynamic equations, or
both sometimes do not work well for a strong coupling double
layer,® inhomogeneity of viscosity and dielectric constant near
the interface,””® and non-Newtonian fluids,” ' for example.
To control the electrokinetic properties of charged capillaries,
the structures of liquid interfaces in contact with charged
surfaces are modified by grafting or adding polymers.”® In
capillary electrophoresis, for example, the electro-osmotic flow
is reduced by grafted polymers on the interfaces. Several studies
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results of the Brownian dynamics simulation well.

of surfaces with end-grafted charged and uncharged polymers
have also been reported.**® Under a weak applied electric field,
the grafted polymer remains in the equilibrium configuration,
and the resultant electro-osmotic velocity behaves linearly with
respect to the electric field. To measure the mobility of such a
surface, the hydrodynamic screening and anomalous charge
distributions due to the grafted polymers are important.'*™°
When a sufficiently strong electric field is applied, the polymers
are deformed by the flow and the electric field; thus, the electro-
osmotic velocity becomes nonlinear.'® Note that the end-grafted
polymers cannot migrate toward the bulk, as one of the ends is
fixed on the surfaces.

When we add polymers to solutions, a depletion or adsorption
layer is often formed near a solid wall, as well as diffusive layers of
ions in equilibrium states. The interaction between the polymers
and the wall determines whether the polymers are depleted from or
adhere to the surfaces. The thickness of the depletion or adsorption
layer is of the same order as the gyration length of the polymers.
When polymers adhere to the wall, the viscosity near the wall
becomes large, so the electro-osmotic mobility is strongly
suppressed.’® Moreover, it is known that an adsorption layer
of charged polymers can change the sign of mobility.”*'>* The
curvature of the surface also modulates the surface charge
density and even increases the mobility beyond the suppression
caused by viscosity enhancement.”®

Electro-osmosis of a non-adsorbing polymer solution has
been analysed in terms of two length scales: the equilibrium
depletion length §, and the Debye length 1.”?® In the depletion
layer, the viscosity is estimated to be approximately the same as
that of the pure solvent, and it is smaller than the solution
viscosity in the bulk. When the Debye length is smaller than the
depletion length, the electro-osmotic mobility is larger than
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that estimated from the bulk value of viscosity. Typically, for
10 mM electrolyte solutions, one has 4 ~ 3 nm and J, &~ 100 nm.
In such a case,”*?® an electro-osmotic flow with a high shear rate is
localised at a distance / from the wall. Thus, the electro-osmotic
flow profile and resultant electro-osmotic mobility are almost
independent of the polymers. Such behaviours are experimentally
observed in solutions of carboxymethyl cellulose with urea.”” On
the other hand, in the solutions of small polymers with low
salinity (typically for 0.1 mM electrolyte solutions, 2 ~ 30 nm
and J, ~ 5 nm), the electro-osmotic mobility is suppressed by
the polymeric stress.>

When a sufficiently strong electric field is applied, the electro-
osmosis of a polymer solution shows nonlinear behaviours.>”*’
These nonlinearities are theoretically analysed by models of
uniform non-Newtonian shear-thinning fluids.”™** Assuming
that polymers remain in the interfacial layers and viscosity
depends on the local shear rate, as in power-law fluids, their
phenomenological parameters differ from those in the bulk, as
the concentration in the interfacial layers differs from the bulk
concentration.”” Thus, the understanding of nonlinear electro-
osmosis remains phenomenological. Furthermore, when shear
flow is applied to polymer solutions near a wall, it is experimentally
and theoretically confirmed that cross-stream migration is induced
toward the bulk.**>> The concentration profiles of the polymer
near the wall have been calculated, and the depletion length
dynamically grows tenfold larger than the gyration radius.* How-
ever, these hydrodynamic effects in the electrokinetics have not
been studied to date, to the best of our knowledge.

In this context, this paper discusses another origin of
nonlinearity, which is induced by hydrodynamic interaction
between the polymer and the wall, considering mainly situations
where d, « A. For this purpose, this paper is organised as follows.
Section 2 presents a toy model of nonlinear electro-osmosis of dilute
polymer solutions. Section 3 describes the Brownian dynamics
simulation, and Section 4 presents the results of the simulation.
In Section 5, we discuss an analytical approach to nonlinear electro-
osmosis by using the kinetic theory of cross-stream migration.*
Section 6 outlines the main conclusions.

2 Toy model

First, we propose a toy model for electro-osmosis of polymer
solutions. A dilute solution of non-adsorbing polymers is
considered. The viscosity of the solution is given by

n =no(1 + nsp), 1)

where 1, is the viscosity of the pure solvent, and 7, is the
specific viscosity of the solution. The gyration length of the
polymers is defined as d,, which is of the same order as the
equilibrium depletion length. It is assumed that the polymers
have §, ~ 100 nm. Ions are also dissolved in the solution with
the Debye length 4. When well-deionised water is considered,
the Debye length is on the order of 2 ~ 10° nm, although such
salt-free water is rarely realised owing to the spontaneous
dissolution of carbon dioxides. The interfacial structure near
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a charged surface is characterised by A and d,. When an external
electric field is applied, a shear flow is imposed locally within a
distance A from the wall, and the resultant shear rate is

o ME

~—, 2

P (2)
where u, is the electro-osmotic mobility of the pure solvent and
is typically estimated as uy, ~ 10~® m® (V s)~". According to
studies of cross-stream migration in uniform shear flow,*! the
depletion layer thickness depends on the shear rate,

& &~ do(t)), 3)
where 7 is the characteristic relaxation time of the polymers,

n 503
~ ISBT’ ()

T

where kgT is the thermal energy, and is typically 10™* s at room
temperature. Using eqn (2) and (3), the depletion length in the
presence of the applied electric field E can be expressed as

(3() for £ < E()7
E\2
o=~ (-) o9 for Eg < E<Ey, (5)
Ey
A for £} < E,

where E, = A/tuy, and E; = Ey+/1/d. Here, for simplicity, we
assume that the depletion length does not exceed the Debye
length. The effective viscosity in the double layer is given by

0
Negt =~ Mo [1 +’15p(1 —1)}7 (6)

and the nonlinear mobility can be estimated as u =~ po(1o/Ness)-
Therefore, the mobility is obtained as

Ho
- for £ < Eo,
1+ nsp(l - (b()//n))
p~ Fo . for By < E<E, 7)
1+ng,(1 = (E/E1))
m for E} < E.

Fig. 1(a) schematically shows the thickness of the depletion
layer as a function of the electric field strength. Fig. 1(b) shows
the nonlinear electro-osmotic mobility. The mobility increases

Fig. 1 (a) Depletion length as a function of the applied electric field. (b)
Electro-osmotic mobility as a function of the applied electric field.
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and is saturated with increasing electric field. The threshold
electric field E, is typically 10° V. m™*, which is experimentally
accessible.

3 Model for simulation

In this section, our method of Brownian dynamics simulation
is described. As shown in Fig. 2(a), a dumbbell is simulated in
an electrolyte solution with a no-slip boundary at z = 0. The
dumbbell behaves like a dilute solution. The solvent is
described as a continuum fluid with the viscosity n, and fills
the upper half of the space (z > 0). Electrolytes are also treated
implicitly with the Debye length A = k', The dumbbell has two
beads whose hydrodynamic radii are a, and each bead consists
of many monomeric units of the polymer [see Fig. 2(c)]. The
positions of the beads are represented by x; and x, [see Fig. 2(b)].
Then we solve the overdamped Langevin equations™® given by

dx,y

ds

= Up (Zn)(sax + Z( Z;’;F,nﬁ + kg TvmﬁGZ?)
" (8

+€VVKX7 forn:1727 d:'x7y7z7

where X, is the « component of vector X,,. Furthermore, u(z)
is the external plug flow, V,, = 0/0x,,, G is the mobility tensor,
F, = =V, U is the force exerted on the nth bead, and U is the
interaction energy given as a function of x,. &, is the thermal
noise which satisfies the fluctuation-dissipation relation as

(Ens)mp(t)) = 2ksTGLES(t — £). 9)

To include the effects of the no-slip boundary, the Rotne-Prager
approximation for the Blake tensor** is used as the mobility
tensor for distinct particles (n # m),>>*® although it is valid
only for particles separated by a large distance. In this study,

I | UO(Z) adumbbell
T * wz
D | . APk
1/~ ’
& i"_ -‘__- T z wll 1
// ‘?:r?,~~ ~L T—»ft — PR S
~~~ &/
L * .’ 2 no-slip boundary
.’ ETEE. -
P 4 i . L2
. G LT
Fig. 2 (a) Dumbbell in the simulated box with L x L x D. A periodic

boundary condition is imposed at the x—y plane. (b) An x—z projection of
the dumbbell in the electro-osmotic flow. (c) Enlarged illustration of the
bead in the dumbbell. It is composed of many monomeric units of the
polymers.
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we neglect lubrication corrections for nearby particles.’” The
Blake tensor for the velocity at x, induced by a point force at x;

with the no-slip boundary at z = 0 is given by the Oseen tensor
and the coupling fluid-wall tensor as**

Gap(x2,%1) = Sup(q) + Grp(xzx1), (10)

where g = x, — x4, R = x, — X4, and X; is the mirror image of x;
with respect to the plane z = 0 [see Fig. 2(b)]. The Oseen tensor
is given by

1 /o
Sup(q) = m(ﬁ +

qocf]/i) (11)
9 ¢)

where g is the magnitude of g. The second term in eqn (10) is
Goplx2,%1) = =S,p(R) + 2,°(1 — 20) Vi“Syp(R)
— 224(1 — 20p,)S.z,5(R), (12)
where
Sup(4) = Vg Sap(9)s (13)

and V,, = 0/0q,. The Rotne-Prager approximation of the Blake
tensor is given by®?*>*

a? a? B
(1 +€V12 +€V22>Gaﬁ(x2,xl) + 6’(614)
for ¢ > 2a,
Uole 9% (¢ 48
|8, — = 8,5 —
6m70a{ 4 32a( P32

@ a
+(1 +gVit Evzz) Giplxz, 1) + 0 (o)

Glp " (x2,x1) =

for ¢ < 2a.
(14)

The mobility tensor for the self-part is given by®?>>*

Gyj' () = lim G (x,x1)
0 0 1y (2)
where
1 9a 1/a\3
= 1= =4 _(= 0(q* 1
#() 6‘rmoa[ 16z + 8(2) } + C(a )’ (16)
1 9a 1/a\3 4
_ B (g 0
) 6nyga [1 8z + 2(2) } + C(a ) (17)
Finally we obtain the mobility tensor as
W= SumGa (2n) + (1 — ) Gop " (XnyXom)- (18)

The non-uniform mobility term in eqn (8) can be simplified
within the Rotne-Prager approximation of the Blake tensor

This journal is © The Royal Society of Chemistry 2015
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because the following relation holds:

> VGl (x, %) = 0. (19)
B=x.y,z
Thus, the non-uniform mobility term is rewritten as
Z V,H/;GZ’;; = 6062vn::“L (Zﬂ)' (20)

m,f

The interaction energy includes the spring and bead-wall
interaction given by

U=U(g)+ Y UV, (21)
n=1.2
where U® is the spring energy,
H , .
7q , Hookian dumbbells,
vw=3 , :
g ln[l - (i) } FENE dumbbells,
2 90
(22)

where a FENE dumbbell is a finitely extensible nonlinear elastic
dumbbell, and the parameter b = Hgq,*/kgT is defined for
convenience. U" is the bead-wall interaction,® which is purely
repulsive:

U (z) = WE<§>IO_<§>4+§} for z < a,

0 for z > a.

(23)

Eqn (8) is solved numerically. A reflection boundary condition
is set at z = D. When the centre of the dumbbell crosses the
boundary, the z coordinates of each bead are transformed from z
to 2D — z. In the lateral directions, periodic boundary conditions
are imposed. The size of the lateral directions is L x L.

4 Results of simulation

The concentration and velocity profiles are calculated as

c(z) = %<6 <z -4 ; Zz) >7 (24)
and
. 1 .
bu(z) = m<n_zhz I'IllIl(Z, Zn)an>7 (25)

where §(z) is the delta function, ou(z) = u(z) — wuo(z) is the
increase in velocity due to polymeric stress, and (---) is the
statistical average in the steady state. Eqn (25) is derived in
Appendix A.

For a surface with a small zeta potential compared to kgT/e,
where e is the elementary charge, the imposed electro-osmotic
flow uy(2) is given by

Uo(2) = poE(1 — ™), (26)

where p, is the electro-osmotic mobility in the pure solvent,
and E is the applied electric field.> Eqn (8) is rewritten in a

This journal is © The Royal Society of Chemistry 2015
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Table 1 Simulation parameters. N, is the number of total steps, N; is the

number of interval steps for observation, N, is the number of sampling for
each parameter set, and At is the increase in time

Hookian FENE b = 600 FENE b = 50
N, 5 x 10%° 5 x 10" 25 x 10%°
N; 5 x 10° 5 x 10° 25 x 10°
Nm 3 3 5
At 0.01 0.0025 0.0001

dimensionless form with the length scale dg = \/kgT/H and
time scale © = 6myya/4H. Different types of dumbbells are
simulated using the parameters listed in Table 1.

Note that the simulated systems are treated as dilute systems,
and the linearity with respect to the bulk polymer concentration
is preserved. After sample averaging, we obtain the concen-
tration at the upper boundary ¢(D), which deviates slightly from
(L’D)"" because of the inhomogeneity near the surface. Here-
after, we define the normalised concentration as

i) = C"((;)).

(27)

The velocity increment 0u(z), as well as the concentration profile, is
linear with respect to ¢(D). For convenience, we set a characteristic
concentration ¢, = 0.15, °, and the nonlinear electro-osmotic
mobility is defined as

¢y ou(D)
D) E

H(E) = o + (28)
The top boundary is placed at D = 1004,, the lateral size is set to
L=10003,, and the Debye length is set to 4 = k™" = 105,. We also
set w = 3kgT and define a hydrodynamic parameter #* as®'

. a

h* = N 0.25.
Fig. 3 shows the steady-state profiles of the Hookian dumbbell
concentration as functions of the distance from the wall. In the
equilibrium state of E = 0, the profile shows a depletion layer
whose width is of the same order as the gyration length J,.
When the applied electric field is increased further, the deple-
tion layer becomes larger than the equilibrium one, and a peak
is formed. The inset in Fig. 3 shows the depletion length as a
function of the applied field. The depletion length is defined by
the position of the concentration peak. It shows power-law
behaviour with an exponent of 0.22, which is much smaller
than that of 2.0 for a uniform shear flow.*" The value of
concentration at the peak also increases as the electric field
increases.

The results given above are for the Hookian dumbbell which
is infinitely extensible with shear deformation. To consider more
realistic polymers, the finitely extensible nonlinear -elastic
(FENE) dumbbell is simulated. Fig. 4(a) shows the concentration
profiles at E = 1000E,. Interestingly, one-peak behaviour is also
observed in the FENE dumbbells. For the Hookian dumbbell, the
concentration near the surface remains finite. On the other
hand, for the FENE dumbbells, the concentrations near the
surface are negligibly small. Fig. 4(b) plots the electro-osmotic

(29)
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Fig. 3 Concentration profiles of Hookian dumbbells under various
applied electric fields. Inset shows the depletion length as a function of
the applied field. The points are obtained by the Brownian dynamics

simulation, and the line is fitted by 6/0¢ = A(E/Eo)?, where A = 7.08, and
B =0.22.
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(@) z/8o (b) E/E,
Fig. 4 (a) Concentration profiles of the polymers at E = 1000E, in

different types of dumbbells. (b) Nonlinear electro-osmotic mobility with
respect to E.

mobilities with respect to the applied electric field. The resultant
electro-osmosis clearly increases nonlinearly with respect to the
applied electric field. When the applied field becomes stronger,
the mobility increases and is saturated, similar to that in the toy
model. The two types of dumbbells have different rheological
properties in the bulk,**** so this nonlinearity is not due to the
rheological properties of the dumbbells. On the other hand, the
mobility is almost constant for E < 10E,, and this threshold of
linearity is larger than E,, which is predicted by the toy model.
Likewise, saturation is observed when E ~ 10°E,, which is larger
than E;.

To clarify the difference in the profiles near the surface, (g?)
and (g,%/q”) are plotted with respect to the distance from the
surface. Fig. 5(a) shows the profiles of (¢,>/¢*). In the bulk, they
approach 1/3, which means that the dumbbells are distributed
isotropically. Near the surface, the polymers are inclined by the
shear flow. The Hookian dumbbell has the largest angle
between the z axis and the dumbbell direction. Fig. 5(b) plots
the profiles of (¢*). In the bulk, they approach 36,, which is
their equilibrium value. Near the surface, they become larger
because the polymers are elongated by the shear flow. For the

7406 | Soft Matter, 2015, 11, 7402-7411
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Fig. 5 (a) Profiles of (q,2/q®) at E = 1000E, in different types of dumbbells.
(o) Profiles of ((q/d0)%) at E = 1000E, in different types of dumbbells.
Curved lines are calculated using egn (62) and (71).

FENE dumbbells, saturation of the dumbbell length is observed.
These behaviours differ greatly from the minor differences in the
concentration profiles.

5 Kinetic theory

In this section, a kinetic theory for a dumbbell is developed on
the basis of the Ma-Graham theory.*' The probability function
¥ (x1,X,,t) obeys the continuity equation

oY . .
E =-V- (x1 lII) -V, (XQ‘P), (30)
where x,, is the flux velocity given by*?
Sny = t0(20)0xs — Y G Viup(U + kT In ). (31)

m,f

In the kinetic model, the beads are treated as point-like particles.
Thus, the mobility tensor is obtained by using G® instead of GX*®
for both the self and distinct parts. The continuity equation can
be rewritten using g and r as

ok 4 .
E = —V,« . (,}l{l) — Vq . (qu), (32)
where r = (x; + x,)/2 is the centre of the mass of the dumbbell.

We also define V; and V, as

1

Vv, = Ev, Vo (33)
1

V), = EV, +V,. (34)

Then, the probability function is also regarded as a function of
r and gq. Here we neglect the interaction between the wall and
the beads. The flux velocities for r and q are obtained as

1 LGP
Fy = E[M()(Zl) + uo(22)]0xs + EG“/‘Fﬁ

(35)
kT - «
+ TG,X[;V,]/; In¥ — Dmﬁv,ﬁ In¥?,
‘}a = [MO(ZZ) - uO(Zl)]éxot - GzﬁF/S;
(36)

kT - A
+ BTGOC/;V,./; In¥ — kg TGa/quﬁ InY,

This journal is © The Royal Society of Chemistry 2015
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where F® = —V,U°® is the spring force, and DX is the Kirkwood
diffusion tensor, which characterises the diffusivity of macro-
molecules and is given by

_kBT(G11+G12+G2I +G22)

DX 7 (37)

G and G are variants of the mobility tensors defined as
G=G" - G+ G* - G*, (38)
G=G" - G"” - G + G (39)

The concentration field ¢(r,t) can be obtained by integrating the
probability function with respect to the spring coordinate. It is
given by

ctr.) = [¥0. 0,04 (40)
We also define the probability function only for the spring
coordinate as

7 'P(h q, t)

V(g,tr) = R (41)

These new fields satisfy the continuity conditions, such that

dc .
5= Vo (e),). (42)
o =9, (), (3

where (- - -), represents the average with the spring coordinate:

:M:J ;

(o= (1, g, 0)dg

(44)

For the limit of ¢ « r, G and D* can be expanded using r.
Keeping only the leading term, we obtain

—-q: 0 —yqx

N N P @)
o 32mn,z2 4 Xy ’
19x A9y —24:
kgT 3a
K e B JR— ..
D" = D {I+ 7 S(q)} 4y (46)
where
2 27 -5/2
qX + ql"

y= |1+ ) 47
1= 142 (47)

Note that the approximation is more accurate than that in a
previous study®' as that study considered only ¥ & 1, which is
not satisfied near the surface. With the approximation, eqn (36)
is averaged by ¥, and finally we obtain the concentration flux
for the z direction as

eli=), = ctnis(2) — - [e(DK),]. (18)
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where
L _
mig(2) = §<GZ,;F/1 - kBTV,,,;G:,;>q

_ 3
 64mi,z2

x <x(qui + quﬁ) — 2. F? — 2k T (1 — 1)>,,'

(49)

Eqn (48) indicates two opposite fluxes of the polymers due to
the external flow field. One is the migration flux from the wall
toward the bulk and originates from the hydrodynamic inter-
action between the wall and the force dipoles.* The other is the
diffusion flux from the bulk to the surface wall and is not found
for polymers in uniform shear flows.*" Note that the second
flux includes not only the ordinary diffusion flux (sz>quzc, but
also the diffusion flux due to g inhomogeneity, cV,,(Dx),.
When the external shear flow is uniform, the second flux
vanishes, and the depletion length is proportional to the square
of the shear rate, as the migration velocity is proportional to the
normal stress difference.’ In a plug flow, the diffusion flux
suppresses the growth of the depletion layer, and this behaviour
may explain why the exponent of the depletion length is much
smaller than 2.0 in a uniform shear flow. In the steady states of
electro-osmosis, the total flux in eqn (48) becomes zero; thus,

de ¢ . _d<D§>q
dz <sz>q Hmig dz ’

This equation shows that the migration flux and the diffusion
flux are balanced at the peak of the concentration profiles.
Finally the concentration profile is calculated as

(50)

. f ; () AP0 4 (51)
c=c¢ | Umig(z) — Z'|.
b €Xp b <Dz: , g dz
The resultant flow profile can be calculated as
1 Z
ou(z) = ——J a? ()d7, (52)
MoJo ™~
where 6P is the polymeric part of the stress tensor:
6P = c(qF®)g — cksTL (53)

To obtain explicit expressions for ¢ and Ju, it is necessary to
estimate g, (Dy)q, and oP. For this purpose, eqn (43) should
be analysed. However, eqn (43) is highly complicated. Even
without the wall effects, it cannot be solved exactly, so several
approximation methods have been proposed.** For simplicity,
all the hydrodynamic interactions are ignored; thus, the con-
tinuity equation is given as

5k 4 duo ZF; ~ 2kB T

or ~Var KE 4022 = 6rmoa> ¥ 6mnya

For the Hookian dumbbell, eqn (54) can be solved for the second
moment of g, and for the FENE dumbbell, a pre-averaged

Ve?|.  (54)
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approximation*"** is employed. The curved lines in Fig. 5 are
calculated using these approximations, and they exhibit good
quantitative agreement with the simulation results. Appendix B
gives approximate expressions for these quantities of the Hookian
and FENE dumbbells.

Fig. 6(a), (c), and (e) show the concentration profiles for the
applied field E = 1000E,. The points are obtained by the Brownian
dynamics simulation and the curved lines are obtained by the
kinetic theory. The theoretical calculations quantitatively cover
the simulations well. Moreover, they reproduce the differences in
the concentration near the surface between the Hookian and
FENE dumbbells, as the migration velocity can be approximately
proportional to (x), (see Appendix B), and it is greatly suppressed
in the Hookian dumbbells. Fig. 6(b), (d), and (f) show the non-
linear electro-osmotic mobilities with respect to the applied field.
The theoretical curved lines also exhibit acceptable agreement
with the simulation results. However, they are not as consistent
with the simulation results under weak applied electric fields, as
the equilibrium depletion layer is not considered in the kinetic
theory.

1.2 1
11 0.95]
0.8} 09|
g
o 06 3 0.85]
0.41 0.8 L
: S 0.75} fime * .
02 Hookian Hookian
0 P 0.7 ‘ s -
0 20 40 60 80 100 1 10 102 10° 10*
2/ 0 E/E
MV 1 BB
11 (@ 0.95 | (d)
0.8} _ 09t
£
0 0.6 3085 /
0.4} 0.8 {f
b3
0.2 0751 e 1 ]
o 7 . FENEb=600 ~ FENE b=600
0 20 40 60 80 100 1 10 102 10 10*
2/50 E/EO
1.2 . . . . 1 . .
11® 095»(f)
0.8} 0.9 |
o’
O 061 o085}
3
0.4} 0.8
1 i
0.2 0.75 { 1
oJ . FENEb=50 L1 FENEb=50
0 20 40 60 80 100 1 10 102 10® 10*
Z/(So E/EO
Fig. 6 (a) Concentration profiles of the Hookian dumbbell as a function of

the distance from the surface. Points show the simulation results; the
curved line is calculated by the kinetic theory. (b) Nonlinear electro-
osmotic mobilities of the Hookian dumbbell as a function of an applied
electric field. (c) and (d) same as (a) and (b), respectively, but for the FENE
dumbbell with b = 600. (e) and (f) Same as (a) and (b), respectively, but for
the FENE dumbbell with b = 50.
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6 Summary and remarks

Brownian dynamics simulations are used to study nonlinear
electro-osmotic behaviour of dilute polymer solutions. The simula-
tion results agree with a toy model and analytical calculations using
a kinetic theory. The main results are summarised below.

(i) Under an external plug flow, the polymer migrates toward
the bulk. The concentration profile of the polymer shows a
depletion layer and a single peak. The thickness of the depletion
layer depends on the electric field. At the peak, the migration
flux is balanced by the diffusion flux.

(ii) The growth of the depletion layer leads to an increase
and saturation of the electro-osmotic mobility. This behaviour
does not depend qualitatively on the rheological properties of
the dumbbells.

(iii) The results of analytical calculation of the concentration
and the nonlinear mobility using the kinetic theory agree with
the results of the Brownian dynamics simulation. The thresh-
old of the electric field for nonlinear growth and saturation of
the mobility is much larger than that predicted by the toy
model, as the diffusive flux suppresses the migration toward
the bulk due to the inhomogeneous shear flow.

We conclude this study with the following remarks.

(1) Nonlinear electro-osmosis with 1 « J, has already been
observed experimentally.”>*” These studies reported that the
mobility increased with increasing electric field. However, non-
linear electro-osmosis with 4 > J, has not been reported
experimentally; therefore, experimental verification of our findings
is highly desired.

(2) It remains a future problem to determine whether the
hydrodynamic interaction between the polymers and the surface
plays an important role in the electro-osmosis of polymer solutions
with 1 « ,. In this case, the elongation of the polymers is strongly
inhomogeneous under plug flow with a short Debye length; thus,
more realistic chain models should be considered.

(3) Addition of charged polymers to solutions can change the
direction of the linear electro-osmotic flow.”** When a sufficiently
strong electric field is applied to this system, the flow might recover
its original direction. This needs to be investigated theoretically and
experimentally.

A Derivation of the velocity equation
for Brownian dynamics simulation

In this appendix, the derivation of eqn (25) is explained. The
velocity field induced by the polymer is given by

du(z) = _lfop,:(z)dz, (55)

X.
MoJo

and the polymeric part of the stress tensor is obtained by
averaging the microscopic expressions in the lateral directions as

(oo
o = EdedyaEB(x). (56)
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Here the microscopic expression of the stress tensor is given by

oc/f Z Z F”’” aXnm, ﬁonm )

n m#n

(57)

where F,, is the force exerted on the n-th bead by the m-th bead,
and 6,,(x) is the symmetrised delta function given by

|
35 (x) = J dsd(x — sx, — (1 — 8)xy,). (58)

0

The symmetrised delta function is integrated in the lateral
directions as

Som(2) = dedyénm ‘ dso(z — sz, — (1 — §)zm)
(59)
B 0(z—zp) — 0(z — z,)
- Zn — Zm ’
where 0(z, — z) =1 — 6(z — z,,). Then we obtain
J‘dz,grszm(z,) _ (z—=z2)0(z—z,) — (2 — zm)0(z — zp)
0 Zm — Zn
(60)
min(z, z,) — min(z, z,,)
B Zn — Zm '
where min(z,z,) = 20(z) — (z — 2,)0(z — z,,). Finally, the velocity

increment is expressed as

2170L2 Z anl —Zm J dZ 5,1,/,1( )

nm

2’1 LQZFH,,” [min(z,z,) — min(z, z,,)] (61)
0

nm

1 .
= ﬁ Z min(z,z,)F, .
0

n

B Approximated expressions for
kinetic theory
B.1 Hookian dumbbell

Eqn (54) can be rewritten in a closed form for the second
moment of the spring coordinates in a steady state with an
imposed plug flow. The solution is given by**

142> 0 ¢
kgT
(99), = e 0 Lol (62)
¢ 0 1
where
du —KZz
¢ = Td—zo = tkuy ke, (63)
Therefore, we have
(qF*)q = H(qq),, (64)
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and the polymeric stress tensor is

o’ = c(qF"),—ckgT1

2 0 ¢
(65)
= ckgT 0 0 0
¢ 0 0
The Kirkwood diffusion constant can be estimated as
kgT 3a/1 2
DK B q:
= —(—1
(D=), = 12“’70“{ " 4<q( +q2)>}
(66)
ke T 3a (¢’ +4:°)
~ 12nn4a 4 ()]

where the second term is split into second-order moments;
thus, we obtain

T 2(¢* +2
<DE> — kg ﬁw . (67)
=l 12mnga 44 (2¢2+3)3/2
It is differentiated by z as
T 4d*(p> +3
£< _K7> = kB 3_a K(i) ((/) + ) (68)
dz' /4 12mnyaddy (2¢2+3)5/2

The migration velocity can be estimated using the splitting
approximation of the averages as

3kgT
Unig(2) = cam, Zz</((qx +a,%) = 21),
3kgT
- 32nn022<x>"<q"'2 +4," - 2>q (69)
TS
where
—5/2
4+ q,°
o = <<” =) >
! (70)

B.2 FENE dumbbell

The second moment of the spring coordinate for a FENE dumb-
bell can be obtained by pre-averaged closures of a p-FENE

model.*** It is given by
1+292 0 ¢
kg Ty
taa), =55 tol o
vooo0 1
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and
1+2y2 0 y
(qF*), = ksT 0 1 0|, (72)
v 0 1
where
=6 & ;b sinh{ﬁarcsinh [lb(;l; (%) 3/2} } (73)
The polymer stress tensor is
22 0
e®=ckgT| 0 0 0 (74)
Yy 0 0
The Kirkwood diffusion constant is
2
(DX),= 1;‘:;061 [1 + j;]\/i (2%:3)23)/2 , (75)

and its derivative is

d keT 3a ¢

- K — -
D=, D2myeads,  \v

XP

YWY (00 ) 201D
(

do (2y2 4+3)°  \ydo 292 + 32|
(76)
where
dy o3 o f1 b (30T
K7 7Rt I St ST AT
(77)
b [(bp\> b3\
08| \108) T\ 54
Finally the migration velocity is obtained as
o 3ksT 5
Umig =~ 327_“7022 <X>qlﬁ 5 (78)
where
AN R
<x>q~<1+$ > ) . (79)
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