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Virial pressure in systems of spherical active
Brownian particles

Roland G. Winkler, Adam Wysocki and Gerhard Gompper

The pressure of suspensions of self-propelled objects is studied theoretically and by simulation of
spherical active Brownian particles (ABPs). We show that for certain geometries, the mechanical pressure
as force/area of confined systems can be equally expressed by bulk properties, which implies the
existence of a nonequilibrium equation of state. Exploiting the virial theorem, we derive expressions for
the pressure of ABPs confined by solid walls or exposed to periodic boundary conditions. In both cases,
the pressure comprises three contributions: the ideal-gas pressure due to white-noise random forces,
an activity-induced pressure (“swim pressure”), which can be expressed in terms of a product of the
bare and a mean effective particle velocity, and the contribution by interparticle forces. We find that the
pressure of spherical ABPs in confined systems explicitly depends on the presence of the confining walls
and the particle—wall interactions, which has no correspondence in systems with periodic boundary
conditions. Our simulations of three-dimensional ABPs in systems with periodic boundary conditions
reveal a pressure—concentration dependence that becomes increasingly nonmonotonic with increasing
activity. Above a critical activity and ABP concentration, a phase transition occurs, which is reflected in a
rapid and steep change of the pressure. We present and discuss the pressure for various activities and
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1 Introduction

Living matter composed of active particles, which convert
internal energy into systematic translational motion, is a particu-
lar class of materials typically far from equilibrium. Examples
range from the microscopic scale of bacterial suspensions’ to the
macroscopic scale of flocks of birds and mammalian herds.” Such
active systems exhibit remarkable nonequilibrium phenomena
and emergent behavior like swarming,®” turbulence,® activity-
induced clustering and phase transitions,®>' and a shift of the
glass-transition temperature.””** The nonequilibrium character
of active matter poses particular challenges for a theoretical
description. In particular, a thermodynamic description is
missing, but would be desirable in order to be able to define
elementary thermodynamic variables such as temperature or
chemical potential.>* Considerable progress in the description of
activity-induced phase transitions has been achieved recently.'**3~°

Pressure in active fluids has attracted considerable attention
lately, because mechanical pressure as force per area can be
defined far from equilibrium and might be useful to derive a
nonequilibrium equation of state."*>**'~3* Interestingly, simu-
lation studies reveal such an equation of state, with a van der
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analyse the contributions of the individual pressure components.

Waals-type pressure-volume phase diagram typical for gas-
liquid coexistence.'?233132

In thermal equilibrium, pressure can be equivalently
defined in various ways. In addition to the mechanical defini-
tion, pressure p follows as a derivative with respect to volume V
of the Helmholtz free energy F, i.e., p = —(0F/0V), at constant
temperature T and particle number N.>* Moreover, the virial
theorem can be exploited.>*” These two identical formula-
tions relate the surface pressure to bulk properties. However,
for nonequilibrium systems, it is a priori not evident how to
relate surface pressure to bulk properties, as it has to be kept in
mind that there is usually no free-energy functional. By now,
pressure in active fluids has been calculated using various
virial-type expressions,'*?**! typically without a fundamental
derivation. Basic relations are provided for two-dimensional
fluids in ref. 23, starting from the mechanical definition of
pressure and by exploiting the Fokker-Planck equation for the
phase-space probability distribution.

Here, we apply the virial theorem to derive expressions for
the pressure in active fluids. Both, fluids confined between
solid walls and exposed to periodic boundary conditions are
considered. As an important first step, we demonstrate that the
mechanical pressure of a confined fluid can be equivalently
represented by the virial of the surface forces for particular
geometries such as a cuboid and a sphere. This has important
implications, since it provides a relation of the mechanical
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pressure with bulk properties of the fluid.>®> Based on this
expression, we derive an internal expression for the pressure,
which comprises the ideal gas pressure, a swim pressure due to
particle propulsion, and a contribution by interparticle inter-
actions. As a result, we find that the swim pressure of the
spherical ABPs explicitly depends on the confining walls and
the particle-wall interaction, in contrast to results presented in
ref. 23, but in agreement with more general considerations of
anisotropic bodies.””*® Systems with periodic boundary condi-
tions naturally lack such a term. Hence, walls can induce
features in confined active systems, which will not appear in
periodic systems.

By Brownian dynamics simulations, we determine pressure-
concentration relationships of active Brownian particles in
three-dimensional periodic systems for various propulsion
velocities. As previously observed,'*?*2139 we find an increas-
ingly nonmonotonic behavior of the pressure with increasing
propulsion velocity. Above a certain velocity, we also find a van
der Waals-loop-type relation. Most importantly, however, we
find an abrupt change of the pressure for phase-separating
fluids. Thereby, the magnitude of the pressure jump increases
with increasing propulsion velocity. Hence, we argue that the
nonmonotonic behavior indicates increased density fluctua-
tions of the active fluid, but a phase transition is reflected in
a more pronounced abrupt change of the pressure. A detailed
analysis of the individual contributions to the pressure shows
that the main effect is due to the activity of the colloidal particles,
which gives rise to a so-called swim pressure as introduced in
ref. 31. However, also the interparticle-force contribution exhibits
an abrupt increase above the phase-transition concentrations.

The paper is organized as follows. In Section 2, the model of
the active fluid is presented. The dynamics of ABPs in a dilute
system is analysed in Section 3 for confined and unconfined
particles. Expressions for the virial pressure are derived in
Section 4 for confined and periodic systems. Simulation results
for periodic systems are presented in Section 5, and our
findings are summarized in Section 6. Details of the stochastic
dynamics of the ABPs are discussed in Appendices A and B. A
derivation of the equilibrium pressure via the virial theorem is
presented in Appendix C. Appendix D establishes the relation
between the mechanical pressure and the surface virial for
active systems.

2 Model

We consider a system of N active objects, which are represented
by hard-sphere-like particles of diameter . A particle 7 is
propelled with constant velocity v, along its orientation vector
e; in three dimensions (3D).%'®"7?1% [ts translational motion
is described by the Langevin equation

. 1

Fi(1) = voei(1) + —~(Fi(1) + Ti(1)), 1)

/

where r; is the particle position, #; the velocity, F; the total force

on the particle, y the translational friction coefficient, and I'; a
Gaussian white-noise random force, with the moments
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(T{1) = o, ()
(o T 5 () = 29ksT0,5050( — t'). 3)

Here, T denotes the temperature in equilibrium, kg the Boltzmann
constant, and o, § € {x,y,x}. The friction coefficient y is related
to the translational diffusion coefficient D via D? = kzT/y. The
interparticle force is described by the repulsive (shifted) Yukawa-
like potential

00, r<o
U(r) = ke TS u(r) —ure), r>o, (4)
0, >

where u(r) = 5le""""/(r — ). Here, [ is the interaction range
and r. is the upper cut-off radius. The orientation e; performs a
random walk according to

éi(t) = ei(t) x n(t), ()

where 5,(t) is a Gaussian white-noise random vector, with the
moments

(ma) =0, (6)
(Mo, () = 2D100p00(t — t'). @)

Eqn (5) is a stochastic equation with multiplicative noise. An
equivalent representation for polar coordinates with additive
noise is outlined in Appendix A. The translational and rota-
tional diffusion (D,) coefficients of a sphere are related via D{ =
D.¢?/3. The importance of noise in the active-particle motion is
characterized by the Péclet number

Yo

Pe = .
oD,

(8)

We study systems in the range of 9 < Pe < 300. Up to N =
1.5 x 10° particles are simulated in a cubic box of length L. The
density is measured in terms of the global packing fraction ¢ =
na°N/(6V), where V= L? is the volume. A natural time scale is the
rotational relaxation time t, = 1/(2D,). For potential (4), we use
the parameters ¢/] = 60 and r. = 1.0830.

3 Dynamics of active Brownian
particles
3.1 Unconfined particles at infinite dilution - diffusion

The equations of motion for a single, force-free particle in an
infinite or periodic system follow from eqn (1) with F; = 0.
Multiplication of the remaining equation by r,(¢) leads to

1d 2 1
S {ri(0)?) = volei() - ri(0) + (1) -ri(1)), (9)
2ds¢ y
where (---) denotes the ensemble average. In the asymptotic
limit ¢ — oo, the average on the left-hand side is the mean
square displacement

(ri{t’) = (r{0)") + 6Dt (10)
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for the homogeneous and isotropic system. To evaluate the
terms on the right-hand side, we use the formal solution
(11)

ri(t) = ri(—o00) + J:OC (voei(t') + %Fi(t’))d;/

of eqn (1). Since #; and I'; are independent stochastic processes,
the terms on the right-hand side of eqn (9) reduce to

t
i) - rit)) = i'i/d,:VO 12
() r(0) =n| lel)-ear =55 (2)
] 13
(L) -ri(1)) = ;J (Ti(2) - T5(¢"))de’ = 3kpT. (13)
Here, we use the correlation function (¢f. Appendix B)
(ei(t)-ef0)) = e, (14)
and the definition
t 1, 7€ (—o0,1)
[ 8(i—1")dt' = % i=1t (15)
o 0, 7€t
Hence, eqn (9) yields the diffusion coefficient
id 0 Yo :
D4 = D (16)

6D

in the asymptotic limit ¢ — oo. This is a well-known relation for
the mean square displacement of an active Brownian particle in
three dimensions." However, we have derived the expression
exploiting the virial theorem.** More general, in d dimensions
follows D = DY + vy?/d(d — 1)D,." The expression has been
confirmed experimentally for 2D synthetic microswimmers in
ref. 41 and 42.

3.2 Confined particles - mean particle velocity

For ABPs confined in a volume with impenetrable walls, the
force on particle i is
N
Z )+ F3(1), (17)
where the F; = Fy(r; —
is the short-range repulsive force with the wall. We assume that
the wall force points along the local surface normal n, i.e., F§ =
—F$n;, where n; = n(r;) points outward of the volume. The prime
at the sum of eqn (17) indicates that the indexj = i is excluded.
By multiplying eqn (1) with the orientation vector e,(t) and
averaging over the random forces, we obtain

N
(18)

1 N
ei) :NVO +T;Z<F’ ~e,'>.
‘=1

i=l

The term (#-e;) can be considered as the average of the particle
velocity projected onto its propulsion direction, and hence,

1 N
:N;<r’

(19)
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is the mean of the projected particle velocities in the interacting
system.?® In the following we will refer to this expression as
mean particle velocity. With eqn (17) and (18), the mean
particle velocity can be expressed as

N

+LN§:Z’ Fj-e) 1z:<FS e).

i=1 j=I i=1

(20)

~

Aside from the wall term, a similar expression has been derived
in ref. 23. The pairwise interaction term can be written as

NG LT

i=1 j=1 i=1 j=1

e — ej) > (21)

l\J\'—‘

As a consequence, we obtain a contribution to the velocity only
when ¢; [f ¢;.

Evidently, v depends on the bare propulsion velocity v,, and
interparticle and wall forces. However, only the projection of
the force onto the respective propulsion direction appears.
Thus, v reflects the magnitude of the mean particle velocity,
but not the direction of motion.

The velocity perpendicular to a wall of a particle interacting
with a wall is zero. Hence, the force (F;) of such a particle,
averaged over the random force, is

(F7) = yvolern;) (22)

for a dilute system. Thus, the wall force yields a contribution to
the mean particle velocity as long as e; [ n;. In the case of a
dilute system, the mean velocity becomes

(23)

V=" —VLNg<F§e,- -n;) :V—]Si (1 - <[e,—-n,—]2>>.

i=1

Hence, the presence of walls reduces the velocity v. This is in
accordance with the considerations in ref. 27 for anisotropic
particles, but an extension of the calculations of ref. 23 for
spherical ABPs. Naturally, the velocity is zero for particles
adsorbed at a wall and an orientation vector parallel to n.
Generally, the average velocity of a particle along its propul-
sion direction, which is part time in the bulk, with probability
Pyuik, and part time at the wall, with probability 1 — Py, is

Vi = VoPpuik + Vo(1 — {(€:1)*))(1 — Ppund)- (24)

Thus, the distribution function of the angle between e; and n; is
required, as well as the probability distribution to find a
particle in the bulk to determine the average velocity v. Natu-
rally, the average in eqn (23) can be calculated by the distribu-
tion function of the particle position and the propulsion
orientation e;, which follows from the respective Fokker-Planck
equation under appropriate boundary conditions.**"*?

More general, multiplication of eqn (5) by the velocity
#,(0) yields

(e(t)-(0)) = (e,(0)-#(0))e ",

(25)
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within the Ito interpretation of the stochastic integral.**~*°

Then, averaging over all particles gives

N

1 , o
NZ(e,-(z) F(0)) = ve 2P,

i=1

(26)

This relation describes the average decay of the correlation
between the initial velocities #(0) and the time-dependent
orientations e (¢). Not surprisingly, the correlation function
decays exponentially, because the dynamics of the orientation
e{t) is independent of the particle position and any particle
interaction.

4 Virial formulation of pressure

The expression of the pressure depends on the boundary
conditions. Here, we will discuss a system of ABPs confined
in a cubic simulation box with either impenetrable walls or
periodic boundary conditions.

4.1 Confined system
Multiplication of the equations of motion (1), with the forces
(17), by r{¢) yields

Wolet)ri(t)) + (F{2)ri(e)) + (Frry) =0,

since the mean square displacement (r{t)*) is limited in a
confined system, and hence, its derivative vanishes in the
stationary state. The force contribution can be written as

Z<F,"l‘,‘> :%ZZII<FU (l’,‘

i=1

(27)

N

=)+ D (F ).

i=1

(28)

The first term on the right-hand side is the virial of the
internal forces and the second term is that of the wall forces.
The latter needs to be related to the pressure of the system,
which is the major step in linking the mechanical (wall)
pressure to bulk properties. The traditional derivation for
equilibrium systems is briefly outlined in Appendix C. This
derivation assumes a homogeneous pressure throughout
the volume. In contrast, active systems can exhibit pressure
inhomogeneities depending on the shape of the confining
wall,">*” and thus, the derivation does not apply in general.
So far, there is no general derivation or proof of the equi-
valence of the external virial and the pressure; there may be no
such universal equivalence, since there is no thermodynamic
potential for an active system.

However, for special geometries, we can establish a relation
between the wall forces and pressure. This particularly applies
to cuboidal and spherical volumes. As shown in Appendix D, for
such geometries the average wall pressure is given by

N

3V = fz (F; - ry),

i=1

(29)

where we introduce the external pressure p° to indicate its origin
by the external forces. As an important result, summation of

This journal is © The Royal Society of Chemistry 2015
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eqn (27) over all particles yields the relation between pressure
and bulk properties

) N 1 N N
3[71V = 3NkBT+"/V() Z <€,‘ . l’,‘> +§ZZ’<FU . (r,- — l‘/')>.
i=1 j=1

i=1

(30)

Naturally, p' = p°. However, we introduce the internal pressure p'
to stress the different nature in the pressure calculation by bulk
properties. The first term on the right-hand side of eqn (30) is
the ideal-gas contribution to the pressure originating from the
random stochastic forces I'; (eqn (13)). Without such forces, our
system reduces to that considered in ref. 13. The other two terms
are the virial contributions by the active and interparticle forces.
Following the nomenclature of ref. 31, we denote the second
term on the right-hand side as “swim virial”. It is a single-
particle self-contribution to the pressure, in contrast to the virial
contribution by the interparticle forces.*" Hence, the swim virial
shows a similarity with a contribution by an external field rather
than interparticle forces.
The contributions to the swim virial can be expressed as

00

) r(0) = (et #ear = et -onar @)

in the stationary state and with (r{— c0)-e(f)) = 0. Together with
eqn (26), eqn (30) can be expressed as

. N N
3p'V =3NkgT + ’ZZX% +%ZZ’<FU (1)) (32)
i=1 j=1

in terms of the mean particle velocity v (eqn 20). A similar
expression is obtained in ref. 23, but in a very different way.
However, in contrast to ref. 23, our mean particle velocity
(eqn 20) comprises interparticle as well as wall contributions.
Hence, the wall interactions are not only manifested in the
pressure, but appear additionally in correlation functions, i.e.,
(ef(t)-r(t)). This is a major difference to passive systems, where
vy and hence v are zero.

In the case of zero interparticle forces, the pressure in
eqn (32) reduces to

2 N
3V = 3Nk T 1+ ) + > (F}-e). 33
P B (+6DrD?)+,-1< i) 33)

The first term on the right-hand side corresponds to the ideal

(bulk) pressure
; NkpgT 2
id B 0
= 1+
P V ( 6I)rD?)

23,31,39,47

(34)

of an active system. The second term accounts for wall
interactions, and is responsible for various phenomena such as
wall accumulation.'?'34347

4.2 Periodic boundary conditions

In systems with periodic boundary conditions, there is no wall
force F°, but in addition to interactions between the N “real”
particles, interactions with periodic images located at r; + R,
appear.

Soft Matter, 2015, 11, 6680-6691 | 6683
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For a cubic simulation box, the vector R, is given by
R, =nV'"? (35)

with n,, € Z. The generalization to a rectangular noncubic box is
straightforward. For a pair-wise potential Uy, the potential
energy is then given by

222 ZUU — 1 — Ry).

i=1 j=

(36)

In general, this involves infinitely many interactions.*>*® Here,
we will assume short-range interactions only. This limits the
values n, to n, £ 1 for a particle in the primary box, which
corresponds to an application of the minimum-image con-
vention.*® The forces in eqn (1) are then given by

N
F,‘ :ZIZF,'/‘(I’Z'—KI'—R,,).
T

Multiplication of eqn (1) by 7; and summation over all particles
lead to the relation
(=)

(37)

(38)

with the abbreviation Fj(r; — 1r; — R,) = Fy. By following the
trajectories of the particles through the infinite system, i.e., by not
switching to a periodic image in the primary box, when a particle
leaves that box, (r{t)*) is equal to the mean square displacement
of eqn (10), but with a translational diffusion coefficient D, of the
interacting ABP system. Moreover, eqn (13) applies and, hence,

N
3yNDy = 3Nkg T + yvo Z (e;
=1

+

N N (3 9)

3y

i=1 j=I

(r=1)).

In the forcefree case, ie., Fjj = 0, this relation is identical with
eqn (16). More general, eqn (39) provides the self-diffusion coeffi-
cient of active particles in a periodic system interacting by pair-wise
forces. Exploiting eqn (26) and (31), the swim virial can be expressed
by the mean particle velocity v, and the diffusion coefficient becomes

1
2

D =D} Vov 6N/ZZ Z< _")> (40)
with the mean particle velocity in a periodic system
| M
V:V0+N—yZZ’Z<F;’»e,>. (41)
i=1 j= n

After insertion of velocity v, eqn (40) provides three contributions to
the diffusion coefficient: (i) the diffusion coefficient, eqn (16), of
non-interacting active Brownian particles, (ii) a contribution due to
correlations between the forces Fj; and the orientations e;, and (iii) a
contribution from the virial of the inter-particle forces. This clearly
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reflects the explicit dependence of the diffusion coefficient on the
orientational dynamics of the particles.

In contrast to confined systems, the multiplication of the
equations of motion by the particle positions does not directly
provide an expression for the pressure of a periodic system.
Here, additional steps are necessary. To derive an expression
for the pressure, we subtract the term

ZZ§Z§Z< Ra)

=1 j=

(42)

from both sides of eqn (39). Then, we are able to define external
(p°) and internal (p') pressures of the periodic system according to
P

D
3V = 3NknT s R,,>, (43)
t

N
3;7i V = 3NkgT + yv Z (e
=1

DRI A

i=1 j=1

k)

(44)

as for passive systems in ref. 35-37. Naturally, both expressions
yield the same pressure value, i.e., p° = p'.

For notational convenience, we write the expressions for the
pressure as

P =p+p%, (45)

p=p"+pt (46)
with the following contributions according to eqn (43) and (44)
e ideal gas pressure

NkgT
0 B
=— 47
= (47)
e swim pressure—specific for active systems
s Vo YN
= — PP = —— 48
P=3y & {er-1i) = Gyp, 0" (48)

e internal pressure by interparticle forces—contains active
contributions

(49)

e pressure by diffusion—contains active contributions via
swim pressure and interparticle forces
a _ NksT Dy (50)

vV DY

e external pressure by interparticle forces—contains active
contributions

L
6V

ef

= i Z< ,,>. (51)

1 j=1

Mz

I

The expressions in eqn (43) and (44) are extensions of those
of a conservative passive system, where D, = 0 and v, = 0, with a

This journal is © The Royal Society of Chemistry 2015
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similar definition of external and internal pressures.>>>° F
both cases, the definitions appear ad hoc. Note that for a
passive system typically Newton’s equations of motion are
considered. However, for the passive system, the expression
for the internal pressure can be derived from the free energy,"
as illustrated in the appendix of ref. 50, which underlines the
usefulness and correctness of the applied procedure for passive
systems. The similarity between the internal pressure expres-
sions eqn (30) and (44) for the confined and periodic systems,
respectively, supports the adequateness of the applied proce-
dure in the pressure calculation.

The individual terms can be understood as follows.

External pressure p°. The pressure contribution pf accounts
formally for the forces across faces of the periodic system,
similar to the expression (29) of a confined system. There is
only a contribution for non-zero vectors R, i.e., for interactions
between real and image particles.>® The diffusive dynamics
yields the pressure contribution p? ~ Dy/Df{. This term is not
present in a conservative passive system and is a consequence
of the stochastic forces I'.>*” For passive, non-interacting
particles, i.e., vo = 0 and U of eqn (36) is zero, D, = DY and the
pressure reduces to the ideal gas expression p° = p°. For non-
interacting but active systems, D; is given by eqn (16) and
pe=p(eqn (34)).

Internal pressure p'. The internal pressure comprises the
ideal gas contribution p°, the swim pressure p° due to activity,
and the contribution pf by the pairwise interactions in the
system within the minimum-image convention. As for the virial
of the confined system (32), the swim pressure p® eqn (48) can
be expressed by the mean particle velocity v (eqn (41)). The
forces Fjj can be strongly correlated with the propagation
direction e;, specifically when the system phase separates as
in ref. 21. For non-interacting particles or at very low concen-
trations, the contribution of the intermolecular forces vanishes
and the pressure is given by eqn (34).

There are various similarities between the expressions for
the pressure of a confined and a periodic system. Formally,
eqn (32) and (44) are similar. However, specifically the meaning
of the mean particle velocity v is very different. The presence of
the wall term in eqn (20) can lead to wall-induced phenomena,
which are not present in periodic systems. Hence, results of
simulations of periodic and confined active systems are not
necessarily identical.

or

5 Simulation results

Simulations of active Brownian spheres with periodic boundary
conditions (c¢f Section 2) reveal an intriguing phase behavior
and a highly collective dynamics, as discussed in ref. 21 for
three dimensional systems. At low concentrations, the ABPs
exhibit a uniform gas-like phase. However, above a critical,
Péclet-number-dependent concentration, the isotropic system
phase separates into a dilute, gas-like phase, and a dense,
liquid-like phase.'*?" Fig. 1 illustrates the phase diagram for
the considered concentrations and Péclet numbers, redrawn

This journal is © The Royal Society of Chemistry 2015
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o
Fig. 1 Illustration of the phase diagram of active Brownian particles in

terms of the Péclet number Pe and the packing fraction ¢. Symbols
correspond to the Péclet numbers for which the pressure is calculated.
The shaded areas indicate the liquid—gas (light green) and the crystal-gas
(light yellow) coexistence regimes. Further details can be found in ref. 21.

from the simulation data of ref. 21. Above Pe ~ 30, we find a
wide range of concentrations, over which the system phase
separates. In the simulations, the phase separation of the ABPs
into a dense liquid phase and a dilute gas phase is clearly
reflected in the probability distribution of the local ABP pack-
ing fraction, which we determine by a Voronoi construction.
Below a critical density, the probability distribution is unim-
odal and the system is homogeneous. While approaching the
critical density with increasing packing fraction, the probability
distribution becomes bimodal and the system inhomogeneous.
Moreover, the morphological transformations are reflected in
geometric characteristics, such as the surface area, integrated
mean curvature, and the Euler characteristics, as discussed in
detail in ref. 21.

As is evident from eqn (43) and (44), the diffusion coefficient
explicitly appears in the expressions of the pressure. Hence, we
address the dynamics of the ABPs in terms of the diffusion
coefficient in the following. Subsequently, we discuss the
dependence of the pressure and its individual contributions
on the Péclet number and concentration.

5.1 Diffusion coefficient of ABPs

We determine the diffusion coefficient of the ABPs by the
Einstein relation, i.e., we calculated the particle mean square
displacement and extracted the translational coefficient D,
from the linear long-time behavior. Fig. 2 displays the obtained
values as a function of the packing fraction for various Péclet
numbers. For small packing fractions (¢ < 0.3), D/D\ decreases
linearly with increasing concentration. The decay is reasonably
well described by the theoretically expected relation 1 — 2¢ for
colloids in solution.”® However, a better agreement is obtained
for the relation 1 — 2.2¢, i.e., a 10% larger prefactor. Remark-
ably, the decrease of D, for ¢ < 0.3 is essentially independent of
the activity. Significant deviations between the individual curves
are visible for higher concentrations and larger Péclet numbers,
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Fig. 2 Translational diffusion coefficients of ABPs for the Péclet numbers
Pe = 9.8 (purple), 29.5 (olive), 44.3 (green), 59.0 (blue), and 295.0 (red). The
values are normalized by the respective diffusion coefficients (16) of an
individual ABP. The inset shows the same data on linear scales. The solid
line (black) indicates the dependence Dy/Dif = 1 — 24.

where a phase separation appears. At the critical concen-
tration, the diffusion coefficients for Pe > 30 exhibit a rapid
change to smaller values. A further increase in concentration
implies a further slowdown of the dynamics. Interestingly, at
high concentrations, the larger Péclet number ABPs diffuse
faster than those with a small Pe. We attribute this observa-
tion to collective effects of the fluids exhibiting swirl- and jet-
like structures.>" Another reason might be an activity induced
fluidization, since the glass transition is shifted to larger
packing fractions.>?

5.2 Pressure of ABPs

Fig. 3 displays the density dependence of the total pressure
p = p° = p' for the considered Péclet numbers. We normalize
the pressure by the ideal gas value (34) and multiply by the
packing fraction ¢ in order to retain the linear density
dependence. As expected, both eqn (45) and (46) yield the
same pressure values. We observe a pronounced dependence
of the pressure on the Péclet number. Note that the pressure
for the largest Péclet number is highest, because p'® ~ Pe? for
Pe > 1. For small Pe, the pressure increases with increasing ¢.
However, already for Pe = 29.5, we obtain a strongly non-
monotonic concentration dependence, where the pressure
decreases again for ¢ = 0.35. A similar behavior has already
been obtained in ref. 13, 23 and 31. In ref. 31, the decreasing
pressure at high concentrations is attributed to cluster for-
mation of the ABPs. For ABPs with Péclet numbers well in the
phase separating region, we find a jump of the pressure at the
critical packing fraction. This behavior has not been observed
before, most likely because only smaller Péclet numbers have
been considered. Such a pressure jump seems not to be
present for Pe = 29.5, but the Peclet number is close to the
binodal (c¢f. Fig. 1) and a clear phase separation is difficult to
detect in simulations.
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Fig. 3 Pressure in systems of ABPs for the Péclet numbers Pe = 9.8
(purple), 29.5 (olive), 44.3 (green), 59.0 (blue), and 295.0 (red). The values
are normalized by the pressure p'® (34) of individual ABPs at the same
Péclet number. The black line indicates the dependence p¢/p® =
¢(1 — 1.2¢), and the purple line the relation pp/p'® = ¢(1 — 0.8¢).

Interestingly, all the pressure curves exhibit a remarkably
similar behavior for Pe > 29.5 and ¢ < 0.35 and can very well
be fitted by the density dependence
o _

—q= (1 —xd) (52)
p
in this regime, with ¥ ~ 1.2, as indicated in Fig. 3. For smaller
Pe = 9.8, we find x ~ 0.8. Hence, in any case the pressure
increases linearly for ¢ « 1, as expected, and exhibits quadratic
corrections for larger concentrations, which depend on the
swimming velocity or the Péclet number. In ref. 31, the none-

quilibrium virial equation of state

p=p[1 — (1 — 3/2Pe)$] (53)

is proposed, adopted to our definition of the Péclet number,
and p'? = NksT(1 — Pe?/2)/V. This relation applies only within a
certain range of Pe values. It certainly accounts for the increase
of the prefactor of ¢ with increasing Pe, but the asymptotic
value for Pe >» 1 does not agree with our simulation results.
However, our simulation results for Pe = 9.8 are reasonably well
described by eqn (53) at small concentrations.

The nonlinear concentration dependence of eqn (52) with a
positive x yields a negative second-virial coefficient B, = —na /6.
In classical thermodynamics, a negative B, suggests the possi-
bility of a gas-liquid phase transition.® For the ABPs, the
negative B, definitely indicates large concentration fluctuations,
which increase with increasing Péclet number. However, in the
light of our simulation results, it seems that a phase transition is
also associated with a pressure jump at the critical concen-
tration. This is more clearly expressed by the swim pressure p®
displayed in Fig. 4. Only for Pe > 29.5, we find a pressure jump
and a phase transition.

Fig. 5 illustrates the contributions of the individual terms
of eqn (48)—(51) to the total pressure for the Péclet numbers
Pe = 9.8 and Pe = 295. At small Pe = 9.8 (see Fig. 5(a)), the terms
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Fig. 4 Swim pressure egn (48) in systems of ABPs for the Péclet numbers
Pe = 9.8 (purple), 29.5 (olive), 44.3 (green), 59.0 (blue), and 295.0 (red). The
values are normalized by the pressure p' (34) of individual ABPs at the
same Péclet number.

p* and p® decrease monotonically with increasing concen-
tration and approach zero at large ¢. For pY, this is easily
understood by the slowdown of the diffusive dynamics due to
an increase in frequency of particle encountered with increas-
ing density. The pressure p9 is given by

(54)

1 N N
P :p°+Ps+W;;/;<F3' (=)

in terms of the ideal gas and the swim pressure. As for a passive
system, the last term on the right-hand side of this equation is
smaller than zero, and hence, p°* > p® — p°. The equation also
shows that the swim pressure is generally different from p9
and, hence, is not simply related to the diffusive behavior of the
ABPs. As far as the force contributions p°* and p'f are concerned,
they monotonically increase with ¢ for Pe = 9.8, until the ABPs
undergo a phase transition and form a crystalline structure.
The gradual increase of the number of interacting colloids with
increasing concentration leads to a systematic increase of the
pressure contribution by pairwise force. The ratio plp™
decreases initially (¢ < 0.4) due to the slowdown of the
diffusive dynamics, but at large ¢, the contributions p°* and
p'f dominate and the respective pressure increases with concen-
tration similar to that of a passive system. For Pe = 9.8, p is
essentially equal to pf for ¢ > 0.5.

The relevance of the individual contributions changes with
increasing Péclet number. For Pe = 295 (see Fig. 5(b)), p* and p°
still decrease monotonically with increasing ¢. However, the
total pressure is essentially identical with p®, ie., p is domi-
nated and determined by the swim pressure. The contribution
p'* due to interparticle interactions is very small and is only
relevant at high concentrations. The pressure p°f increase for
small concentrations passes through a maximum and decreases
again for large ¢. This nonmonotonic behavior is very different
from that at low-Péclet numbers. The jumps in p® and p? reflect
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Fig. 5 Pressure and its individual contributions of ABPs for the Péclet
number (a) Pe = 9.8 and (b) Pe = 295.0. The values are normalized by the
pressure p'¥ (34) of individual ABPs at the same Péclet number. The green
symbols indicate the total pressure eqn (45) and (46). The red symbols
correspond to internal pressure components p* (M) and p'* (@) of eqn (48)
and (49), respectively. The blue symbols indicate the pressure components
p® (W) and p*" (@) of egn (50) and (51), respectively.

0.5 0.6

the phase transition at a critical density ¢..>' Note that the
critical density depends on the Péclet number.

Aside from absolute values, the density dependence of the
various pressure components is rather similar for densities below
the critical density ¢. =~ 0.35. In any case, the pressure is
dominated by the active contribution as expressed and reflected
in the diffusion coefficient. Above ¢., however, the contribution by
the inter-particle forces dominates for Pe = 9.8, whereas p is still
determined by p® for Pe = 295. Here, the contribution of p® exceeds
that of p'* by far, although the latter increases also with the Péclet
number as shown in Fig. 6, but p* ~ Pe” at small ¢ and outweighs
the growth of p'*. Two effects contribute to the decrease of the
overall pressure. The diffusion coefficient decreases with increas-
ing concentration due to an increasing number of particle-particle
encounters. However, p® decreases faster than p®. Via relation (54),
we see that this faster decrease is compensated by an increase in
the contribution by the interparticle forces.

Looking at the swim pressure p* (¢f. eqn (41)), it evidently
decreases because the correlations between the forces and the
orientations e; decrease with increasing concentration. Here,
an important aspect is the appearance of collective effects of
the ABPs, specifically for ¢ > ¢..>" Collective effects lead to a
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Fig. 6 Contribution of the interparticle force (eqn (49)) to the internal
pressure of ABPs for the Péclet numbers Pe = 9.8 (purple), 29.5 (olive), 44.3
(green), 59.0 (blue), and 295.0 (red). The solid line (black) indicates the
dependence p'f ~ e%.

preferential parallel alignment of certain nearby ABPs. As
indicated in eqn (21), such an alignment reduces the force-
propulsion-direction correlations, and hence, the pressure.

As indicated before, the force contribution to the internal
pressure pif depends roughly linearly on Pe, as illustrated in
Fig. 6. Remarkably, p'f exhibits an exponential dependence on
density, namely p* ~ exp(6¢), over a wide range of concentra-
tions for Péclet numbers in the one-phase regime, and up to the
critical value ¢, for Péclet numbers where a phase transition
appears. Additionally, the forces exhibit a rapid increase at the
critical density. We did not analyse in detail whether a jump
appears or if p'f is smooth and a gradual but rapid increase
occurs, as might be expected from the data for Pe = 44.3.

Fig. 7 displays the contributions of the internal forces
(eqn (51)) to the external pressure (eqn (46)). The general shape
of the curves is comparable to that of the scaled pressure p/p'.
Compared to the latter, p° exhibits the stronger density

pef/pid

Fig. 7 Contribution of the interparticle force (eqn (51)) to the external
pressure of ABPs for the Péclet numbers Pe = 9.8 (purple), 29.5 (olive), 44.3
(green), 59.0 (blue), and 295.0 (red). The solid lines indicate the depen-
dencies p/p® ~ 1.35¢ (purple) and p*/p'® ~ 1.3¢(1 — ¢) (black).
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dependence p* ~ ¢* for ¢ « 1. However, compared to p'’, the
density dependence is weak. Quantitatively, it can be described
as p/p'd = k(1 — $) with & ~ 1.35 over a wide range of Péclet
numbers 9 < Pe < 30. With increasing Pe, k decreases slightly
and we find £ ~ 1.1 for Pe = 295.

6 Summary and conclusions

We have presented theoretical and simulation results for the
pressure in systems of spherical active Brownian particles in
three dimensions. In the first step, we have shown that the
mechanical pressure as force per area can be expressed via the
virial by bulk properties for particular geometries, especially a
cuboid volume as typically used in computer simulations.
Subsequently, we have derived expressions for the pressure
via the virial theorem of systems confined in cuboidal volumes
or with periodic boundary conditions. For the latter, two
equivalent expressions are derived, denoted as internal and
external pressures, respectively. As a novel aspect, we consid-
ered overdamped equations of motion for active systems in
the presence of a Gaussian and Markovian white-noise source.
The latter gives rise to a thermal diffusive dynamics for the
translational motion and yields the ideal-gas contribution to
the pressure.

The activity of the Brownian particles yields distinct con-
tributions to the respective expressions of the pressure. The
external pressure explicitly comprises the effective diffusion
coefficient of the active particles. The internal pressure con-
tains a term, which is related to the product of the bare
propulsion velocity of an ABP and their mean velocity. The
latter is determined by the interactions with surrounding ABPs
and reduces to the bare velocity at infinite dilution. Similar
expressions have been derived in ref. 13, 23 and 31.

Our simulations of ABPs in systems with three-dimensional
periodic boundary conditions show that the total pressure
increases first with concentration and decreases then again at
higher concentrations for Péclet numbers exceeding a ceratin
value, in agreement with previous studies."*" Thereby, the
pressure exhibits a van der Waals-like pressure-concentration
curve. This shape clearly reflects collective effects, however, it
does not necessarily indicate a phase transition. In the case of a
phase transition, we find a rapid and apparently discontinuous
reduction of the pressure at the phase-separation density.

Quantitatively, the density dependence of the pressure is
well described by the relation p ~ ¢(1 — k¢), where the range
over which the formula applies and x depend on the Péclet
number. For Pe ~ 10, we find x ~ 0.8. For Péclet numbers in
the vicinity and above Pe,, all the considered curves are well
described with k¥ =& 1.2. Generally speaking, our x values
extracted from the simulations are in the vicinity of the value
k =1 as proposed in ref. 31.

Considering the various contributions to the pressure indi-
vidually, we find that the internal pressure is dominated by the
contribution from activity for Pe > Pe,, in particular for ¢ < ¢.
For Péclet numbers larger than the critical value, there is

This journal is © The Royal Society of Chemistry 2015
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significant contribution from the interparticle forces of eqn (41).
This contribution decreases with increasing Péclet number,
since the swim pressure increases quadratically with the Péclet
number and the pressure due to interparticle force linearly.
However, for moderate Pe, the exponential increase of p'f with
concentration outweighes the Péclet-number dependence.

In summary, the pressure of an active system exhibits distinctive
differences to a passive system during an activity-induced transition
from a (dilute) fluid to a system with a coexisting gas and a dense
liquid phase. While the pressure of a passive system remains
unchanged during the phase transition, our simulations of an active
system yield a rapid decrease of the pressure for densities in the
vicinity of the phase-transition density. Thereby, the pressure
change becomes more pronounced with increasing Péclet number.
Hence, evaluation of the pressure, specifically the swim pressure,
provides valuable insight into the phase behavior of active systems.

Appendix A Rotational equation of
motion

Eqn (5) is a stochastic equation with multiplicative noise.
The Fokker-Planck equation, which yields the correct equili-
brium distribution function, follows with the white noise in the
Stratonovich calculus.***%>3

For the numerical integration of the equations of motion (5),
an Ito representation is more desirable. Introducing spherical
coordinates according to

cos ¢ sin Y
e=| sing sin9 (55)
cos 9

(here, we consider a particular particle and skip the index i),
alternatively the stochastic differential equation can be considered

e= Ng€y + ’1(,78(/" (56)

and yields the same Fokker-Planck equation for the general-
ized coordinates ¢ and 9.*® Thereby, the equations of motion of
the angles are

9 =D cot 9+n,, (57)
p— (58)
?=sing™

with additive noise. The unit vectors e;, ¢ € {p,3}, follow by

differentiation e; ~ 0e/0¢ and normalization. The #; are again

Gaussian and Markovian random processes with the moments
<’7§> =0,

{n:(One(t) = 2Ddeed(t = ¢). (59)

For simulation, eqn (56) has to be discretized. Integration,
iteration, and usage of eqn (57) and (58) yield the difference equation

et + At) = e(t) + ey(t)Any + e, (t)An, — 2De(t)At.  (60)
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The Ay are defined as

t+At
An: = J ni(t')dl’ (61)

t

and are Gaussian random numbers with the first two moments
<A'75> =0,
<A?]§A1’]¢I> = ZDrégffAt. (62)

This is easily shown with the help of eqn (59).** As common for
the Ito calculus, we replaced the values Ay;” by their averages
2D.At in eqn (60).*>*¢

For practical reasons, it is more convenient to apply the
following integration scheme. An “estimate” e'(t + Af) is

obtained via
e'(t + At) = e(t) + eg(t)Ang + e,(t)An,,. (63)

This new orientation vector is no longer normalized. Normal-
ization yields e(t + Af) = e/(t + At)/|e'(t + At)|, where |e/(t + Ab)|* =
e'(t+Ab)e(t+ Af) =1+ Any® + Any®. Since An,> ~ At, we obtain
for DAt « 1
e{i+ Ar) = e(t) + es (), + e (1)An, —3(An? + An,)e(r)
(64)

up to order A#*>. Upon replacement of Ar;* by its average, we
obtain the desired eqn (60).

B Orientational vector correlation
function
The autocorrelation function of the orientational vector is

conveniently obtained from eqn (5) for an infinitesimal time

interval d¢, i.e., the equation
de = e(t) x dn(t) — 2D,edt (65)

within the Ito calculus. Multiplication with e(0) and averaging
yields

(de(?)-¢(0)) = ([e(8) x dn(e)]-€(0)) — 2Dr(e(¢)-¢(0))dz.

Since e(t) is a nonanticipating function,*® the average over the

(66)

stochastic-force term vanishes, and we get

d
g,e(r) - e(0)) = —2Dr{e(r) - €(0)),

which gives

(e(t)-e(0)) = e 2P,

C Virial and pressure in equilibrium
systems
To relate the external virial with the pressure for an equilibrium

system, we consider a surface element AS and the forces exerted

on that surface element ) F;. The pressure p° at the surface
icAS
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Fig. 8 Cross section of a cuboid for the calculation of mechanical
pressure.

element is
PFAS =) (Fi)==> (Fm). (67)
i€AS icAS
On the other hand, the external virial reads as
Z<F?-ri>—<r~ZF§>. (68)
icAS i€dS

Since the surface element is small, the vector r; is essentially the
same for all particles interacting with AS and can be replaced
by the vector r of that element. The same applies to the normal
n; i.e., n; = n, where n is the local normal at AS. With eqn (68)
and the mechanical pressure, we then obtain

r~Z<F§->:—r-nZ<F§>:—per~AS, (69)
icAS i€AS
with AS = nAS. Integration over the whole surface gives
N
f%per-dS:Z<F§-ri>. (70)
i=1

Using the Gauss theorem, the surface integral turns into a
volume integral, i.e.,

]{Per -dS = JV (pr)dr =3p°V. (71)

For the last equality, we assume that the pressure is isotropic
and homogeneous. Hence,**

N

3pV = 72<F? . l’,‘>.

i=1

(72)

D Virial and pressure of active particles
D.1 Cuboidal confinement

We consider particles confined in a cuboidal volume of dimen-
sions Ly x Ly x L,, with the reference frame located in its center
(cf: Fig. 8). The total mechanical pressure is given by the average
over the six surfaces, i.e., p° = (pr + pu + - - - + pv1)/6. For surface
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Sy, the mechanical pressure is

PIZSLIZ<F?>-

i

(73)

Since n-r; = L,/2 for any point on the surface, we introduce
unity, i.e., n-r;i/(L,/2) = 1 and obtain

2 : 2
D :—S[LXZ<F?'F‘1'>:—VZ<F?"‘1'>7 (74)
with F; = —Fin. Hence, the pressure is given by
N
3p°V:—Z<F§~r,->, (75)
=1

as for an equilibrium system. The derivation of this relation is
independent of the choice of the Cartesian reference frame. At
least, as long as the axis unit-vectors are normal to the surfaces.

D.2 Spherical confinement

For a sphere of radius R with the reference frame in its center,
the pressure is

7 =li<F5~> -+
s2 N T T

where S = 4nR’. For every point on the surface applies r; =
Rn, hence,

N

(F; - n), (76)

1 N
Po= —S—R; (F-r)). (77)

With SR = 4nR® = 3V, we again find relation (75).
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