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Conformations, hydrodynamic interactions, and
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The conformations and dynamics of semiflexible filaments subject to a homogeneous external
(gravitational) field, e.g., in a centrifuge, are studied numerically and analytically. The competition
between hydrodynamic drag and bending elasticity generates new shapes and dynamical features. We
show that the shape of a semiflexible filament undergoes instabilities as the external field increases. We
identify two transitions that correspond to the excitation of higher bending modes. In particular, for
strong fields the filament stabilizes in a non-planar shape, resulting in a sideways drift or in helical
trajectories. For two interacting filaments, we find the same transitions, with the important consequence
that the new non-planar shapes have an effective hydrodynamic repulsion, in contrast to the planar
shapes which attract themselves even when their osculating planes are rotated with respect to each
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other. For the case of planar filaments, we show analytically and numerically that the relative velocity is
not necessarily due to a different drag of the individual filaments, but to the hydrodynamic interactions
induced by their shape asymmetry.
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1. Introduction

Semiflexible filaments are fundamental constituents of micro-
biological systems, where microtubules and actin filaments
serve as scaffolds for cellular structures and as routes to sustain
and guide cellular transport systems.' Microtubules are also the
main structural elements of cilia and sperm flagella, where
their relative displacement and deformation due to motor
proteins gives rise to the flagellar beat and hydrodynamic
propulsion.”? Microtubules and flagella can be seen as elastic
filaments interacting with their own flow field. The ability to
visualize, assemble, and manipulate biological and artificial
semiflexible polymers®*” poses new fundamental questions on
the dynamics of filaments when elastic and hydrodynamic forces
compete.

The dragging of stiff rods through a viscous fluid has been
studied in detail.® A single rod does not reorient, but falls with
its initial orientation. A more complex dynamical behavior can
be expected and is indeed observed for semiflexible filaments
when the curvature or stretching elasticity competes with
the hydrodynamic interactions.’" Single dragged semiflexible
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filaments bend into a shallow V-shape to balance the higher
drag at both ends' and their end-to-end vector aligns perpen-
dicularly to the external field."" For strong drag, higher modes
have been found to be excited; this generates W-shapes initi-
ally, which then relax back into horseshoe-like U-shape.'* Here,
the dynamics seems to be constrained to the plane initially
defined by the direction of the external field and the filament
itself. However, these investigations address the problem from
a deterministic point of view, and little attention has been paid
to the dynamic stability of the resulting shapes. In all cases, the
dragged and deformed semiflexible filament initially defines
the settling plane, but the stability of the filament’s planar
shape has not been investigated as function of the external field
or the relative position of possible neighboring filaments.
Here, we focus on the full three-dimensional shape of one,
two, and three semiflexible filaments sedimenting in a homo-
geneous external field. We incorporate the hydrodynamics into
the equations of motion for the filament shape via the Oseen
tensor, valid in the limit of zero Reynolds number. As a result
of our numerical and analytical analysis, we find that the
deformations confined to a plane become unstable with respect
to normal perturbations at a threshold value B;* of the strength
B of the external field, which is smaller than the threshold B,*
where initial, transient W-shapes become excited, see Fig. 1.
Thus, with increasing strength of the external field, two instabili-
ties and transitions to new sedimentation modes are predicted.
The first transition is from a stable planar U-shape with little
bending to a stationary horseshoe-like U-shape with out-of-plane
bending. The second transition at stronger fields excites a
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Fig. 1 Snapshots from simulations of single filaments dragged by the external homogeneous field B = mgl?/k, where L is the filament length, g the
external field, and «k the bending stiffness. Left: For weak field (B < B;*) the filament bends into a V-shape (in dots), dominated by the y, , mode. Center:
As the field strength increases, higher modes with an out-of-plane component are excited, and the filament drifts sideways. Right: For even stronger
fields (B > B,*) further symmetries are spontaneously broken, and the filament rotates following a helical trajectory. Corresponding movie is shown in the
ESI.{ The vertical distance between the frames is reduced to enhance the visualization of the filament conformations.

metastable W-shape, also with out-of-plane bending, which then
“relaxes” into a non-stationary asymmetric U-shape. As result,
there exist two families of shapes, where the elastic forces are
balanced by a conformation-dependent drag.

We consider next the interaction between two filaments in an
external field. Indeed, while the dynamics of an isolated filament
is an indispensable knowledge needed to understand the case of
n > 1 interacting filaments, many situations are characterized
by elastic slender objects interacting via the generated flow field:
cilia,”"* sperm,'*"® and E. coli bundles'®'” are probably the
most relevant from a biological point of view.

It is known that the sedimentation behavior of colloids can
be quite complex. The interaction of sedimenting particles has
been studied in considerable detail for spherical colloids.*®*°
Two particles sediment together, but don’t follow the direction
of the external field, and move instead under an angle with
respect to it. For more particles, many different dynamical
behaviors can be found, in particular periodic motions where
particles “dance” around each other.’

For dragged semiflexible filaments, the dynamical behavior is
even more complex.'® In particular, we show that two filaments
(Fig. 1) attract each other, repel each other, or spin around the
field depending on the intensity of the external field.

We focus here on the stability of the sedimentation plane for
different field intensities and on the origin of the relative
velocity. In particular, we want to see whether the velocity
difference is due to different shapes or to the broken up-down
symmetry. For even more filaments, the dynamics becomes
unsteady at much weaker external field strength than expected
from the two-filaments case.

7338 | Soft Matter, 2015, 11, 7337-7344

2. Model and methods

2.1 Discrete model

In the simulation, filaments of length L = b(N — 1) are
represented by N mass points of mass m connected by harmonic
bonds of length b, with the potential

kN

=2 (Rl - (1)
i=0

where R; = 14 — 1; is the vector connecting the consecutive
points, i € {0,...,N}, and k; is the force constant. To account for
filament stiffness, we introduce the bending potential

N—

Z i+1 — ) (2)

i=0

with the bending rigidity x.° In addition, the mass points are
exposed to an external gravitational field with the force on a
particle

FY = —mge,, (3)

with the unit vector e, along the z axis of the Cartesian
coordinate system (cf Fig. 1).

Inter- and intrafilament hydrodynamic interactions sub-
stantially influence the filament dynamics. Hence, we apply
the equation of motion

yolE; — u;) = Y (4)

where, u; is the background
3myb is its

for the overdamped dynamics,*
flow velocity at the position r; of the particle, y, =
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friction coefficient for a fluid of viscosity #, and F{ is the sum
of all conservative forces.'” We compute the background
flow velocity explicitly via the Oseen tensor.?! Thus, the final
equations of motion are

I = ZN: H;F}, ()
J=0
with the hydrodynamic tensor
H; =H(r; — 1))
6
= (1-9y) {8;01;&‘ [I+f4-,-f,.TjH +%l )
and r; = r; — 1, 1y = |1y], and &5 = r/ry;

If needed, excluded-volume interactions are implemented
via a short-range Yukawa potential between points of different
filaments, which implies a minimal effective distance during
the simulations. A low-amplitude white noise is added to avoid
metastable states. The noise is not considered to be of thermal
origin as it is chosen to be negligible compared to the other
hydrodynamic and mechanical forces and barely influences the
stationary settling dynamics for the considered external fields.

2.2 Parameters/methods

We set the hydrodynamic diameter of a point equal to the bond
length, as in the Shish-Kabab model of ref. 10, 12 and 21,
thereby fixing the aspect ratio to b/L. Lengths are measured in
units of the hydrodynamic diameter b and time in units of yob*/x.
This choice eliminates the friction coefficient and the bending
rigidity from the equations of motion. The force constant for the
bonds is set to kyb*/i = 1, resulting in a maximum extension of
£0.6% of the length over the investigated range of parameters. In
these units, the external field strength mg becomes G = mgb?/x.
For convenience and an easier comparison with results of ref. 10,
we characterize the external force by B = N°G, or B = mgL’/x.
For B « 1, the bending rigidity dominates and the filament
is essentially straight. We consider only filaments of length
L = 30b in the following. For excluded volume interactions, the
minimal effective distance is approximately 5b. The equations
of motion are integrated with an adaptive time-stepping
Velocity-Verlet algorithm.>***

2.3 Continuum model

For an analytical description of the filament dynamics, we adopt a
continuum model. The equation of motion of the point r"(s,)
(=L/2 < s < L/2) along the contour of filament v is given by**

z):ZJ

oL

L)2

O (s, ds'H(r" (s) — r*(s')f*(s"), (7)

where f* is the external force density and the index p indicates the
various filaments. As before, the hydrodynamic tensor H(r"(s) —
r'(s’)) comprises the Oseen tensor and the local friction. Explicitly,
it reads as

LOR = D)o gy 4 OR)

I 8
[R[? Y ®
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Here, O(x) is the Heaviside function, y = 3rty is the friction per unit
length, and R = r'(s) — r(s').>**® The force density f comprises
bond, bending, and gravitational forces. In the limit of a rather
stiff filament, it can be written as
v 1 82 84 v v
f (S) = lpkBT(lp—zw - @)l’ (S) + fG(S), (9)
with the persistence length 7,.*>*” In the following, we will neglect
the bond term, ie., the term with the second derivative and focus
on bending stiffness only.
The expansion

=3 2 06,(6) (10)
n=0

in terms of the eigenfunctions ¢, of the biharmonic operator, Le.,
Y

Lok T == 11

o2 b,(5) = 4, (1)

with suitable boundary conditions,*>*” leads to the equations of
motion of the mode amplitudes

Aty = Z ZH”“ {le + 1 ] (12)
The matrix representation of the hydrodynamic tensor is
L)2
M= | aads,OHE O P00 09)

The eigenfunctions ¢,(s) and relaxation times 7, are well
known.>**?” For convenience, we summarize them in Appendix
A. However, eqn (12) is nonlinear and thus cannot straight-
forwardly be solved. For the current analysis, the second and
forth mode are most important; they are responsible for the
V- and W-shape displayed in Fig. 1.

To characterize the numerically obtained filament con-
formations, we calculate the mode amplitudes

L/2

1(t) = dsr’(s, ), (s). (14)

-L)2

The components of the vector g, indicate the importance of the
mode in the Cartesian directions. For example, the mode
amplitude y;, measures how much the filament bends along
the z direction into a V-like shape.

As for the discrete model, we scale lengths by the filament
diameter b and time by yobs/kBTlp. The latter is identical to the
time scaling of the discrete model, since x = kgT1,. This implies
for the strength of the external force G = pgh®/ksTl, = mgh’/x.

3. Results

3.1 Deformation and dynamics of single filament

The filament is initially oriented along the x axis of the
reference frame. After a certain time, the dragged filament
reaches a stationary shape and velocity. Examples of conforma-
tional sequences for various field strengths are displayed in
Fig. 1. We characterize the shapes via eqn (14) in terms of the
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Fig. 2 Stationary mode amplitudes of a single semiflexible filament as
function of the external field B. The shaded areas indicate the 66%
confidence interval. When B < B;*, only planar modes are excited, and
the filament stays in the plane defined by its initial orientation and the
orientation of the applied field, here the xz plane. For B > B;*, an out-of-
plane mode y,, , is excited. For B > B,*, the out-of-plane component
72,1, the bending component y,, saturates, and the amplitude y,,
becomes important (visualized in Fig. 1). In black crosses indicate the
maximum value of y4, before it decays. The resulting shape is asymmetric
and spirals around the z axis with frequency ||/, (orange line), with w,
the frequency of the second mode (eqn (15)).

mode amplitudes. In Fig. 2, the most important stationary
amplitudes are presented. Below a critical field B;* ~ 1200,
the filament shape is governed by planar modes (green and
black lines), where y,, dominates and, thus, the characteristic
V-shape appears.

In simulations restricted to a two-dimensional plane, or in
three-dimensional simulations without noise,** the filament
dynamics is localized in the xz plane and filaments bend into a
planar W-shape for fields B > B,* x~ 1800. In contrast, in our
three-dimensional simulations with weak noise, we find that the
planer filament conformations are metastable for B;* < B < B,*,
and also modes along the y axis are excited. We characterize the
out-of-plane filament shape and dynamics by the mode amplitude
2,1 (), where

XZ,J_(t) = Xz,x[t) + in,y(t) = |X2,J_ |eiwt~ (15)

In the stationary state, an U-shaped and deck-chair-like con-
formation is assumed with out-of-plane bending (see Fig. 1).
The filament orientation is fixed and y, , = y», (blue line in
Fig. 2). Since its shape is asymmetric, the filament drifts side-
ways while settling in the external field.

When B 2 B,*, the mode y,, becomes important at early
times, leading to a temporary W-shape (Fig. 1). The trajectory
for B ~ 3000, displayed in Fig. 1, shows the initial W, which
later turns into an asymmetric U-shape, in which one arm is
longer than the other. The appearing shape is stable; however,
because of its asymmetry, the mode amplitude y; , is non-zero
and the filament rotates around the z axis with frequency o, see
Fig. 2 (orange line), which we determined via eqn (15). In Fig. 3,
we characterize the helical trajectories by the pitch, radius, and
rotation frequency (B > B,*). As the field increases the rotation
frequency increases, and the helix becomes more tight because
the radius decreases and the pitch shortens. The ratio between
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Fig. 3 Pitch, radius, and rotation frequency of the helical trajectories
when B > B,*. The radius and pitch seem to diverge in the proximity of
the transition. Bars are standard deviations.

the pitch and the radius defines the helix angle o ~ 4n/9,
constant for all B > B,*. Approaching the transition point from
above, the rotation frequency vanishes, and both radius and
pitch diverge because the trajectory straightens.

In contrast, in the deterministic dynamics of previous
studies,"” the W-shape was found to decay only into the stable
and symmetric planar horseshoe shape.

3.2 Conformations and dynamics of two interacting filaments

3.2.1 Weak field - relative velocity. As shown in Section 3.1,
the stationary shape of a single filament in weak fields B < B;*
is of V-shape, which breaks the bottom-top symmetry. This is
sufficient to generate an effective attraction between
sedimenting filaments with the same shape. To characterize
this interaction, we compute the relative velocity Av between
the centers of mass of two filaments of equal shape along the
sedimentation direction. The filaments remain localized in the
xz plane and are separated by a distance d. As shown in Fig. 4,
the relative velocities exhibit a significant dependence on
the filament separation. We especially find that Av ~ d~? for

10°
1ot 1.6e-03
— 3.1e-03
w 7.8e-03
‘ﬂ‘ 10! 1.6e-02
a
o 103
=
<
10°
107
101 10° 10t 102 10°

d/L

Fig. 4 Simulations of two filaments with the same imposed shape, kept
constant during the simulation (B = 195). The shapes are created with the
given y, .. The filaments lie in the same plane, parallel to the external field. The
relative velocity Av scales as d~2. The black lines correspond to the prediction
of egn (17), save for a common factor 6 ~ 11. The theory describes correctly
the trend on d, and the trend on y,, holds up to y,, = 8 X 1073
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distances larger than the filament length. The distance dependence
can be understood by the theoretical model introduced in Section
2.3. For the considered filament shapes,

l‘l(S,t) = (Xl,x(t)d)l(s)) 0, 12,Z¢2(S))T

and r*(s,t) = r'(s,t) + de,, the general expression for the velocity
difference derived in Appendix B yields

(16)

LZ
Avey ~ Xz.z2ﬁ (17)

in the limit d — oo. Evidently, the filaments attract each other
due to the top-bottom asymmetry of their shapes. In the
simulations, the filament shapes are determined initially by
imposing the amplitude y,,, which is then kept fixed. The
simulation results of Fig. 4 are in agreement with our theo-
retical prediction down to roughly the filament length. The d >
power law is indeed a universal scaling, unaffected by the
filaments shape and external field as evident from the theore-
tical considerations in Appendix B. The dependence of Av on
%2,z (eqn (17)) is also verified for very small bending.
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Fig. 5 Snapshots of two-filament conformations for B = 195, in time
intervals At. (a) Co-planar sedimentation. Note that the upper filament is
more bent than the lower filament, and dmin/L = 0.13. Axes to scale,
z position translated. (b) The two filaments approach each other after
initialization in a rotated configuration. Both filaments spin around the
z axis, with the upper filament spinning faster (see Fig. 6(c and d)).
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3.2.2 Weak field - stability. We now relax the imposed
shape constraint and consider collective effects for two filaments,
which are initially straight, oriented along the x axis, and
displaced along the z axis by a distance d (¢f Fig. 5(a)). For
easier comparison with ref. 10 and 12, we employ the
dimensionless number 4 = (Aypper — Atower)/(L/2) to quantify the
bending asymmetry, where Aypper,iower 1S the total z extension of
the upper/lower filament. As indicated in Fig. 6, the filament
curvature changes with time and the upper filament is bent
stronger than the lower one. Fig. 6(a) and (b), show the
curvature asymmetries 4 and the relative velocities for various
external field strengths. 4 decreases with increasing distance d,
indicating more similar shapes at larger distances. Hydrodynamic
interactions lead to an attraction of the two filaments (Vypper >
Viower), i agreement with the imposed-shape approximation
studies of the last section. Indeed, the constant-shape approxi-
mation still gives the correct (L/d)* power-law dependence for d/L
> 1, while the magnitude of the deformation, /(;ﬁﬂ, has to be
fitted. When the filaments approach each other, the generated
flow field depends on the details of their shapes that, in turn,
depends on the external field, hence we expect a non-universal
behavior. Note that in contrast to ref. 10, we find that the upper
filament bends more than the lower filament (see also Fig. 5).

The planar configuration of a filament is also stable with
respect to filament rotations around the field axis, see Fig. 5(b).
Filaments that are initially displaced along the z axis (as in the
previous case) and rotated with relative orientation angle 0 around
the external field axis spin until the relative angle vanishes, as
illustrated by Fig. 6(c). Also in this case, the upper filament drifts
and rotates faster than the lower one, see Fig. 6(d). The relative
velocity is essentially the same as in the planar case.

Thus, two filaments sedimenting in weak fields relax toward
a stable planar configuration one behind the other. The shape
of the filaments is dominated by the second mode, pointing
downwards, as shown in Fig. 5. This mode dominates and it
breaks the mirror symmetry of the hydrodynamic interactions
even for filaments of the same shape. Note that, in contrast to
the single filament case, the system does not reach a stationary
state velocity or shape, since the upper filament is always faster
than the lower filament until the filaments touch each other.

3.2.3 Strong field. For strong fields, we consider two fila-
ments, which are initially displaced by 6L along the field direction.
We measure the shape eigenvalues when the distance is 5L, in the
quasi-stationary regime, and find that the eigenvalues exhibit the
same behavior as those of a single filament. This means that for
B > By* the dynamics of each filament is dominated by the local
flow field and not by the interactions with the other filament.
Indeed, we find no correlations between the orientations of the
out-of-plane components of the two filaments for B > B;*: the two
filaments can by chance bend out-of-plane and drift in arbitrary
directions.

When B > B,*, the filaments undergo the same transitions
as a single filament: each of them reaches the same stationary
shape and rotation velocity as an isolated filament. We find
no correlations between the rotation directions of the two
filaments: some filaments spin in the same direction, others in

Soft Matter, 2015, 11, 7337-7344 | 7341
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(a and b) Bending asymmetry 4 and relative velocity Av of two filaments as function of the filaments distance for L/b = 30. The two filaments are in

the same plane, parallel to the external field and parallel to each other. Each color corresponds to a different external field B, as indicated. The velocity vg
is the terminal velocity given by the resistive force theory for a rod. When d/L > 1, the relative velocity scales as d~2. Note that filaments attract, i.e. time
progresses from right to left. (c and d) Rotation angle 0 and relative velocity Av of two initially rotated filaments around the field axis by 0 = 18°. The
relative velocity is essentially unaffected by this change. Notably, the filaments spin toward each other decreasing the relative angle.

opposite directions, with no preference. This highlights the relevance
of hydrodynamic interactions between two filaments for external
fields weaker than B;*. At stronger fields, the non-planar configura-
tions generate forces that compete with and dominate over hydro-
dynamic interactions among the filaments and the emergent
behavior is, essentially, the same as that of an isolated filament.

3.3 Three filaments

Given the complex dynamics of two interacting filaments, it is
interesting to consider also the collective behavior of several

gl —filament 1 —filament 2 —filament 3
10 30

L0

& 2
Fig. 7 Three semiflexible filaments and trajectory of one bead (thick line), for
the external field B ~ 60 « Bj*. In this case, the filaments form a bundle, but
the relative positions change periodically. Inset: Plot of y,, for the three
filaments. Since they have the same period and constant phase shift, this is the
result of a cooperative behavior. Corresponding movie is shown in the ESL{
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filaments. We find in simulations of systems with more than
two filaments an intriguing collective dynamic behavior even
for very weak fields (B ~ 60) and in the absence of noise.

We focus here on the case of three filaments, see Fig. 7. For
most (randomly chosen) initial configurations, the nearest two
filaments form a bundle that settles faster than the third
filament that is then left behind. However, we find also some
initial configurations where all three filaments attract each
other and form a bundle. In this case, the relative positions
are not stationary; instead, the filaments follow a periodic
trajectory, see Fig. 7 (inset). In the inset of Fig. 7, we show also
that the shapes of the three filaments are not stationary. The
mode amplitude y, , of each filament changes periodically, with
a constant phase shift between them.

Our results for one and two filaments indicate that triggering
of a time-periodic bifurcation requires strong fields. However, the
three-filaments results suggest that systems with more filaments
display a very complex dynamics even for weak fields due to
complex hydrodynamic interactions.

4. Discussion and conclusions

We have investigated the dynamics and stability of semiflexible
filaments exposed to an external homogeneous field and inter-
acting only via hydrodynamic fluid fields. Due to the competition
between hydrodynamic interactions and bending stiffness,
the appearing dynamical behavior is richer than for entropy-
dominated polymers or interacting rods.

We have shown that, for weak fields B < B;*, co-planar
configurations of two filaments are stable upon perturbations
that rotate the shapes relative to each other around the field

This journal is © The Royal Society of Chemistry 2015
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axis. With simulations of fixed shape filaments, we have high-
lighted that a V- or U-shape is sufficient to break the hydro-
dynamic symmetry at low Reynolds numbers, leading to a
relative velocity that scales with distance as (L/d)*. Hence, the
difference in drag coefficients between filaments is not neces-
sary to explain the faster settling velocity of the upper filament.

For external field strengths exceeding the critical value B,*, the
hydrodynamic interactions bend the filament out of its principal
plane. Simulations of a single bent filament show that the hydro-
dynamic forces balance the elastic force, stabilizing the out-of-
plane shape. The resulting trajectory shows a drift in the direction
of out-of-plane bending, superimposed to the settling motion. This
is a novel result, not to be confused with the previously reported
metastable W-state'” that is excited when B > B,*. A careful
analysis of the eigenmodes indicates that the decay of the meta-
stable state does not, in general, lead to the reported planar
horseshoe shape, but also excites an average rotation mode with
respect to the field axis (x;.) and our out-of-plane bending mode
%2,1- The filaments spin then around the field axis.

Finally, we have demonstrated that three filaments display
an unexpected periodic dynamics even at field strengths far
weaker than B;*. This is in contrast to the dynamics of a pair of
filaments that either displays a monotonic dynamics that
relaxes the attractive force (when B is weak) or a dynamics
dominated by the single-filament (when B > B;*).

The interesting external fields B are in the range 10' < B <
10®. We can estimate these parameters for biopolymers like actin
or microtubules. Actin has a persistence length of [, ~ 17 um, an
average length L ~ 20 pm, and the bending rigidity x ~ 60 x
10 pN pm>' The external gravitational field, corrected for
buoyancy, is about G ~ 10~7 pN pm™ ', which implies Byrayiey ~
102 Microtubules, on the other hand, are stiffer, longer, and
heavier with [, ~ 1 mm, L ~ 100 ym « [, and G = 10°°
pN pm™'.%® This yields the effective field strength Bgpayiey ~ 107",
An experimental test of our predictions is therefore within reach

of modern centrifuges with accelerations of about 10%g.

A Eigenfunctions of a semiflexible
filament

The eigenvalue eqn (11) with the boundary conditions
0? o

7(;571(‘?) = 7¢n (?) =0 (18)
Os? s=+L/2 S s=+L/2
yields the eigenfunctions
1 sinh {,s sin{,s
§) = —— 1 1
9uls) \/Z(sinh L2 sin C”L/2)’ n>10dd,  (19)
1 cosh{,s cos{,s
= 1, . 20
Puls) \/Z(cosh G172 " cos {,IL/2)7 n>1even.  (20)

The wave numbers are approximately given by (,, = (2n— 1)n/2L
(n > 1), and the corresponding relaxation times by
16yL*

Lym*kg T (2n — 1)* (21)

Ty =

This journal is © The Royal Society of Chemistry 2015

View Article Online

Paper

More precise eigenfunctions are provided in ref. 24 and 27. The
set of functions is complemented by the eigenfunction of the
center-of-mass translation®”

1

=— 22
([)0 \/Z ( )
and that of rotation of the rodlike object
12
b1 =/ VR (23)
with the relaxation time
w3
_
T kT (24)

B Relative velocity of two filaments

We derive here an equation for the relative velocity between the
centers of mass of two filaments. We restrict our analysis to the
case of small bending amplitudes, that is equivalent to consider
small external fields, and filaments of identical shape.

Since J" L/2 L (8)ds = /Ld, for the exact eigenfunctions, the

difference in the center-of-mass velocity AvVer, = Ve — Ve Of two
isolated filaments is given by

| (L2

AVen zfj dsd [r' (s, 1) — (s, )]
L) 1)
(25)
1
=—0,[1' () = x2()].
\/Zz[/to (1) = %0 ()}

Substitution of eqn (12) yields

VELAVen = ZHon {——n + fncl] - M {—fxnz + fncz}
n n

7
SR | - ||
n

n

The first two terms on the right-hand side account for self-
interactions of the individual filaments, the other two terms for
the hydrodynamic interactions between the filaments.

We simplify our considerations by assuming identical
shapes of the filaments, i.e., we set ¥, = %,>: = Y. Moreover,
for the constant external force the relation applies f,; = f5590n
independent of the particular filament. Hence, its contribution
vanishes, which yields

AVe = \/_Z H()n Héﬁ) ,(,1 (26)

We are primarily interested in the distance dependence of the

relative center-of-mass velocity. Hence, we additionally neglect

the dyadic term in the hydrodynamic tensor (8). Moreover, the

local friction term vanishes in eqn (26), and the hydrodynamic
tensor can be written as

—— r/z B, (5)9o

—

s) dsds’
08y )y e (s) — rr(s’ '

] (27)
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Using the eigenfunction expansion eqn (10), we obtain

rl/(s) - rﬂ(s/) - Ar’clrlltl + Z}fn(d)n(s) - ¢n(sl))
n=1

(28)
= At + E(s,5).
With this definition, we obtain for AHy2 = Hz,. — Ha2
. 1 L/2
AH;, = —J dsds’'e,,(s) o (s’
B =g, 00,000
(29)

1 1

x AL —E(s,5)]  [Ar2L +E(s,5)||

In the limit d = |ArZ}| > |E(s,s")|, Taylor expansion yields

1 (L2 E(s,s) - Ar2l
2 _ L ! — Dt emey (s
= ] BT, G0
and hence,
1 1 &y JL/z ) E(s,s') - Ar?l
AV m = = —Xn deS n\S — = SI '
¢ 4m1\/Zdz;TnX L2 Pus) d Pols)

(31)
Substituting x = s/L and setting y = 3ny>* yields
321 g, Jl/z E(x,x) - Ar,

A 21
I ?ﬁ l/zdxde[)n(x) d B (x).
n=1"" -

Ach =

(32)

Thus, the relative velocity decreases quadratically with the
distance between the filaments. There is evidently no velocity
difference when ArZ}, is perpendicular to E(s,s'). In particular,
there is no force between two specifically aligned rods as long
as their director y; is perpendicular to ArZy,.
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