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Commensurability and finite size effects in lattice
simulations of diblock copolymers†

Akash Arora, David C. Morse, Frank S. Bates and Kevin D. Dorfman*

Lattice Monte Carlo (MC) simulations provide an efficient method for exploring the structure and phase

behavior of block polymer melts. However, the results of such simulations may differ from the equilibrium

behavior of a hypothetical infinite system as a consequence of the finite size of the simulation box.

Standard finite-size scaling techniques cannot be employed to remove the effects of a small system size

due to incommensurability between the ordered structure domain spacing and the periodicity of the

simulation box. This work describes a systematic approach to estimating the equilibrium domain spacing

in lattice MC simulations of symmetric diblock copolymers, and thereby minimize the effects of

incommensurability. Results for simulations with commensurate simulation boxes, which are designed

to be commensurate with the preferred lattice periodicity but contain different numbers of unit cells,

show that once the effects of incommensurability are removed, the effects of finite size alone are

relatively small.

1 Introduction

Block copolymers self-assemble to form a variety of ordered
structures with the periodic length dictated by the degree of
polymerization, N.1 The resulting materials have been instru-
mental in the development of several emerging technologies
including nanostructured membranes,2 photonic crystals,3

magnetic storage media,4 and silicon capacitors.5,6 Many of
these applications require ordered structures with characteristic
dimensions as small as possible.7 Achieving the smallest feature
sizes requires low molecular weight (small N) block polymers
and a correspondingly large Flory–Huggins interaction para-
meter, w, such that the segregation strength, wN, is high enough
to result in the formation of ordered structures. Recent work
with relatively small diblock copolymers, unencumbered by
kinetic limitations to transitions between ordered states, has
revealed unexpected phase complexity. For example, relatively
short, high w, compositionally asymmetric diblock copolymers of
poly(isoprene-b-lactide), have produced a Frank–Kasper s phase
comprised of a large tetragonal unit cell containing 30 particles.8

The s phase nucleates from a body-centered cubic (BCC) phase
by breaking symmetry, resulting in five different populations of
particle volumes in a single unit cell.9 The time required to
transform from the BCC to s phases is many hours, even for

such short polymers, underscoring the need for computationally
efficient algorithms with which to model such behavior.

Quantitatively describing the thermodynamics of small block
copolymers is an outstanding problem in polymer physics. Mean-
field theory10 predicts that a melt of infinitely long (N - N)
volumetrically symmetric ( f = 1/2) AB diblock copolymers under-
goes a continuous second-order phase transition at wN = 10.5 that
transforms the isotropic disordered phase to an ordered lamellar
structure, known as the order–disorder transition (ODT).
However, it has been shown both theoretically11 and experi-
mentally12–14 that symmetric AB diblocks of finite molecular
weight belong to the Brazovskii class,15 for which composition
fluctuations qualitatively alter the character of the transition,
changing it to a weakly first-order transition.13 Fredrickson and
Helfand11 adapted the seminal work of Brazovskii15 to account
for fluctuations in block copolymers, and showed that correc-
tions to mean-field theory are controlled by dimensionless
parameter %N = N(r0b3)2, where r0 is the monomer density, and
b is the statistical segment length, and obtained corrections that
decrease with increasing %N. %N, an invariant degree of polymer-
ization, characterizes the degree of overlap between chains. The
Fredrickson–Helfand theory has been successful in predicting
certain qualitative aspects of fluctuating disordered diblock
copolymers but is expected to be accurate only in the limit
of very high molecular weight, and has been shown to give
unphysical results when N o 103.16 Recently, an approach that
more realistically addresses practical molecular weights, referred
to as renormalized one-loop (ROL) theory,17,18 has been devel-
oped. The ROL theory seems to account for the structure factor
in the disordered phase for much smaller values of N, and in

Department of Chemical Engineering and Materials Science, University of

Minnesota–Twin Cities, 421 Washington Ave. SE, Minneapolis, Minnesota 55455,

USA. E-mail: dorfman@umn.edu

† Electronic supplementary information (ESI) available: Structural and thermo-
dynamic properties of incommensurate and commensurate systems. See DOI:
10.1039/c5sm00838g

Received 9th April 2015,
Accepted 13th May 2015

DOI: 10.1039/c5sm00838g

www.rsc.org/softmatter

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

4 
M

ay
 2

01
5.

 D
ow

nl
oa

de
d 

on
 1

0/
2/

20
24

 6
:1

0:
06

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

http://crossmark.crossref.org/dialog/?doi=10.1039/c5sm00838g&domain=pdf&date_stamp=2015-05-20
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/c5sm00838g
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM011024


This journal is©The Royal Society of Chemistry 2015 Soft Matter, 2015, 11, 4862--4867 | 4863

particular for the type of short diblock copolymers considered
here (N o 100). However, the ROL theory does not provide
any information about the ODT and the properties in the
ordered phase.

In the absence of predictive theory, computer simulations
emerge as an attractive approach to study fluctuation effects in
block copolymers.19,20 In particular, lattice Monte Carlo (MC)
simulations are a very efficient means to predict the ODT in
block copolymers,21–24 which are generally more efficient than
off-lattice models.25–27 The savings in computational time
becomes particularly important when both equilibration and
production periods are required at numerous temperatures
(or values of w), and in simulations that require long tempera-
ture (or w) sweeps to identify a transition. The efficiency of MC
simulations may be further enhanced by employing advance
sampling techniques such as parallel tempering28,29 and reweight-
ing schemes,30 though we do not employ these techniques here.

Despite much prior work, the accuracy of the ODT predicted
from MC simulations is still not completely understood. This
stems in part from the fact that, in the simulation, the system is
constrained within a finite box of length L. This shifts the
transition away from its true value, i.e., the value that would be
obtained in the thermodynamic limit, L - N. This finite size
effect is particularly severe for transitions involving spatially
periodic ordered phases, because the finite size of the box can
constrain the domain spacing of the ordered structure to a
value that is not equal to the preferred domain spacing that
would be obtained for an infinite system. This incommen-
surability between the periodicity of the simulation box and
that of the ordered structure also prevents the use of standard
finite-size scaling techniques that were designed for phase
transitions between spatially homogenous phases.31 In off-lattice
models, this incommensurability can sometimes be avoided by
using a deformable box that can automatically adjust to be
commensurate with the preferred domain spacing.32 However,
in the case of lattice models, this problem of incommensurability
has not yet been solved.

In this work, we address the issues related to finite size effects
and commensurability in MC simulations with the lattice model
for symmetric diblock copolymers. We estimate the preferred
domain spacing by comparing results of simulations of varied
simulation box size L, and use this result to identify nearly-
commensurate systems. Simulation results for a series of nearly
commensurate systems characterized by the same layer spacing
but different numbers of layers are then compared to elucidate
any remaining finite size effects and to estimate physical proper-
ties in the thermodynamic limit.

2 Simulation method

The simulation methodology and features reported here are based
on the algorithm developed by Matsen and coworkers.24,33,34 The
system consists of n symmetric AB diblock copolymer chains that
are placed on an FCC lattice having V = L3/2 sites. Approximately
20% of the available sites are left vacant, to allow mobility.

Simulations are implemented using the Metropolis Monte
Carlo method with four different types of moves: reptation,
crankshaft, block-exchange, and chain-reversal.24 Only nearest
neighbor interactions are considered, with the strength of each
interaction given by eAB 4 0 for neighboring sites occupied by
dissimilar (AB) monomer pairs, and no interaction (eAA = eBB = 0)
for sites occupied by similar (AA or BB) monomer pairs, as done in
some recent simulations.32

Throughout this paper, results are discussed and plotted in
terms of a simple ‘‘bare’’ Flory–Huggins parameter, given by
w � zeAB/kBT, where z = 12 is the lattice coordination number.
Because we are interested only in characterizing the behavior of
a simple model, and not in comparing different models to each
other or to experiments, no attempt is made here to define an
‘‘effective’’ interaction parameter suitable for such compari-
sons, as done in some recent simulations.32 Also, the results
predicted by this lattice model recently have been compared
with the theoretical predictions,16 which are omitted here for
brevity.

To identify the ODT, the system is cooled by increasing wN in
steps of constant size D(wN), increasing wN from wN = 0 to values
large enough to induce a transition to an ordered structure. The
resulting ordered structure is then heated (i.e. wN is reduced) in
steps of the same size, until wN = 0. During both the cooling and
the heating runs, the starting configuration at any value of wN is
obtained from the final configuration at the previous value
of wN. At each value of wN, 8 � 104 Monte Carlo steps (MCS)
per monomer are performed for equilibration, followed by
8 � 104 MCS per monomer as a production period before
implementing the next step of D(wN). Samples are taken at an
interval of 160 MCS per monomer during the production period
to calculate ensemble averages.

We calculate the number of AB contacts, nAB, which enables
us to compute the internal energy of the system,

hUi = eAB hnABi. (1)

We also calculate the heat capacity based on fluctuations in the
internal energy,

CV ¼
@U

@T
¼

U2
� �

� Uh i2
kBT2

: (2)

In order to find the orientation of the lamella and consequently
the domain spacing, we compute the structure factor,

SðqÞ ¼ 1

V

X

ij

sisj
� �

� sih i2
� �

exp iq � rij
� �

; (3)

where si = 0, 1, or�1 is the lattice occupancy of the site depending
on whether it contains a vacancy, a monomer of type A, or a
monomer of type B, respectively. The vector, rij(=ri � rj), is the
position vector from site i to site j. The wave vector, q can only take
on values

q ¼ 2p
L
ðhklÞ; (4)

where (hkl) are integers. For each case investigated in this work,
eight statistically independent simulations were conducted.
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3 Results and discussion

All the results presented in this paper were obtained for chains
of length N = 20. However, the approach is general and can be
easily applied to other chain lengths, and to other models. The
simulation procedure described in the previous section provides
a direct method to identify the ODT. Fig. 1 shows the average
number of AB contacts for both cooling and heating runs, which
determines the average internal energy (eqn (1)). The hysteresis
loop evident in this plot is consistent with the presence of a first-
order phase transition. As expected, the discontinuity at each end
of the hysteresis loop coincides with a spike in the heat capacity
(Fig. S-1 in the ESI†).

In order to assess the role of finite size effects, a relevant
thermodynamic property (e.g. (wN)ODT) or structural features
(e.g. S(q)) must be computed for a range of system sizes. If there
were no commensurability effects, then these properties would
be expected to increase or decrease monotonically with inverse
system size 1/L, allowing the value in the thermodynamic limit
to be inferred by extrapolation to L = N.

As a first step toward estimating (wN)ODT, we examined the
behavior of the hnABi near the ODT for six different system
sizes, ranging from L = 24 to L = 64 with DL = 8. As seen in the
ESI† (Fig. S-2, ESI†), neither the positions nor widths of hyster-
esis loops vary monotonically with L. This non-monotonic
behavior is not limited to the hysteresis loops, but also is clear
from the evolution of the structure factor in the disordered
phase (Fig. S-3, ESI†) and the structural metrics for the blocks
(Fig. S-4, ESI†). Our observations agree with the conclusion of
Micka and Binder31 that the incommensurability between the
lattice periodicity and the domain spacing prevents the appear-
ance of any simple monotonic variation of physical properties
with L. As a result, standard procedure to study finite size
effects upon transitions between homogeneous phases cannot
be applied in this case.

To minimize the effects of incommensurability, we must
thus first estimate the preferred domain spacing, and then
design simulations using nearly-commensurate simulations
boxes that are designed to contain integral number of nearly
unstrained lamellar layers. We observe that simulations using
boxes of different size L spontaneously order in different orienta-
tions. For each box size L, the preferred orientation at the ODT
appears to be reproducible. Our analysis is based on the hypo-
thesis that the orientation in each box is chosen so as to minimize
the difference between the layer spacing and the preferred layer
spacing that would be obtained in an infinite system. Each
allowed orientation can be associated with a primary wavevector q
given by eqn (4). Because q can only take on discrete values in a
finite simulation cell, the corresponding layer spacing d can
also only have discrete values, given by

d ¼ 2p
jqj ¼

Lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 þ k2 þ l2
p ; (5)

with integer values of (hkl).
Fig. 2 shows our results for the domain spacing d at the ODT

for systems of size L = 28–60, for all even L. The red symbols
show the allowed values of d, as given by eqn (5). The values are
clustered around d C 14 but exhibit jumps between neighboring
values of L that, in the absence of more detailed analysis, might
appear to be erratic. Upon comparison of actual and allowed
values, however, it becomes clear that these data are consistent
with our hypothesis that the system always chooses an orienta-
tion that optimizes d. Wherever there are sudden spikes in the
observed d spacing, as occur at L = 36, 38 and 54, it is because
there is no choice of values for the integers (hkl) for those values
of L that would yield a value of d that is closer to an apparent
optimum value of approximately d C 14. The reproducibility of
this behavior suggests that these systems have sufficient freedom

Fig. 1 Number of AB contacts per simple cubic site, hnABi/V, as a function
of segregation strength, wN, for both a cooling (blue) and heating (red) run,
where D(wN) = 0.5. The insets show snapshots of the disordered phase
(left) and the lamellar structure (right) at wN = 0 and 43, respectively.

Fig. 2 Domain spacing in the ordered phase as a function of system size.
The blue squares are the domain spacing from the simulations, with the
blue line drawn to guide the eye. The green dashed line is the average
value of the domain spacings from the simulations. The red cross symbols
show all nearby allowed values of d for a given L calculated using eqn (5).
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during the process of spontaneous ordering to choose an
optimum orientation.

If we assume that the system always choose an orientation
that minimizes the difference between d and some unknown
optimal value deq, we can also use these data to put upper and
lower bounds on deq. For each L, we obtain a lower bound from the
midpoint between the observed value of d and the next lower
allowed value, and an upper bound from the midpoint between the
actual value and the next higher allowed value. The overall bounds
on our estimate of deq are given by the maximum lower bound and
the minimum upper bound. For these data, the tightest lower
bound is obtained from L = 60, which yields deq 4 13.9, while the
tightest upper bound is provided by L = 50, which yields deq o 14.2,
leaving an uncertainty of approximately 2%.

In order to estimate the effects of finite size alone on
systems with the same layer spacing, we have compared results
of simulations of systems with lattice sizes L = 28, 42, 56, and 70
that are all found to produce lamellar phases with d = 14. Since
these systems have a common layer spacing d = 14 that lies very
close to the (unknown) optimum value, we refer to these systems
as ‘‘nearly commensurate’’. Snapshots of the lamellar phase
formed by this series of nearly-commensurate systems are pre-
sented in Fig. 3. As expected, the system sizes L = 28, 42, 56, and
70 contain 2, 3, 4 and 5 lamellar layers, respectively. Note that
Fig. 3 shows the lamellae oriented along the principal directions
only. However, in some of several independent simulations,
lamellae were found to form with indices (%122) and (04%3) for
the systems L = 42 and L = 70, respectively, which in these cases
give rise to ordered phases with exactly the same layer spacing
but different orientation (Fig. S-5, ESI†).

Having obtained the commensurate systems, we are now in
a position to address the consequences of finite size effects.
Fig. 4 compares the hysteresis in the internal energy for these

four nearly-commensurate systems. As expected, the width of
the hysteresis loop increases with an increase in the lattice size.
However, it is important to note that the variations in this width
result almost entirely from changes in the cooling branch; within
the precision of the simulations, the heating branch of the
hysteresis loop remains unaffected. This observation also is
evident in the position of the spike in the heat capacity, which
for the cooling run shifts to higher values of wN with increasing L,
while remaining at fixed wN for all L in the heating runs (Fig. S-6,
ESI†). This behavior is intuitive as explained by Matsen and
coworkers:24 larger system sizes, with larger total energy, require
longer time to nucleate an ordered phase, thereby increasing the
degree of supercooling. This is analogous to what is found in
practice when heating and cooling real substances through
melting and fusion phase transitions. Thus increasing the rate
of temperature change has a more dramatic impact on the extent
of supercooling of the liquid than on the degree of superheating
of the crystalline state. These results demonstrate that the ODT
lies very close to the apparent ODT obtained from the heating
branch and does not move significantly upon changing the size
of the lattice. In other words, the ODT determined with the lattice
Monte Carlo simulation model during heating does not suffer
from artifacts associated with a finite simulation box. For the
example considered here, N = 20, we conclude that (wN)ODT C 40.

Here we note that Matsen and coworkers24,34 have reported
essentially the same value of (wN)ODT for N = 20, with the stated
expectation that finite-size effects should not be too significant.
Plots of hysteresis obtained from commensurate and incom-
mensurate simulations (Fig. S-2, ESI†) demonstrate that the
computed lamella-to-disorder transition values are randomly
clustered around a mean value (wN)ODT = 40 for different L.
However, it is important to note that the associated thermo-
dynamic properties display non-monotonic variations with L
and therefore definite conclusions cannot be drawn regarding
finite-size effects. By selecting only the commensurate systems,
we have been able to show conclusively that finite size effects
do not adversely affect what we report here.

Fig. 3 Snapshots of the lamellar phase formed by ‘‘nearly-commensurate’’
systems; L = 28, 42, 56 and 70. These snapshots were taken at wN = 43.
Depictions of the lamellae formed for L = 42 in the (%122) direction and for
L = 70 in the (04 %3) direction are provided in Fig. S-5 (ESI†).

Fig. 4 Hysteresis in the internal energy for the four commensurate systems.
The data correspond to constant cooling and heating step sizes of D(wN) = 0.5.
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In addition to (wN)ODT, we have calculated several other
properties, such as the chain dimensions and collective structure
factor, to demonstrate that all the structural features are system-
atically accounted for by choosing commensurate system sizes.
As an illustrative example, Fig. 5(a) shows the structure factor in
the ordered lamellar phase at wN = 43 for all four commensurate
systems, where a Bragg-like peak dominates the structure factor
in the ordered phase. The peak height for the commensurate
systems increases monotonically with the lattice size in direct
proportionality to the volume of the system, L3, and the peak
width decreases inversely with L3, as shown in the inset to
Fig. 5(a). This result confirms the scaling behavior expected in
the ordered phase.31

Fig. 5(b) shows the evolution of the inverse of the peak height,
S(q*)�1, for the complete heating run. Note that the disordered
phase is isotropic, so the structure factor in the disordered phase
is calculated as a spherical average for a constant length of
wavevector, |q|. Fig. 5(b) shows that the peak height of the
structure factor is independent of L in the disordered phase.

However, in the ordered phase, the inverse of the peak height
is lowest for the largest system as shown in the inset of the
Fig. 5(b), in agreement with Fig. 5(a). Taken together, these results
confirm that finite size effects do not appreciably influence the
structure factor in either phase.

4 Conclusion

We have presented a systematic study of finite size effects in
lattice Monte Carlo simulations of symmetric diblock copolymers.
Incommensurability between the lamellar domain spacing and
the periodicity of the lattice produces a non-monotonic variation
in the thermodynamic and structural properties with system size.
In order to estimate the preferred domain spacing we conducted
simulations with multiple choices for the system size. The results
are consistent with the hypothesis that the system always chooses
a lamellar orientation that minimizes the difference between the
layer spacing and some preferred equilibrium value, and allow us
to estimate the preferred value.

Our results for the ODT are sensitive to the effects of finite
simulation box size upon the free energies of both the dis-
ordered and ordered phases. In the disordered phase, because
there is a finite correlation length, finite size effects can be
made exponentially small by making the box larger than the
correlation length. In any ordered phase, because there is
infinitely long range periodic order, the boundaries can always
‘‘communicate’’ via the imposition of a strain that propagates
through the entire simulation box. This strain can be comple-
tely removed, however, by making the periodic simulation unit
cell commensurate with the preferred domain spacing of the
ordered structure. In a finite but perfectly commensurate
simulation cell, there also would be shorter range correlations
for fluctuations of the composition field about its average, i.e.,
for the fluctuations that are measurable experimentally as the
diffuse scattering that is superimposed on the Bragg peaks. In
order to suppress such effects in an ordered phase, the simula-
tion cell must both be commensurate and large enough to
suppress finite size effects arising from remaining composition
fluctuations about the average periodic field. Even if the box is
not perfectly commensurate, simulations on boxes with the
same degree of strain (i.e., the same ratio of the imposed layer
spacing to the preferred value) should yield equivalent results
if the box is large enough to avoid finite size effects arising
from spatially correlated fluctuations about the average. The
close agreement that we get for values of the ODT for nearly-
commensurate systems having same layer spacing but different
integer numbers of layers demonstrates that finite size effects
arising from spatially correlated fluctuations are already small
in both phases for the box sizes considered here.

We have also demonstrated that, for nearly-commensurate
systems, the dependence of the width of the hysteresis loop with
changes in system size at constant heating and cooling rate are
primarily the result of increases in the value of wN at which the
system spontaneously orders upon cooling. The values of wN at
which the system melts at a given heating rate appear to be

Fig. 5 (a) Structure factor, S(q), as a function of the non-dimensional
wave vector, qb, for the four commensurate systems in the ordered phase
at wN = 43. The inset shows the scaling between the peak in structure
factor, S(q*), and system volume, L3. (b) Inverse of the peak in the structure
factor, NS�1(q*), as a function of the segregation strength, wN, for the
complete heating run. The inset shows the variation of inverse of the peak
of the structure factor in the ordered phase.
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almost independent of system size, when comparing systems
with the same layer spacing. This suggests that the true ODT
lies close to the apparent melting transition.

The approaches described in this paper are general, and can be
applied to other choices of simulation model and chain length. By
performing a few simulations at small L for some value of N (and,
in principle, f ) and obtaining the selected domain spacing at these
values of L, we can quickly estimate the preferred domain spacing,
and then design nearly commensurate systems for further inves-
tigation, thereby circumventing a potentially expensive, trial-and-
error process. Though this strategy can be applied to either lattice
or off-lattice simulations, it is particularly useful for lattice
simulations because of the inapplicability of approaches that
use a deformable unit cell. We thus anticipate that the strategy
outlined here will increase the appeal of lattice simulations of
block polymers, and will be useful in quantifying the role of
fluctuations in the phase behavior of diblock copolymers.
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