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The membrane bending stiffness of nearly spherical lipid vesicles can be deduced from the analysis of

their thermal shape fluctuations. The theoretical basis of this analysis [Milner and Safran, Phys. Rev. A:
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At, Mol, Opt. Phys., 1987, 36, 4371-4379] uses the mean field approximation. In this work we apply
Monte Carlo simulations and estimate the error in the determination of the bending stiffness due to the
approximations applied in the theory. It is less than 10%. The method presented in this work can also be

used to determine the changes of the bending stiffness of biological membranes due to their chemical

www.rsc.org/softmatter and/or structural modifications.

1 Introduction

Biomembranes are one of the main building blocks of living
matter. Due to their important role in biological systems, there
is a large interest in their structure and functioning principles.

A widely accepted description of the biomembrane structure
is given by the model of Singer and Nicolson' representing the
biomembrane as a lipid bilayer embedded with integral proteins.
One of the factors determining the functioning of biomembranes
are their mechanical properties, which play an important role
in defining intermembrane interactions, membrane fusion, the
motion of cells in flow, etc. The mechanical properties of
biomembranes are determined to a great extent by the mechanical
properties of their lipid bilayers. The lipid bilayer can be considered
as a simplified model of the biomembrane and theoretical and
experimental investigations of the mechanical properties of lipid
bilayers are continuously rising.>™

In most cases the thickness of the lipid bilayer is much
smaller than the typical dimension of the studied object (cell,
vesicle, etc.) and the bilayer can be considered as a two-dimensional
structure. The macroscopic mechanical properties of such mem-
branes are determined by their stretching, bending, and shear
moduli.® In this paper we consider a special case of membranes
with zero shear modulus, corresponding to a two-dimensional
liquid. We assume that during the characteristic observation
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time, ie. during the measurement, the number of amphiphilic
molecules in each of the two monolayers comprising the bilayer
does not change and that the volume enclosed by the membrane
remains constant. This permits us to consider the studied object
as an equilibrium structure. Note, however, that we do not
impose a restriction for the membrane to be tensionless.

One of the most commonly used experimental methods for
determining the bending stiffness of lipid membranes is the
analysis of the thermal shape fluctuations of a nearly spherical
lipid vesicle.”™ The theoretical basis of this analysis was
proposed by Milner and Safran'® by considering the fluctuating
vesicle as an ensemble of non-interacting harmonic oscillators.
The time mean squares of the amplitudes of these oscillators
depend on several factors, including the lateral stretching of
the membrane that induces a lateral membrane tension. When
such time and position dependent membrane tension is taken
into account, the Hamiltonian of the fluctuating vesicle is not a
function of an ensemble of independent oscillators. In order to
obtain that, a mean field approximation is used, where the
fluctuations of the membrane tension are neglected and the
fluctuating tension is replaced with its mean value. A question
arises, whether this approximation provides adequate results.
Recently, an essay on this topic was done by Bivas and Tonchev,"”
who used the Bogolyubov inequalities and the method of the
approximating Hamiltonian."® Necessary conditions assuring the
validity of the Milner and Safran theory were found. One of these
conditions is the high enough value of the mean lateral tension of
the vesicle membrane.

One of the aims of the presented work is the verification of
the results of the Milner and Safran theory by means of Monte
Carlo simulations of the shape fluctuations of a nearly spherical
lipid vesicle. The results of the simulations are considered as

This journal is © The Royal Society of Chemistry 2015
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experimental data whose accuracy increases with the increase in
the length of the simulation. The obtained results show that the
determination of the bending stiffness is possible using the
theory of Milner and Safran with acceptable precision.

The analysis of simulations presented in this work can serve
as a tool to quantitatively measure the changes of the bending
stiffness of biological membranes due to the chemical and/or
structural modifications of lipid bilayers. This can be, for example,
the change of the composition of lipid molecules in the bilayer
(multicomponent lipid bilayers), the insertion of inclusions
(like peptides and other proteins) in the bilayer,'® or the polymer
coating of the vesicle (like PEGylated®>*' and polyelectrolyte-
grafted®>?* vesicles).

2 The model

2.1 Bending energy

We consider thermal fluctuations of a lipid vesicle in thermo-
dynamic equilibrium. The membrane of the vesicle is a fluid lipid
bilayer. For the bending energy W;, of the membrane we use the
standard Helfrich expression® for a tensionless membrane with a
zero spontaneous curvature and a fixed topology (the contribution
of the Gaussian curvature to the bending energy does not depend
on the fluctuations):

Wy = 5]{ (c1 + ¢2)’dA4, (1)
2 J4

where « is the bending stiffness of the membrane, ¢, and c, are the
principal curvatures of the vesicle membrane at the point under
consideration and the integration is performed over the membrane
area A.

The lipid bilayer is on a timescale of thermal fluctuations
impermeable for water molecules and due to the low compressibility
of water we can assume the vesicle’s volume to be constant during
thermal fluctuations.

With thermal fluctuations some lateral stretching of the
membrane occurs on the scale of phospholipid molecules,
however, the energy required to significantly change the area of
the membrane greatly exceeds the thermal energy kT (product of the
Boltzmann constant and the absolute temperature), therefore we can
assume that the overall area A of the membrane remains almost
constant during thermal fluctuations (A4 « A).

2.2 Randomly triangulated surface

The membrane of the vesicle is described by a set of N vertices
linked with bonds of flexible length d to form a closed,
randomly triangulated, self-avoiding network.”**® Lengths of the
bonds can vary between their minimal value d,;, and maximal
value dpax. All vertices experience a hard-core repulsive potential at
their mutual distances dy;p,.

In our simulations the initial state of triangulation is a
pentagonal dipyramid with all the edges divided into equilateral
bonds so that the network is composed of 3(N — 2) bonds
forming 2(N — 2) triangles. The system is initially thermalized
- evolved into the nearly spherical equilibrium state using the
Metropolis-Hastings algorithm (as described below).

This journal is © The Royal Society of Chemistry 2015
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The thermal fluctuations of the vesicle membrane are simulated
by employing the Monte Carlo method, where Monte Carlo steps
are vertex moves, assuring shape fluctuations, and bond flips,
assuring lateral fluidity within the membrane. The vertex move
includes a random displacement of the vertex within a sphere
with radius s positioned at the center of the vertex. In this work
we choose dpax/@min = 1.7 and s/dmin = 0.15, resulting in a self-
avoiding nearly spherical network with approximately one-half of
vertex moves accepted. The bond flip involves four vertices of the
two neighboring triangles. The bond shared by the neighboring
triangles is cut and reestablished between the other two, previously
unconnected, vertices.

The microstates of the vesicle are sampled according to the
Metropolis-Hastings algorithm. To obtain the canonical ensemble
representing the system in a thermodynamical equilibrium,
each individual Monte Carlo step (vertex move or bond flip) is
accepted with probability min[1,exp(—AE/kT)], where AE is the
energy change due to the vertex move or bond flip.

Some discussion was done in the past on choosing an
appropriate discretization of the bending energy on a triangulated
surface (for example, see Section 2 in Gompper and Kroll, 1996,
eqn (70) in Gompper and Kroll, 2004,>* or Ramakrishnan et al,
2011%°). In this work we used for the discretization of the bending
energy (eqn (1)) the relation®”®

2
| @raru=-Y S 2ror)| . @
4 okl

where the outer summation runs over all vertices and the inner
summations run over all their nearest neighbors, R; is the radial
vector of vertex i, d;; is the distance between vertices 7 and j,

1
0 = Zzaifdi/ (3)
J(@)

is the area of the cell in the dual lattice®” in vertex 7. Here o;; =
difcot(0,) + cot(0,)])/2 is the distance between vertices in the dual
lattice, 6; and 6, being opposite angles to side jj in the two
triangles that share the common bond 7.

The volume of the vesicle is kept constant at the given value
Vo by the constraint |V — V| < &y, where &, must be small
enough to fulfill the condition &, « V,, but still not so small to
completely suppress the out-of-plane shape fluctuations of the
membrane. The choice of ¢, depends on the discretization and
is in our work taken to be the volume of the tetrahedron
consisting of equilateral triangles with areas Ay/N;, where 4,
is the area of the spherical vesicle with volume V, and N; the
number of triangles in the triangulated surface:

421 ¥,

=T N (4)

The evolution of the system is measured in Monte Carlo sweeps
(mcs). One mcs consists of individual attempts to displace each
of the N vertices, followed by 3N attempts to flip a randomly
chosen bond. Let us just note that the bond flip to vertex move
attempt ratio is connected to the lateral diffusion coefficient
within the membrane, that is, to the membrane viscosity.>**°

Soft Matter, 2015, 11, 5004-5009 | 5005
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Diffusion also introduces a real timescale in the simulations
and allows simulations of the dynamics of the modeled system,
which is not considered in this work.

2.3 Obtaining elastic properties through spectral analysis of
thermal fluctuations

Using the theory of Milner and Safran'® the bending stiffness K,
of the membrane can be measured from the spectral analysis of
thermal fluctuations of our randomly triangulated surface of
the nearly spherical vesicle. Note that the bending stiffness x is an
input parameter in our simulations and that we used a different
symbol (K.) for the bending stiffness obtained from the spectral
analysis of thermal fluctuations. From now on, to distinguish the
two values x and K., we name them the input bending stiffness and
the measured bending stiffness, respectively.

Let us consider our triangulated nearly spherical vesicle with
volume V, and let R, be the radius of a sphere with the same
volume. The length of the radial vector R,(t) = R(9,,¢,,¢) from the
origin to the vertex i at time ¢ is then defined as

R(‘(}i)(f)ivt) = RO[l + r[‘giy(/)iyt)]v [5)

where 9; and ¢; are the spherical coordinates of the i-th vertex
and r(9;,¢,t) is the relative displacement of the i-th vertex.

Relative displacements r(9;¢;t) are decomposed into a
series with respect to the spherical harmonics Y7*(9;,¢,):

Imax

Syw

1=0 m=—/

‘917 (pn YI '917 (/)1) (6)

where cutoff [, is of the order of Ry/dnin and the spherical
harmonics are defined as

21+ 1) (I — m)!

Y00 =\ Trmy

P (cos(9))e™™? (7)
using associated Legendre polynomials P;".

The complex coefficients u;*(¢) can then be calculated using
the relation

(1) = J'Qr(:;, 0, 1) (Y19, 0))"de, ()

where the integration runs over the solid angle Q of the sphere.
The discretization of the above expression can be done as

ZQ

where Q,(t) is the solid angle corresponding to vertex i and the
sum runs over all vertices of the triangulated surface.

The mean squared amplitudes of spherical harmonics (|u}"|*)
are calculated by averaging the |u}"(£)|* values over an ensemble
of microstates of the vesicle in the thermal equilibrium. Using
the expression of Milner and Safran,"®

D(Y7"(9:(1), i), ©)

(10)

1
<| > - (z— DI+2)G +1(I+1))

the bending stiffness K. and the dimensionless mean lateral
tension ¢ of the membrane can be obtained.
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Note that eqn (10) were deduced for vesicles the membranes
of which are lipid bilayers with a zero spontaneous curvature as
well as for emulsion droplets the membranes of which are
monolayers consisting of amphiphilic molecules with a zero
spontaneous curvature.'® In the case of lipid bilayers K, is the
bending stiffness at free flip-flop"” (for the definition of bending
elasticity at blocked and free flip-flop, see Helfrich®). If the
stretching of the membrane of the emulsion droplet is high
enough, then the sufficient condition for the validity of eqn (10)
will be fulfilled."” The same is valid for the stretched enough
vesicle membrane.

Since the rhs of eqn (10) do not depend on the order of
spherical harmonics m, the mean squared amplitudes of spherical
harmonics obtained from simulations are first averaged over m and
then the obtained values (|1;|*) are used on the lhs of eqn (10):

kT 1
(l*) = Ki-nrae ey Y

To obtain the bending stiffness K. and the dimensionless mean
lateral tension & of the membrane together with their standard
errors, the {|w]?) from simulations are fitted with the formula of
Milner and Safran (eqn (11)) using an inverse squared variance
weighted nonlinear fit.

3 Results and discussion

For each set of parameters the system is initially thermalized
into a nearly spherical vesicle and then the volume is fixed. The
squared amplitudes of spherical harmonics |u}’|* are obtained
from Monte Carlo simulations as described in Section 2.

To obtain the ensemble of microstates that are statistically
independent, the autocorrelations of squared amplitudes
Sf(lu]")?,7) are calculated with the autocorrelation function

~
a

D) (x(r +17) = (x))

f(x,r) =

; (12)

(x(1) =
Tr

x(1) = (x))*

=1

where the sums run over the discrete “time” ¢ denoting con-
secutive microstates and T is the number of microstates used
in the calculation of the mean (x). Let us define the decay time
of |uf’|* as the value of t when the autocorrelation function
f(lu")?,7) falls bellow 1/e.

Fig. 1 shows the autocorrelation functions of the few lowest
relevant modes for a system with N = 1127 vertices and input
bending stiffness x = 20kT. It can be seen that the longest decay
times are for |u3'|* ie. the decay time decreases with the
increasing degree of the spherical harmonics /, as expected.
Let us denote the largest decay time of all the relevant modes for
a given system with N vertices as 7y (in Fig. 1 we have 1145, &
60000). The largest decay time 7, decreases with the increasing
input bending stiffness x, while it increases with the number of
vertices N in the triangulated network.

The decay time 7y is important for our spectral analysis
since it can be used to estimate the “time” interval between two
microstates that can be regarded as statistically uncorrelated.

This journal is © The Royal Society of Chemistry 2015
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Fig. 1 Autocorrelation functions f (|u"|? 1) of the lowest relevant degrees of
spherical harmonics [ = 2 and [ = 3, for N = 1127 and k = 20kT. The dashed
gray horizontal line indicates the value 1/e. The decay time of a given mode
is defined as time when the autocorrelation function falls below this value.

The ensemble of statistically uncorrelated states is needed for
the estimation of the standard errors together with the means
of squared amplitudes of spherical harmonics. Those standard
errors of (|u}"|*) have to be taken into account in the fitting
procedure in eqn (11), to obtain relevant values of the bending
stiffness K. and the dimensionless mean lateral tension & of the
membrane. In this work the interval between two consecutive
microstates in an ensemble of statistically uncorrelated states, i.e.
between two consecutive “measurements”, was always larger than
three times the largest decay time ty. In Fig. 1, for example, the
x-axis spans the “time” interval between consecutive measure-
ments for a system with N = 1127 and x = 20kT.

When squared amplitudes |1]"|* are averaged over the ensemble
of microstates, the obtained {|u]"|*) with the same order m converge
towards the same value, as shown in Fig. 2 for |45'|*. This is in
accordance with the theory of Milner and Safran (rhs of eqn (10) are
independent of m). Also Fig. 3 shows that the mean squared
amplitudes obtained from simulations are independent of m.
Note that our previously reported®® inability to observe this
independence of (|uf’|*) on m was a result of numerical errors.

0.004 |
{17\ -
e -
3 H
=0.002}
0 bt 2 ! ! I et =
0 50 100 150 200
7/4-10° mcs

Fig. 2 Mean squared amplitudes (|uS[?) (full), (|u3|?) (dashed) and (|u3|?)
(dotted) as a function of the number of statistically independent measure-
ments used in the averaging. The input bending stiffness k = 20kT and the
membrane is triangulated with N = 1127 vertices.
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Fig. 3 Mean squared amplitudes (|u"|?) for [ = 2, 3 and 4, obtained from
1000 measurement for a vesicle with input bending stiffness k = 20kT and
triangulated with N = 1127 vertices. The error bars indicate the standard
error (standard deviation divided by the square-root of the number of
measurements). Lines connect the points with the same degree [ and are
for the guide-of-eye only.

The measured bending stiffness K. and the dimensionless
mean lateral tension ¢ are obtained from the mean squared
amplitudes as described in Section 2.3. The result of a fitting
procedure for K. is shown in Fig. 4 as a function of the maximal
degree [ of spherical harmonics used in the fitting of (|u|?) in
eqn (11) (eqn for all values from [ = 2 up to the maximal degree [
are taken into account).

The measured bending stiffness K. is shown in Fig. 5 as a
function of the number of vertices N of the triangulated surface.
As expected, the difference between the measured bending
stiffness K. and the input bending stiffness x = 20kT decreases
as we increase the number of vertices in the triangulation (i.e.
as we increase the resolution of the discretization).

Fig. 5 also shows the obtained values of the dimensionless
mean lateral tension ¢ for the same sets of measurements. Let
us note that the measured K. should not depend on the value of
6. The mean lateral tension in the membrane depends on the

20} -------------- LS I _

* ol

! \Jjjlllliiiiiill

e RS 20
Max [

Fig. 4 Measured bending stiffness K. together with standard error (error bars)
as a function of the maximal degree [ of spherical harmonics used in the
calculation of K. and &. The value of the input bending stiffness « = 20kT is
indicated with a horizontal dashed line. The membrane is triangulated with
N = 3127 vertices and 200 statistically independent microstates are measured
(between each measured microstate is an interval of 2 x 10° mcs). Lines
connecting the points are for the guide-of-eye only.
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Fig. 5 Measured bending stiffness K. together with standard error (error
bars) as a function of the number of vertices N used in the triangulation of
the membrane, for the input bending stiffness k = 20kT. The dimensionless
mean lateral tension & for the same sets of measurements is also shown.
Lines connecting the points are for the guide-of-eye only.

value of the fixed volume of the vesicle, i.e. how much the vesicle
is “swollen”. This is somewhat arbitrarily chosen by picking a
random microstate in the thermodynamical equilibrium when
fixing the volume and starting the measuring procedure for K.
and &. As expected, the exact choice of the equilibrium micro-
state used when fixing the volume, i.e. the value of &, does not
observably influence the measured K..

Fig. 6 shows the relative difference between the measured
and the input bending stiffness, K./x — 1, for different values of
the input bending stiffness «. It can be seen that increasing the
input bending stiffness decreases the mismatch between the
input and the measured bending stiffness. Note that, as already
reported above, the correlation times of squared amplitudes
decrease with the increasing bending stiffness of the membrane.

A group of methods for the investigation of lipid-water systems
exists, the results of which are explained by the fluctuations of the
membranes of these systems. These are the different kinds of
scattering: neutron,”>** laser light,** etc. Zilman and Granek,**
investigating the neutron scattering in the lamellar lipid-water
phase, used periodic boundary conditions and developed the

—0.04

K. /x—1
&
o
oo
T T T [ T T T T [ T T T T [ T T T 1]
H

TN T NN I A A B
10 20 30 40 50 60 70

K
Fig. 6 Relative difference between the measured and the input bending

stiffness as a function of the input bending stiffness for the membrane
triangulated with N = 1447 vertices.
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out-of-plane fluctuations of the layers in the Fourier series. The
periodic boundary conditions resemble monodisperse vesicular
suspensions, with their repeating distance being the analog of
the radius of the vesicle. The authors determined the decay rate
of different fluctuation modes from their experimental data.
Due to the absence of real timescale in our Monte Carlo
simulations, we cannot determine the true values of these
decay rates from simulations and a direct comparison with
the experimental results cannot be made. As already noted in
Section 2.2, real timescale could be introduced in our simula-
tions through the lateral diffusion of vertices on the randomly
triangulated surface, which is beyond the scope of this work.

Brocca, et al.** have investigated the shape fluctuations of
large unilamellar lipid vesicles using laser light scattering. The
analysis of their experimental results permits the simultaneous
deduction of the time mean squares {|u}(¢)|*) (see eqn (10)) of
the amplitudes u/*(t) and the decay rate of these amplitudes.
According to the theory of Milner and Safran’® a relation
between these two quantities exists, however the results
obtained by Brocca, et al.** do not satisfy it. This discrepancy
could be explained by the fact that in the systems studied by
Brocca, et al.** the requirements, assuring the validity of the
theory of Milner and Safran are not fulfilled: the thickness of
the membrane needs to be much less than the radius of the
vesicle; the viscosity of the liquid environment inside and
outside the vesicle needs to be constant; etc. It must be noted
that these authors used the theory of Milner and Safran that
does not take into account the dissipation of the energy due to
the friction between the monolayers of the bilayer, which yields
a double-exponential decay of each fluctuation mode'® instead
of the mono-exponential one in the theory of Milner and
Safran.'® The results of our Monte Carlo simulations cannot
be used for the explanation of the discrepancy found by Brocca,
et al.** As in the case when the data of Zilman and Granek®***
were considered, the reason is the fact that our data from the
simulations do not permit the determination of the true decay
rate of the fluctuation modes.

4 Conclusion

The analysis of thermally induced shape fluctuations of a nearly
spherical giant lipid vesicle is one of the commonly used
methods to determine the bending stiffness of the vesicle’s
membrane. The theoretical basis of this analysis, proposed by
Milner and Safran,'® uses the mean field approximation. In the
present work, the error of the determination of the bending
stiffness due to the approximations used in the theory was
estimated.

Monte Carlo simulations of the fluctuating nearly spherical
vesicle have been performed using a randomly triangulated
surface. The results for the time mean squares of the amplitudes of
the fluctuations, obtained from the simulations, can be determined
with an arbitrarily high precision, depending only on the length of
the simulation. One of the parameters in the simulations is the
input value of the bending stiffness. The obtained time mean

This journal is © The Royal Society of Chemistry 2015
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squares of the amplitudes of the fluctuations can be considered
as experimental values, which can be used for the determination of
the output value of the bending stiffness by means of the theory of
Milner and Safran. The theory would be “exact” if the output value
of the bending stiffness would have been equal to the input one.
Our results show that the difference between the two values of the
bending stiffness decreases with the increase of the resolution of
the triangulated network and can be well below 10%.

Therefore, we can conclude that the theory of Milner and
Safran can be successfully used in the determination of the
bending stiffness of the membrane of a nearly spherical lipid
vesicle. According to our results, the errors due to the approx-
imations adopted in the theory are less than 10%.

In conclusion, the analysis presented in this work can be a
useful tool to predict the change of the bending stiffness of
biological membranes due to their chemical modification.
Altering the properties of the triangulated surface and/or
introducing other membrane-interacting objects in the simula-
tions, and then measure the change of the bending stiffness,
offers many useful applications. Multicomponent lipid bilayers,
membranes decorated with inclusions like peptides, polymer
coated vesicles like PEGylated and polyelectrolyte-grafted vesicles,
just to name a few.
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