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Tunable dipolar capillary deformations for
magnetic Janus particles at fluid–fluid interfaces

Qingguang Xie,a Gary B. Davies,b Florian Günthera and Jens Harting*ac

Janus particles have attracted significant interest as building blocks for complex materials in recent

years. Furthermore, capillary interactions have been identified as a promising tool for directed self-

assembly of particles at fluid–fluid interfaces. In this paper, we develop theoretical models describing

the behaviour of magnetic Janus particles adsorbed at fluid–fluid interfaces interacting with an external

magnetic field. Using numerical simulations, we test the models predictions and show that the magnetic

Janus particles deform the interface in a dipolar manner. We suggest how to utilise the resulting dipolar

capillary interactions to assemble particles at a fluid–fluid interface, and further demonstrate that the

strength of these interactions can be tuned by altering the external field strength, opening up the possi-

bility to create novel, reconfigurable materials.

I. Introduction

Colloidal Janus particles have drawn special attention during the
past two decades for their potential in materials science.1 Janus
particles are characterized by anisotropic surface chemical (e.g.
wetting or catalytic) or physical (e.g. optical, electric, or magnetic)
properties at well-defined areas on the particle. This combination
of chemical anisotropy and response to external fields makes
Janus particles promising building blocks of reconfigurable and
programmable self-assembled structures.2–6

Janus particles strongly adsorb at fluid–fluid interfaces,7

making the formation of 2D structures accessible. For symmetric
Janus particles composed of hydrophobic and hydrophilic
hemispheres, the equilibrium contact angle is 901 since each
hemisphere immerses in its favourable fluid, and the interface
remains flat.8 However, due to surface roughness,9 anisotropic
shape,10,11 or the influence of external forces, Janus particles
can tilt with respect to the interface. In a tilted orientation, the
fluid–fluid interface around the Janus particle deforms in a
dipolar fashion in order to fulfil boundary conditions stipulated
by Young’s equation.12 Assuming small interface deformations,
the particle-induced interface deformations obeyr2h = 0, where h
is the interface height, which can be solved using a multipolar
analysis, analagous to 2D electrostatics.13 These particle induced
deformations, called capillary interactions, can cause particles to

attract and repel in specific orientations, making them a useful
tool for controlling the behaviour of particles at interfaces.

Previous investigations into capillary interactions between
particles at fluid–fluid interfaces have focussed mainly around
two themes: particle weight-induced deformations, which lead to
monopolar interactions between particles and are responsible
for e.g. the Cheerios effect;14 and surface roughness or shape
anisotropy induced deformations, which lead to quadrupolar
interactions between particles15 and are responsible for e.g. the
suppression of the coffee ring effect.16 With respect to Janus
particles, Brugarolas et al.17 showed that quadrupolar capillary
interactions induced by surface roughness can be used to form
fractal-like structures of Janus nanoparticle-shelled bubbles.
However, a significant limitation of the above mentioned capillary
interactions is that they are not dynamically tunable because they
depend on the particle properties alone.

Davies et al.18 recently found a way of creating dynamically
tunable dipolar capillary interactions between magnetic ellipsoidal
particles adsorbed at an interface under the influence of an external
magnetic field. The structures that form depend on the dipole-field
coupling, which can be controlled dynamically.19 However, it is also
desirable to create tunable capillary interactions between spherical
particles without relying on particle shape anisotropy.

In this paper, we show how to create tunable dipolar capillary
interactions using spherical Janus particles adsorbed at fluid–
fluid interfaces. The Janus particles have a dipole moment
orthogonal to their Janus boundary and are influenced by an
external magnetic field directed parallel to the interface. The
field causes the particles to experience a magnetic torque, but
surface tension opposes this torque, and the particles therefore
tilt with respect to the interface. When tilted, the particles
deform the interface in a dipolar fashion.
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We develop a free energy based model of the behaviour of a
single particle at the interface, and a model which takes into
account small interface deformations. We numerically investi-
gate the predictions of the models using lattice Boltzmann
simulations and highlight that the dipolar interface deformations
lead to novel and interesting particle behaviour at the interface.
Finally, we explain how to use these interface deformations
to manufacture tunable capillary interactions between many
particles at a fluid–fluid interface, which could be utilised to
assemble reconfigurable materials.

This paper is organised as follows. We present our hybrid
molecular dynamics-lattice Boltzmann simulation method in
Section II. In Section III, we develop two theoretical models
describing the behaviour of Janus particles at fluid–fluid interfaces.
Section IV contains our simulation results, and we compare
these results with our theoretical models from Section III.
Finally, Section V concludes the article.

II. Simulation method
A. The multicomponent lattice Boltzmann method

We use the lattice Boltzmann method (LBM) to simulate the
motion of each fluid. The LBM is a local mesoscopic algorithm,
allowing for efficient parallel implementations, and has demon-
strated itself as a powerful tool for numerical simulations of
fluid flows.20 It has been extended to allow the simulation of, for
example, multiphase/multicomponent fluids21,22 and suspen-
sions of particles of arbitrary shape and wettability.23–25

We implement the pseudopotential multicomponent
LBM method of Shan and Chen21 with a D3Q19 lattice26 and
review some relevant details in the following. For a detailed
description of the method, we refer the reader to the relevant
literature.24,25,27–29 Two fluid components are modelled by
following the evolution of each distribution function discre-
tized in space and time according to the lattice Boltzmann
equation:

f ci ~xþ~ciDt; tþ Dtð Þ ¼ f ci ~x; tð Þ � Dt
tc

f ci ~x; tð Þ
�

�f eq
i rc ~x; tð Þ;~u c ~x; tð Þð Þ�;

(1)

where i = 1,. . .,19, f c
i(

-
x,t) are the single-particle distribution

functions for fluid component c = 1 or 2, -
ci is the discrete velocity

in ith direction, and tc is the relaxation time for component c.
The macroscopic densities and velocities are defined as rc ~x; tð Þ ¼
r0
P
i

f ci ~x; tð Þ, where r0 is a reference density, and ~u c ~x; tð Þ ¼
P
i

f ci ~x; tð Þ~ci
�
rc ~x; tð Þ, respectively. Here, f eq

i (rc(-x,t),-uc(-x,t)) is a

third-order equilibrium distribution function. When sufficient
lattice symmetry is guaranteed, the Navier–Stokes equations
can be recovered from eqn (1) on appropriate length and
time scales.20 For convenience we choose the lattice constant
Dx, the timestep Dt, the unit mass r0 and the relaxation time

tc to be unity, which leads to a kinematic viscosity nc ¼ 1

6
in

lattice units.

The Shan–Chen multicomponent model introduces a mean-
field interaction force

~Fc
C ~x; tð Þ ¼ �Cc ~x; tð Þ

X
c0

gcc0
X
~x 0

Cc0 ~x 0; tð Þ ~x 0 �~xð Þ (2)

between fluid components c and c0,21 in which -
x0 denote the

nearest neighbours of lattice site -
x and gcc0 is a coupling

constant determining the surface tension. Cc(x,t) is an ‘‘effec-
tive mass’’, chosen with the following functional form:

Cc ~x; tð Þ � C rc ~x; tð Þð Þ ¼ 1� e�r
c ~x;tð Þ: (3)

This force is then applied to the component c by adding a shift

D~u c ~x; tð Þ ¼ tc~Fc
C ~x; tð Þ

rc ~x; tð Þ to the velocity -
uc(-x,t) in the equilibrium

distribution. The Shan–Chen LB method is a diffuse interface
method, resulting in an interface width of E5Dx.27

B. The colloidal particle

The trajectory of the colloidal Janus particle is updated using a
leap-frog integrator. The particle is discretized on the fluid
lattice and coupled to the fluid species by means of a modified
bounce-back boundary condition as pioneered by Ladd and
Aidun.23,30

The outer shell of the particle is filled with a ‘‘virtual’’ fluid
with the density

r1virt ~x; tð Þ ¼ �r1 ~x; tð Þ þ Drj j; (4)

r2virt ~x; tð Þ ¼ �r2 ~x; tð Þ � Drj j; (5)

where �r1 ~x; tð Þ and �r2 ~x; tð Þ are the average of the density of
neighbouring fluid nodes for component 1 and 2, respectively.
The parameter Dr is called the ‘‘particle colour’’ and dictates
the contact angle of the particle. A particle colour Dr = 0
corresponds to a contact angle of y = 901, i.e. a neutrally wetting
particle. In order to simulate a Janus particle, we set different
particle colours in well defined surface areas corresponding to
the different hemispheres of the particle.

We choose a system size S = 128 � 64 � 128 to eliminate
finite size effects. We fill one half of the system with fluid 1 and
the other half with fluid 2 of equal density (r1 = r2 = 0.7) such
that a fluid–fluid interface forms at y = 32. The interaction
strength in eqn (2) is chosen to be g12 = 0.1 and the particle with
radius R = 10 is placed at the interface. We impose walls with
mid-grid bounce back boundary conditions at the top and
bottom of the system parallel to the interface, while all other
boundaries are periodic.

III. Theoretical results

We consider a spherical Janus particle composed of apolar and
polar hemispheres adsorbed at a fluid–fluid interface, as illustrated
in Fig. 1a. The two hemispheres have opposite wettability,
represented by the three-phase contact angles yA = 901 + b and
yP = 901 � b, respectively, where b represents the amphiphilicity
of the particle. A larger b value corresponds to a greater
degree of particle amphiphilicity. In its equilibrium state, the
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Janus particle takes an upright orientation with respect to the
interface with its two hemispheres totally immersed in their
favourable phases, as shown in Fig. 1a.

The free energy of the particle in its equilibrium
configuration is

Eint = g12Aint
12 + ga1Aint

a1 + gp2Aint
p2 , (6)

where gij are the interface tensions between phases i and j and
Aij are the contact surface areas between phases i and j, where i,
j = {1: fluid, 2: fluid, a: apolar, p: polar}. For a symmetric
amphiphilic spherical particle, the apolar and polar surface
areas are equal Aa1 = Ap2 = 2pR2.

After switching on the horizontal magnetic field, H, the
particle experiences a torque t = m � H that attempts to align
the particle dipole axis with the field. However, surface tension
resists the rotation causing the particle to tilt with respect to
the interface for a given dipole-field strength B = |m||H|, as
illustrated in Fig. 1b. The tilt angle j is defined as the angle
between particle dipole-moment and the undeformed interface
normal (i.e. the y-axis). The interface deforms around the
particle so that each fluid contacts a larger area of its favourable
particle surface (Fig. 1b). This interface deformation increases
the fluid–fluid interface area and decreases the surface of each
hemisphere contacting its unfavourable fluid. The free energy
of the system is reduced in total due to the dominant contribu-
tion of particle-fluid interface energies.12 The free energy of a
Janus particle in a tilted orientation can be written as

Etilt = g12Atilt
12 + ga1Atilt

a1 + gp2Atilt
p2 + ga2Aa2 + gp1Ap1 + B sinj.

(7)

The free energy difference between the tilted orientation state
and the initial state is

DE = Etilt � Eint = g12(Atilt
12 � Aint

12 ) + ga1(Atilt
a1 � Aint

a1 ) + gp2(Atilt
p2 � Aint

p2 )

+ ga2Aa2 + gp1Ap1 + B sinj. (8)

Since Aint
a1 = Atilt

a1 + Aa2 and Aint
p2 = Atilt

p2 + Ap1, we obtain

DE = g12DA12 + (ga2 � ga1)Aa2 + (gp1 � gp2)Ap1 + B sinj,
(9)

where DA12 = Atilt
12 � Aint

12 is the increased fluid–fluid interface
area. The particle obeys Young’s boundary conditions8

cos yA ¼
ga1 � ga2

g12
; cos yP ¼

gp1 � gp2
g12

: (10)

For two hemispheres with opposite wettabilities, we obtain
cos yA = �cos yP = �sin b. Eqn (9) is further simplified to

DE = g12DA12 + g12(Aa2 + Ap1) sinb + B sinj. (11)

Under the assumption of a flat interface,10 DA12 = 0,

Aa2 ¼ Ap1 ¼
j
2p

4pR2 ¼ 2jR2. Therefore, eqn (9) finally

reduces to

DE = 4jR2g12 sin b + B sinj. (12)

There is no exact analytical expression for the free energy of
a tilted Janus particle at an interface that includes interface
deformations, due to the difficulty in modelling the shape of
the interface and position of the contact line. However, in the
limit of small interface deformations,13 we derive such an
analytical expression for the free energy.

We consider micron-sized particles with a radius much
smaller than the capillary length such that we can neglect the
effect of gravity. We assume the pressure drop across the
interface to be zero, leading to vanishing mean curvature

Fig. 1 A single Janus particle adsorbed at a fluid–fluid interface in its equilibrium orientation (a) and in a tilted orientation (b). The Janus particle consists
of an apolar and a polar hemisphere. The particle’s magnetic dipole moment m is orthogonal to the Janus boundary, and the external magnetic field, H,
is directed parallel to the interface. The tilt angle j is defined as the angle between the particle’s dipole moment and the undeformed interface normal.
Aa2 and Ap1 are the surface areas of the apolar hemisphere immersed in fluid 2 and the polar hemisphere immersed in fluid 1, respectively. The bold red
line represents the deformed interface and z1 is the maximal interface height at the contact line.
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according to the Young–Laplace equation. The mean curvature
can be approximately written in cylindrical coordinates as13

Dhðr; WÞ ¼ 1

r

@

@r
r
@

@r
þ 1

r2
@

@W2

� �
hðr; WÞ ¼ 0; (13)

where h is the height of the interface. The radial distance r and the
polar angle W are defined with respect to a particle centred reference
frame. Using a multipole analysis,13 the solution of eqn (13) yields

hðr; WÞ ¼
X
m4 0

RmðrÞFmðWÞ (14)

¼
X1
m4 0

zm cos m W� Wm;0
� �� � rc

r

� 	m
; (15)

where zm is the maximal height of the contact line, Wm,0 is the
phase angle and rc is the radius where the particle and fluid
interface intersect. rc is approximately the particle radius in
the limit of small interface deformations. The monopolar term
m = 0 is omitted because we focus on micron-sized particles
where gravitational effects can be neglected. The dipolar term
m = 1, results from an external torque on the particle, causing
symmetric interface rise and depression around it. m = 2
denotes the quadrupole term, which dominates in the absence
of any external forces or torques on the particle. We consider
only the leading order m = 1 dipole term

hðr; WÞ ¼ z1 cos W� W1;0
� �rc

r
: (16)

We calculate the increased fluid–fluid interface area DA12 by
considering an infinitesimal element dA* = dx* � dy* of the
deformed interface. In a local coordinate system rotated such
that the slope is maximized along the y coordinate, we have13

dx* = dx, (17)

dy� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
dy2 þ dh2

p
� dy 1þ 1

2
ðrhÞ2

� �
; (18)

resulting in

d DA12ð Þ ¼ dx� � dy� � dx� dy

¼ dx dy
1

2
ðrhÞ2

(19)

or

DA12 ¼
1

2

ð1
r¼rc

ð2p
W¼0
ðrhÞ2rdWdr: (20)

In the dipole approximation, one has

ðrhÞ � ðrhÞ ¼ @

@r
h

� �2

þ 1

r2
@

@W
h

� �2

¼ z1
2rc

2r�4

(21)

and we obtain

DA12 ¼
p
2
z1

2: (22)

The areas Aa2 and Ap1 can then be written as

Aa2 ¼ Ap1 ¼ 2R2j�
ðp
0

h r ¼ rcð Þrc dW

¼ 2R2j� 2rcz1:

(23)

We assume rc = R and the free energy taking into account small
interface deformations can then be written as

DE ¼ p
2
g12z1

2 þ 4 R2j� Rz1
� �

g12 sinbþ B sinj: (24)

We discuss the predictions of our models and compare them
with our simulation results in the following section.

IV. Simulation results and comparison
to theory

In addition to the theoretical models we developed in Section III,
we numerically calculate the free energy of a single Janus particle
adsorbed at a fluid–fluid interface using lattice Boltzmann simula-
tions. Our lattice Boltzmann simulations are capable of capturing
interface deformations fully without making any assumptions
about the magnitude of the deformations or stipulating any
particle-fluid boundary conditions.

Fig. 2a shows the initial equilibrium configuration of our
Janus particle simulation, where each hemisphere totally
immerses in its corresponding favourable liquid so that the
interface remains flat. Fig. 2b shows how the three-phase

Fig. 2 Snapshots of a Janus particle at a fluid–fluid interface at (a) initial equilibrium state (j = 01) and (b) tilted orientation state (j = 901) as obtained
from our simulations. The three-phase contact line undulates around the tilted particle so that the interface is deformed.
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contact line and interface deform around the Janus particle as
it tilts with respect to the interface.

In order to obtain the free energy of the Janus particle as a
function of tilt angle from our simulations, the total surface
area of the deformed fluid–fluid interface and the corres-
ponding particle surfaces have to be measured.12,18,31 In this
paper, we employ a simple method, which utilises the ability to
easily measure the force applied to the particle by the fluids
using the lattice Boltzmann method.

We first determine the contribution to the free energy
neglecting the dipole-field contributions by integrating the
torque on the particle as the particle rotates quasi-statically,

DE ¼
ðjtilt

0

tj dj; (25)

where jtilt is the tilt angle of interest. To do this, we rotate the
particle on the interface until it reaches the desired tilt angle
and then fix the position of the particle and let the system
equilibrate. The remaining torque on the particle is the resistive
torque applied to the particle from the fluid–fluid interface.

Fig. 3 shows the evolution of this torque tj versus the tilt
angle for different amphiphilicities b = 211 (circles), b = 301
(triangles), and b = 391 (diamonds), corresponding to particle
colours Dr = 0.10, 0.15, 0.20, respectively. For all amphiphilicities,
the torque increases linearly as the particle rotates for small tilt
angles, j o 301. As the tilt angle increases further j - 901 the
torque tends to a nearly constant value. We fit the torque tj with a
hyperbolic tangent function, and integrate the fitted function
numerically to obtain the free energy.

In order to calculate the free energy of our small interface
deformation based model (eqn (24)), we measure the corres-
ponding maximal height of the contact line z1 as a function of
tilt angle, as shown in Fig. 4. Similarly to Fig. 3, the height of
the contact line increases linearly for small tilt angles, and then
reaches a plateau for large tilt angles. The height plateau
demonstrates that the deformed interface area remains constant
at large tilt angles. This indicates that at large tilt angles, only
the particle-fluid surface energy, which increases linearly with
increasing tilt angle, contributes to the change in free energy,
and therefore the torque t p d(DE)/dj is constant at large tilt
angles, in agreement with Fig. 3.

In Fig. 5 we compare the free energy models that we
developed in Section III assuming no interface deformations
(eqn (12), dashed lines) and small interface deformations
(eqn (24), solid lines) with our lattice Boltzmann simulation
data (symbols), which incorporates interface deformation fully,
by measuring the free energies as a function of particle tilt
angle as described above.

Our undeformed interface model (eqn (12)) predicts that the
energy varies linearly with the particle tilt angle, j, for all
particle amphiphilicities, b = 211, 301, and 391. The model also
predicts that the free energy increases as the amphiphilicity
increases from b = 211 to b = 391 for any given tilt angle. Our
analytical model assuming small interface deformations
(eqn (24)) shows some interesting qualitative behaviour. Firstly,
for small tilt angles, j o 301, the energy varies quadratically

Fig. 3 Reduced torque t/Apg12 as a function of tilt angle j for b = 211
(circles), b = 301 (triangles) and b = 391 (diamonds), where Ap = pR2. The
symbols are simulation data and the solid lines represent hyperbolic
tangent functions to fit the data. The fitted functions are integrated in
order to obtain the free energy. For all amphiphilicities, the torque is linear
for small rotations around the equilibrium position, before reaching a
constant value at very large tilt angles j - 901.

Fig. 4 Reduced maximal height of the deformed interface z1/R as a
function of tilt angle j for b = 211 (circles), b = 301 (triangles) and b = 391
(diamonds). The data (symbols) are fitted with a hyperbolic tangent function
(solid lines). The maximal interface height increases linearly with tilt angle for
small angles, and becomes constant for large angles.
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with the tilt angle for all amphiphilicities. This is because for
small tilt angles, the maximal interface height z1 varies linearly
with the tilt angle (Fig. 4), z1 E Rj, and the free energy in

eqn (24) becomes approximately DE ¼ p
2
g12R

2j2.

Secondly, for larger tilt angles, j 4 451, the energy varies
linearly with the tilt angle, due to the fact that for large angles,
z1 is constant (Fig. 4). Therefore, eqn (24) becomes DE =
4R2g12 sin bj + C, where C is a constant, which explains the
linear behaviour of the free energy for large tilt angles.

The above analysis also explains why, for tilt angles jo 301,
the energy only weakly depends on the amphiphilicity b of the
particles: the amphiphilicity term sin b is only significant for
large tilt angles.

When comparing these two models with our simulation data
(symbols), we find that the small deformation model captures
the qualitative features of the data extremely well. In addition,
the model quantitatively agrees with the numerical results for
small tilt angles j o 301 for all amphiphilicities. As the tilt
angle of the particles increases the quantitative deviation
between the model and the data becomes more significant.
However, for small amphiphilicities b = 211 the model and
numerical data are in good agreement.

In contrast, our theoretical model that takes into account
only the free energy differences between the particle as a
function of its orientation and therefore neglects interface

deformations (eqn (12)) performs much worse. The model
captures the qualitative linear behaviour of the numerical data
only for large tilt angles j 4 501, but with large quantitative
differences that increase as the particle amphiphilicity
increases. The results in Fig. 5 clearly show that interface
deformations strongly affect the behaviour of a tilted Janus
particle adsorbed at a fluid–fluid interface, and we note that
our analytical model that includes small interface deformations
is clearly able to capture this qualitative behaviour.

To verify the predictions of the analytical models including
dipole-field contributions, we switch on the magnetic field and
numerically measure the tilt angle of the particle after the
system has equilibrated, as per eqn (25). We obtain the tilt
angle as a function of the dipole-field strength by minimizing
the free energies in eqn (12) and (24) with respect to the
tilt angle.

In Fig. 6, we compare the predicted tilt angles from the free
energy models assuming no interface deformation (eqn (12),
dashed lines) and small interface deformation (eqn (24), solid
lines) with our numerical simulation data (symbols), which
incorporates interface deformation fully, by measuring the tilt angle
as a function of dipole-field strength, for b = 211, 301, and b = 391.

For large dipole-field strengths B 4 1.5Apg12, both analytical
models perform well by predicting the numerically measured
tilt angles for all particle amphiphilicities b. This is due to the
fact that large dipole-field strengths cause large tilt angles at

Fig. 5 Free energy as a function of tilt angle j for b = 211 (circles), b = 301
(triangles) and b = 391 (diamonds), which are calculated using the analytical
model that excludes interface deformations (eqn (12), dashed lines), our
analytical model which assumes small interface deformations (eqn (24),
solid lines) and numerically integrated results (symbols) without considering a
magnetic dipole-field contribution (B = 0). The undeformed interface
model eqn (12) shows non-negligible deviation from the simulation data.
For small b and small j, the small deformation model eqn (24) is in good
agreement with the simulation results.

Fig. 6 Tilt angle j as a function of dipole-field strength for different
amphiphilicities b = 211 (circles), b = 301 (triangles) and b = 391 (diamonds).
We compare the simulation data (symbols) with the tilted angles predicted
using the analytical model which excludes interface deformations
(eqn (12), dashed lines), and our analytical model which assumes small
interface deformations (eqn (24), solid lines). For small dipole-field
strengths, the tilt angle predicted by the undeformed interface model
shows large deviations from the simulation data, whereas the tilt angle
obtained from the small deformation model agrees well with the
simulations.
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which the deformed interface area stops increasing, as shown in
Fig. 4. In this regime, the equilibrium orientation only depends on
the particle properties (radius R and amphiphilicity b), interface
tension g12, and dipole-field strength B, which are incorporated
into both analytical models.

For small dipole-field strengths, the tilt angle predicted by the
undeformed interface model eqn (12) shows large deviations from
the simulation data for all amphiphilicities. The deviations
increase with increasing particle amphiphilicity. In addition,
the undeformed interface model predicts a large critical dipole-
field strength at which the particle begins to rotate, which
we do not observe in the simulations. This critical dipole-
field strength increases with increasing particle amphiphilicity.

From eqn (12), we can obtain the torque, t / dðDEÞ
dj

¼

4R2g12 sinbþ B cosj where the first term is independent of
the tilt angle j. Therefore, in the zero dipole-field state j = 01, a
critical dipole-field strength Bc = 4R2g12 sin b is needed to over-
come this constant resistive component of the torque.

Our small deformation model (eqn (24)) shows significant
improvement at predicting the tilt angle compared with the
undeformed interface model. The predicted tilt angle from this
model shows good agreement with simulation data for weak
dipole-field strengths, especially for amphiphilicity b = 211. In
particular the model predicts a much smaller, though still
finite, critical dipole-field strength, agreeing better with our
numerical simulations. We conclude that interface deforma-
tions strongly affect the orientation of a tilted Janus particle
adsorbed at a fluid–fluid interface.

Finally, Fig. 7 shows that the Janus particle deforms the
interface in a dipolar fashion: a symmetric depression and rise
on opposite sides of the particle, as also shown in Fig. 2b. Since
the strength of the capillary interactions between two particles
interacting as polar capillary dipoles depends on the maximal
interface deformation height z1, we can tune the strength of
capillary interactions by varying the dipole-field strength. These
unique dipolar capillary interactions may be used to assemble
particles into novel materials at a fluid–fluid interface in a
tunable way.19

V. Conclusion

We studied the behaviour of a magnetic spherical amphiphilic
Janus particle adsorbed at a fluid–fluid interface under the
influence of an external magnetic field directed parallel to the
interface.

The interaction of the particle with the external field results in
a torque that tilts the particle, introducing interface deformation.
We derived analytical models assuming no interface deformations
and small interface deformations that enable the calculation of
the free energy, DE, and hence the equilibrium orientation j, of
the particle in terms of the particle size R, particle amphiphilicity
b, fluid–fluid interface tension g12, maximal interface height z1,
and magnetic dipole-field strength B. We used lattice Boltzmann
simulations that incorporate interface deformations fully to test
the results of our analytical models.

In the absence of a magnetic field, our simulations showed
that the maximal interface deformation height z1 increases
linearly z1 E Rc for small tilt angles and then reaches a plateau
for large tilt angles z1 E const. They also showed that the free
energy of the particle increases quadratically for small tilt angles
and linearly for large tilt angles. We explain this behaviour in
terms of our theoretical model assuming small interface defor-
mations that correctly predicts this behaviour, and find that the

free energy varies approximately as DE ¼ p
2
g12R

2j2 for small tilt

angles and as DE = 4R2g12 sin bj + C for large tilt angles.
With the magnetic field switched on, we calculated the

dependence of the tilt angle j, on the dipole-field strength B,
by minimising the calculated free energies with respect to the
tilt angle j, for a given dipole-field strength B.

Our undeformed interface model based on free energy
differences agrees qualitatively with our simulation results only
for large particle tilt angles, but deviates significantly quantita-
tively. In particular, this model predicts a critical dipole-field
strength Bc = 4R2g12 sin b in order to rotate the particle, which
we do not observe in our simulations. Our results contrast with
other free energy difference based models that assume a flat
interface, which were able to predict the equilibrium orienta-
tion of nanoparticles reasonably accurately.10,11

Our analytical model that includes small interface deforma-
tions captures the qualitative behaviour of the particle well for
all tilt angles, and also performs well quantitatively, in particular
for small particle amphiphilicities b. Previous studies by Davies
et al.18 have shown that interface deformations can significantly

Fig. 7 Plot of the relative height of the interface. Influenced by a magnetic
torque, the Janus particle reorients, leading to dipolar interface deformations:
the interface is depressed on one side of particle (black) and raised on the
other side (yellow). The interface is flat in the orange/red regions. These
dipolar interface deformations are dynamically tunable, providing a route
to generate tunable capillary-driven assembly at fluid interfaces.
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alter the quantitative behaviour of ellipsoidal particles at inter-
faces, however, our results demonstrate that interface deforma-
tions can both quantitatively and qualitatively affect the
behaviour of Janus particles at fluid–fluid interfaces and there-
fore cannot be neglected.

Finally, we show that the interface deformations around a
spherical magnetic titled Janus particle influenced by an external
field directed parallel to the interface are dipolar in nature.
Further, we demonstrate that the magnitude of these deforma-
tions can be dynamically tuned, and therefore the capillary
interactions between monolayers of such particles are tunable,
and we suggest that this may enable the production of novel,
reconfigurable materials.
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18 G. B. Davies, T. Krüger, P. V. Coveney, J. Harting and

F. Bresme, Soft Matter, 2014, 10, 6742.
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